Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 495
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Cell ; 84(8): 1422-1441.e14, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38521067

RESUMO

The topological state of chromosomes determines their mechanical properties, dynamics, and function. Recent work indicated that interphase chromosomes are largely free of entanglements. Here, we use Hi-C, polymer simulations, and multi-contact 3C and find that, by contrast, mitotic chromosomes are self-entangled. We explore how a mitotic self-entangled state is converted into an unentangled interphase state during mitotic exit. Most mitotic entanglements are removed during anaphase/telophase, with remaining ones removed during early G1, in a topoisomerase-II-dependent process. Polymer models suggest a two-stage disentanglement pathway: first, decondensation of mitotic chromosomes with remaining condensin loops produces entropic forces that bias topoisomerase II activity toward decatenation. At the second stage, the loops are released, and the formation of new entanglements is prevented by lower topoisomerase II activity, allowing the establishment of unentangled and territorial G1 chromosomes. When mitotic entanglements are not removed in experiments and models, a normal interphase state cannot be acquired.


Assuntos
Cromossomos , DNA Topoisomerases Tipo II , DNA Topoisomerases Tipo II/genética , Cromossomos/genética , Mitose/genética , Interfase/genética , Polímeros
2.
PLoS Pathog ; 19(11): e1011811, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37983290

RESUMO

Foot-and-mouth disease virus (FMDV) serotype A is antigenically most variable within serotypes. The structures of conserved and variable antigenic sites were not well resolved. Here, a historical A/AF72 strain from A22 lineage and a latest A/GDMM/2013 strain from G2 genotype of Sea97 lineage were respectively used as bait antigen to screen single B cell antibodies from bovine sequentially vaccinated with A/WH/CHA/09 (G1 genotype of Sea97 lineage), A/GDMM/2013 and A/AF72 antigens. Total of 39 strain-specific and 5 broad neutralizing antibodies (bnAbs) were isolated and characterized. Two conserved antigenic sites were revealed by the Cryo-EM structures of FMDV serotype A with two bnAbs W2 and W125. The contact sites with both VH and VL of W125 were closely around icosahedral threefold axis and covered the B-C, E-F, and H-I loops on VP2 and the B-B knob and H-I loop on VP3; while contact sites with only VH of W2 concentrated on B-B knob, B-C and E-F loops on VP3 scattering around the three-fold axis of viral particle. Additional highly conserved epitopes also involved key residues of VP158, VP1147 and both VP272 / VP1147 as determined respectively by bnAb W153, W145 and W151-resistant mutants. Furthermore, the epitopes recognized by 20 strain-specific neutralization antibodies involved the key residues located on VP3 68 for A/AF72 (11/20) and VP3 175 position for A/GDMM/2013 (9/19), respectively, which revealed antigenic variation between different strains of serotype A. Analysis of antibody-driven variations on capsid of two virus strains showed a relatively stable VP2 and more variable VP3 and VP1. This study provided important information on conserve and variable antigen structures to design broad-spectrum molecular vaccine against FMDV serotype A.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Animais , Bovinos , Anticorpos Neutralizantes , Sorogrupo , Anticorpos Antivirais , Anticorpos Amplamente Neutralizantes/genética , Epitopos , Proteínas do Capsídeo/genética , Anticorpos Monoclonais
3.
Macromol Rapid Commun ; 45(1): e2300238, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37335809

RESUMO

Engineering of conjugated microporous polymers (CMPs) with high porosity, redox activity, and electronic conductivity is of significant importance for their practical applications in electrochemical energy storage. Aminated-multiwall carbon nanotubes (NH2 -MWNT) are utilized to modulate the porosity and electronic conductivity of polytriphenylamine (PTPA), which is synthesized via Buchwald-Hartwig coupling reaction of tri(4-bromophenyl)amine and phenylenediamine as constitutional units in a one-step in situ polymerization process. Compared to PTPA, the specific surface area of core-shell PTPA@MWNTs has been greatly improved from 32 to 484 m2  g-1 . The PTPA@MWNTs exhibites an improved specific capacitance, with the highest value 410 F g-1 in 0.5 M H2 SO4 at a current of 10 A g-1 achieve for PTPA@MWNT-4 due to the hierarchical meso-micro pores, high redox-activity and electronic conductivity. Symmetric supercapacitor assemble by PTPA@MWNT-4 has a capacitance of 216 F g-1 of total electrode materials and retains 71% of initial capacitance after 6000 cycles. This study gives new insights into the role of CNT templates in the adjustment of molecular structure, porosity, and electronic property of CMPs for the high-performance electrochemical energy storage.


Assuntos
Nanotubos de Carbono , Porosidade , Polímeros/química , Eletrodos , Oxirredução
4.
BMC Public Health ; 24(1): 263, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263020

RESUMO

BACKGROUND: Several studies have suggested a significant association of hand, foot, and mouth disease (HFMD) with ambient air pollutants. Existing studies have characterized the role of air pollutants on HFMD using only risk ratio measures while ignoring the attributable burden. And whether the geographical context (i.e., diverse topographic features) could modulate the relationships is unclear. METHODS: Daily reported childhood HFMD counts, ambient air pollution, and meteorological data during 2015-2017 were collected for each of 21 cities in Sichuan Province. A multistage analysis was carried out in different populations based on geographical context to assess effect modification by topographic conditions. We first constructed a distributed lag nonlinear model (DLNM) for each city to describe the relationships with risk ratio measures. Then, we applied a multivariate meta-regression to estimate the pooled effects of multiple air pollutants on HFMD from the exposure and lagged dimensions. Finally, attributable risks measures were calculated to quantify HFMD burden by air pollution. RESULTS: Based on 207554 HFMD cases in Sichuan Province, significant associations of HFMD with ambient air pollutants were observed mainly at relatively high exposure ranges. The effects of ambient air pollutants on HFMD are most pronounced on lag0 or around lag7, with relative risks gradually approaching the reference line thereafter. The attributable risks of O3 were much greater than those of other air pollutants, particularly in basin and mountain regions. CONCLUSIONS: This study revealed significant pooled relationships between multiple air pollutants and HFMD incidence from both exposure and lag dimensions. However, the specific effects, including RRs and ARs, differ depending on the air pollution variable and geographical context. These findings provide local authorities with more evidence to determine key air pollutants and regions for devising and implementing targeted interventions.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Doença de Mão, Pé e Boca , Criança , Humanos , Incidência , Morbidade , China
5.
Ecotoxicol Environ Saf ; 276: 116284, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581912

RESUMO

Fluorosis due to high fluoride levels in drinking water profoundly affects the development of human skeletal and dental structures. Sodium butyrate (NaB) has been found to regulate overall bone mass and prevent pathological bone loss. However, the mechanism of NaB action on fluorosis remains unclear. In this study, a rat model of fluorosis induced by 100 mg/L sodium fluoride was used to investigate the impact of NaB on bone homeostasis and serum metabolomics. It was found that NaB significantly reduced the levels of bone resorption markers CTX-Ⅰ and TRACP-5B in fluorosis rats. Moreover, NaB increased calcium and magnesium levels in bone, while decreasing phosphorus levels. In addition, NaB improved various bone microstructure parameters, including bone mineral density (BMD), trabecular thickness (Tb. Th), trabecular bone separation (Tb. SP), and structural model index (SMI) in the femur. Notably, NaB intervention also enhanced the antioxidant capacity of plasma in fluorosis rats. Furthermore, a comprehensive analysis of serum metabolomics by LC-MS revealed a significant reversal trend of seven biomarkers after the intervention of NaB. Finally, pathway enrichment analysis based on differential metabolites indicated that NaB exerted protective effects on fluorosis by modulating arginine and proline metabolic pathways. These findings suggest that NaB has a beneficial effect on fluorosis and can regulate bone homeostasis by ameliorating metabolic disorders.


Assuntos
Ácido Butírico , Fluorose Dentária , Homeostase , Animais , Ratos , Homeostase/efeitos dos fármacos , Ácido Butírico/farmacologia , Osso e Ossos/efeitos dos fármacos , Masculino , Densidade Óssea/efeitos dos fármacos , Biomarcadores/sangue , Ratos Sprague-Dawley , Substâncias Protetoras/farmacologia , Substâncias Protetoras/uso terapêutico , Reabsorção Óssea/induzido quimicamente , Fluoreto de Sódio/toxicidade
6.
Angew Chem Int Ed Engl ; 63(29): e202405030, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38695837

RESUMO

Polymeric materials with antibacterial properties hold great promise for combating multidrug-resistant bacteria, which pose a significant threat to public health. However, the synthesis of most antibacterial polymers typically involves complicated and time-consuming procedures. In this study, we demonstrate a simple and efficient strategy for synthesizing functional poly(vinylpyridinium salt)s via pyridinium-yne click polymerization. This click polymerization could proceed with high atom economy under mild conditions without any external catalyst, yielding soluble and thermally stable poly(vinylpyridinium salt)s with satisfactory molecular weights and well-defined structures in excellent yields. Additionally, the incorporation of luminescent units such as fluorene, tetraphenylethylene, and triphenylamine into the polymer backbone confers excellent aggregation-enhanced emission properties upon the resulting polymers, rendering them suitable for bacterial staining. Moreover, the existence of pyridinium salt imparts intrinsic antibacterial activity against multidrug-resistant bacteria to the polymers, enabling them to effectively inhibit wound bacterial infection and significantly expedite the healing process. This work not only provides an efficient method to prepare antibacterial polymers, but also opens up the possibility of various applications of polymers in healthcare and other antibacterial fields.


Assuntos
Antibacterianos , Química Click , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana , Polimerização , Compostos de Piridínio , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Compostos de Piridínio/química , Compostos de Piridínio/farmacologia , Compostos de Piridínio/síntese química , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Estrutura Molecular , Staphylococcus aureus/efeitos dos fármacos , Polímeros/química , Polímeros/farmacologia , Polímeros/síntese química
7.
Small ; 19(26): e2300908, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36949508

RESUMO

Flexible sensors play a crucial role in intelligent electronic devices, while strain-sensing is the fundamental feature for these sensors of different fields. Therefore, developing high-performance flexible strain sensors is essential for building the next generation of smart electronics. Here, a self-powered ultrasensitive strain sensor based on graphene-based thermoelectric composite threads through a simple 3D extrusion method is reported. The optimized thermoelectric composite threads show a large stretchable strain of over 800%. After 1000 cycles of bending, the threads still maintain excellent thermoelectric stability. The thermoelectric effect-induced electricity can realize ultrasensitive strain and temperature detection with high resolution. As wearable devices, the thermoelectric threads can also realize self-powered physiological signals monitoring, including the opening degree of mouth, occlusal frequency, and force of the tooth during the eating process. It provides significant judgment and guidance for promoting oral healthcare and developing good eating habits.


Assuntos
Grafite , Dispositivos Eletrônicos Vestíveis , Saúde Bucal , Temperatura , Eletrônica
8.
Cell Mol Life Sci ; 79(8): 420, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35833994

RESUMO

The cytoophidium is a unique type of membraneless compartment comprising of filamentous protein polymers. Inosine monophosphate dehydrogenase (IMPDH) catalyzes the rate-limiting step of de novo GTP biosynthesis and plays critical roles in active cell metabolism. However, the molecular regulation of cytoophidium formation is poorly understood. Here we show that human IMPDH2 polymers bundle up to form cytoophidium-like aggregates in vitro when macromolecular crowders are present. The self-association of IMPDH polymers is suggested to rely on electrostatic interactions. In cells, the increase of molecular crowding with hyperosmotic medium induces cytoophidia, while the decrease of that by the inhibition of RNA synthesis perturbs cytoophidium assembly. In addition to IMPDH, CTPS and PRPS cytoophidium could be also induced by hyperosmolality, suggesting a universal phenomenon of cytoophidium-forming proteins. Finally, our results indicate that the cytoophidium can prolong the half-life of IMPDH, which is proposed to be one of conserved functions of this subcellular compartment.


Assuntos
IMP Desidrogenase , Espaço Intracelular , Polímeros , Compartimento Celular/fisiologia , Humanos , IMP Desidrogenase/metabolismo , Espaço Intracelular/metabolismo , Polímeros/metabolismo
9.
Plant Dis ; 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38037206

RESUMO

In July 2022, dieback and discoloration were detected on infected stems of peanut in Qijiang District of Chongqing (106.56°E,29.41°N), China, with an incidence up to 5%. These peanut stems had disease symptoms typical of anthracnose with irregular gray-brown spots with dark brown edges, sunken, and necrotic. High temperature and high humidity were favorable for the growth of the pathogen. To isolate the pathogen, we collected 10 typical infected peanuts and cut one piece from each of symptomatic stems, surface sterilized with 0.5% NaClO for 1 min, and 75% ethanol for 30 s, then rinsed three times with sterile distilled water and dried on sterilized filter paper. These pieces were incubated on potato dextrose agar (PDA) at 25°C in the dark. Pure cultures were obtained from hyphal tips of each colony. It was found that isolates with the same colony morphology were isolated from each infected stem. A representative isolate (L7) was used for morphological characterization, molecular analysis, phylogenetic analysis, and pathogenicity tests. The colonies appeared white to gray, with white margins and aerial hyphae, and the reverse of the colonies was gray to brown. Conidia were cylindrical, aseptate, with obtuse to slightly rounded ends, 13.4 to 18.8 × 4.2 to 5.8 µm (n=50). Morphological characteristics were generally consistent with those of Colletotrichum gloeosporioides species complex (Cannon et al., 2012). For molecular identification, genomic DNA was extracted using a CTAB method and partial sequences of ß-tubulin (TUB2), actin (ACT) genes, chitin synthase (CHS) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes were amplified and sequenced using primers T1/T2, ACT-512F/ACT-783R, CHS-79F/CHS-345R, and GDF1/GDR1, respectively (Damm et al., 2012; Dowling et al., 2020). Using the BLAST, TUB2, ACT, CHS and GAPDH gene sequences (GenBank accession No. OR714793, OP168707, OP168708 and OR714794, respectively) were100% (429 bp out of 429 bp), 99.22% (256 bp out of 258 bp), 99.64% (276 bp out of 277 bp) and 100% (253 bp out of 253 bp) identical to C. gloeosporioides CBS:112999 (JQ005587, JQ005500, JQ005326, and JQ005239), respectively. Using Neighbor-Joining algorithm, phylogenetic analysis was conducted based on the concatenated sequences of published TUB2, ACT, CHS and GAPDH genes. The identified isolate (L7) was closely related to C. gloeosporioides. To evaluate pathogenicity, the stems of ten peanut (Zhonghua12) seedlings (2 weeks) were wounded with a sterile toothpick and mycelial plugs (5 mm in diameter) or 20 µl of conidial suspension (105/ml) were inoculated. Non-colonized agar plugs or 20 µl of sterile distilled water were treated as control. After inoculation, the peanuts were kept in a moist chamber at 28°C with 80% humidity in the dark for 24 h, and subsequently transferred to the moist chamber with 12 h light and darkness cycle for 6 days, similar symptoms were observed on all inoculated peanuts. Controls remained asymptomatic. C. gloeosporioides was reisolated from the diseased stems and confirmed using morphological features and sequence analysis of TUB2, ACT, CHS and GAPDH. Anthracnose caused by C. truncatum and C. fructicola has been reported on peanut leaves in China (Gong et al., 2023; Yu et al., 2019). To our knowledge, this is the first report of anthracnose on peanut stem caused by C. gloeosporioides in Chongqing. Our report will provide crucial information for studying on epidemiology and management of this disease.

10.
Pharm Stat ; 22(1): 79-95, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36054538

RESUMO

We propose a model selection criterion for correlated survival data when the cluster size is informative to the outcome. This approach, called Resampling Cluster Survival Information Criterion (RCSIC), uses the Cox proportional hazards model that is weighted with the inverse of the cluster size. The RCSIC based on the within-cluster resampling idea takes into account the possible variability of the within-cluster subsampling and the possible informativeness of cluster sizes. The RCSIC allows for easy execution for the within-cluster resampling idea without a large number of resamples of the data. In contrast with the traditional model selection method in survival analysis, the RCSIC has an additional penalization for the within-cluster subsampling variability. Our simulations show the satisfactory results where the RCSIC provides a more robust power for variable selection in terms of clustered survival analysis, regardless of whether informative cluster size exists or not. Applying the RCSIC method to a periodontal disease studies, we identify the tooth loss in patients associated with the risk factors, Age, Filled Tooth, Molar, Crown, Decayed Tooth, and Smoking Status, respectively.


Assuntos
Análise por Conglomerados , Humanos , Modelos de Riscos Proporcionais , Análise de Sobrevida , Fatores de Risco , Simulação por Computador
11.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36835464

RESUMO

In recent years, porous titanium (Ti) scaffolds with BaTiO3 coatings have been designed to promote bone regeneration. However, the phase transitions of BaTiO3 have been understudied, and their coatings have yielded low effective piezoelectric coefficients (EPCs < 1 pm/V). In addition, piezoelectric nanomaterials bring many advantages in eliciting cell-specific responses. However, no study has attempted to design a nanostructured BaTiO3 coating with high EPCs. Herein, nanoparticulate tetragonal phase BaTiO3 coatings with cube-like nanoparticles but different effective piezoelectric coefficients were fabricated via anodization combining two hydrothermal processes. The effects of nanostructure-mediated piezoelectricity on the spreading, proliferation, and osteogenic differentiation of human jaw bone marrow mesenchymal stem cells (hJBMSCs) were explored. We found that the nanostructured tetragonal BaTiO3 coatings exhibited good biocompatibility and an EPC-dependent inhibitory effect on hJBMSC proliferation. The nanostructured tetragonal BaTiO3 coatings of relatively smaller EPCs (<10 pm/V) exhibited hJBMSC elongation and reorientation, broad lamellipodia extension, strong intercellular connection and osteogenic differentiation enhancement. Overall, the improved hJBMSC characteristics make the nanostructured tetragonal BaTiO3 coatings promising for application on implant surfaces to promote osseointegration.


Assuntos
Células-Tronco Mesenquimais , Nanoestruturas , Humanos , Osteogênese , Titânio/química , Diferenciação Celular , Nanoestruturas/química
12.
Environ Geochem Health ; 45(11): 8187-8202, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37552412

RESUMO

We aimed to characterize the association between air pollutants exposure and periodontal diseases outpatient visits and to explore the interactions between ambient air pollutants and meteorological factors. The outpatient visits data of several large stomatological and general hospitals in Hefei during 2015-2020 were collected to explore the relationship between daily air pollutants exposure and periodontal diseases by combining Poisson's generalized linear model (GLMs) and distributed lag nonlinear model (DLNMs). Subgroup analysis was performed to identify the vulnerability of different populations to air pollutants exposure. The interaction between air pollutants and meteorological factors was verified in both multiplicative and additive interaction models. An interquartile range (IQR) increased in nitrogen dioxide (NO2) concentration was associated with the greatest lag-specific relative risk (RR) of gingivitis at lag 3 days (RR = 1.087, 95% CI 1.008-1.173). Fine particulate matter (PM2.5) exposure also increased the risk of periodontitis at the day of exposure (RR = 1.049, 95% CI 1.004-1.096). Elderly patients with gingivitis and periodontitis were both vulnerable to PM2.5 exposure. The interaction analyses showed that exposure to high levels of NO2 at low temperatures was related to an increased risk of gingivitis, while exposure to high levels of NO2 and PM2.5 may also increase the risk of gingivitis and periodontitis in the high-humidity environment, respectively. This study supported that NO2 and PM2.5 exposure increased the risk of gingivitis and periodontitis outpatient visits, respectively. Besides, the adverse effects of air pollutants exposure on periodontal diseases may vary depending on ambient temperature and humidity.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Gengivite , Doenças Periodontais , Periodontite , Humanos , Idoso , Dióxido de Nitrogênio/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Material Particulado/análise , Conceitos Meteorológicos , Doenças Periodontais/etiologia , Doenças Periodontais/induzido quimicamente , Periodontite/induzido quimicamente , Gengivite/induzido quimicamente , Gengivite/epidemiologia , China , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise
13.
BMC Oral Health ; 23(1): 78, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750919

RESUMO

BACKGROUND: Condyle-fossa relationships in adolescents with skeletal Class III malocclusion remain unclear. Therefore, this study used cone-beam computed tomography (CBCT) to evaluate the position and morphology of the temporomandibular joint (TMJ) in adolescents with skeletal Class III malocclusion. METHODS: In this cross-sectional retrospective study, CBCT images from 90 adolescents with skeletal Class III malocclusion and 30 controls were analysed. Adolescents with skeletal Class III malocclusion were divided into different groups based on (1) sex (male and female), (2) sides (right and left), (3) age (early, middle, and late adolescence), and (4) vertical skeletal patterns (hyperdivergent, normodivergent, and hypodivergent). Morphology of the condyle and fossa as well as condylar position, was compared among groups. Data were collected and submitted for statistical analysis. This study adheres to STROBE guidelines. RESULTS: Regarding the intergroup comparisons, there were significant differences in TMJ position and morphology between the skeletal Class III malocclusion with different vertical skeletal patterns and control groups (P < 0.05). Within groups, condyle-fossa relationships differed significantly according to sex, age, and vertical skeletal patterns (P < 0.05); however, the mean values were not statistically different between left and right sides in adolescents with skeletal Class III malocclusion. CONCLUSIONS: Our findings can be used clinically and radiographically to evaluate the condyle and glenoid fossa features in adolescents with skeletal Class III malocclusion, providing a basis for better TMD diagnosis and orthodontic treatment.


Assuntos
Má Oclusão Classe III de Angle , Má Oclusão Classe II de Angle , Articulação Temporomandibular , Adolescente , Feminino , Humanos , Masculino , Tomografia Computadorizada de Feixe Cônico/métodos , Estudos Transversais , Má Oclusão , Côndilo Mandibular , Estudos Retrospectivos , Articulação Temporomandibular/diagnóstico por imagem
14.
Medicina (Kaunas) ; 59(5)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37241194

RESUMO

Background and Objectives: Successful root canal treatment depends on the thorough removal of biofilms through chemomechanical preparation. This study aimed to investigate and compare the cleaning and disinfecting efficiency of oval-shaped root canals using XP-endo Shaper (XPS), ProTaper Next (PTN), and HyFlex CM (HCM) in combination with passive ultrasonic irrigation (PUI). Materials and Methods: Ninety extracted teeth were contaminated and randomly divided into three groups: XPS, PTN, and HCM. Each group was assigned to three subgroups: subgroup A (sterile saline), subgroup B (3% sodium hypochlorite and 17% ethylenediaminetetraacetic acid), and subgroup C (3% sodium hypochlorite, 17% ethylenediaminetetraacetic acid, and PUI). Bacterial sampling was conducted both from baseline samples and samples after chemomechanical preparation. Scanning electron microscopy (SEM) was used to evaluate the residue bacterial biofilms, hard tissue debris, and smear layers on the buccolingual walls of oval-shaped root canals. Results: When combined with sterile saline, XPS demonstrated a higher reduction of bacterial counts and was more effective in eradicating Enterococcus faecalis in the middle third of the canals compared to the other instruments (p < 0.05). Additionally, when used with antimicrobial irrigants, XPS was more effective in disinfecting the coronal third of the canals than the other instruments (p < 0.05). Furthermore, XPS reduced hard tissue debris more effectively in the middle third of canals than in the apical third (p < 0.05). Conclusions: XPS outperforms PTN and HCM in disinfecting oval-shaped root canals. Despite the fact that combining XPS and PUI improves cleaning and disinfecting, removing hard tissue debris from the critical apical area remains challenging.


Assuntos
Preparo de Canal Radicular , Hipoclorito de Sódio , Humanos , Hipoclorito de Sódio/uso terapêutico , Ácido Edético/uso terapêutico , Cavidade Pulpar , Ultrassom
15.
New Phytol ; 236(4): 1310-1325, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35975703

RESUMO

Plant cells continuously experience mechanical stress resulting from the cell wall that bears internal turgor pressure. Cortical microtubules align with the predicted maximal tensile stress direction to guide cellulose biosynthesis and therefore results in cell wall reinforcement. We have previously identified Increased Petal Growth Anisotropy (IPGA1) as a putative microtubule-associated protein in Arabidopsis, but the function of IPGA1 remains unclear. Here, using the Arabidopsis cotyledon pavement cell as a model, we demonstrated that IPGA1 forms protein granules and interacts with ANGUSTIFOLIA (AN) to cooperatively regulate microtubule organisation in response to stress. Application of mechanical perturbations, such as cell ablation, led to microtubule reorganisation into aligned arrays in wild-type cells. This microtubule response to stress was enhanced in the IPGA1 loss-of-function mutant. Mechanical perturbations promoted the formation of IPGA1 granules on microtubules. We further showed that IPGA1 physically interacted with AN both in vitro and on microtubules. The ipga1 mutant alleles exhibited reduced interdigitated growth of pavement cells, with smooth shape. IPGA1 and AN had a genetic interaction in regulating pavement cell shape. Furthermore, IPGA1 genetically and physically interacted with the microtubule-severing enzyme KATANIN. We propose that the IPGA1-AN module regulates microtubule organisation and pavement cell shape.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Katanina/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Forma Celular , Anisotropia , Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Celulose/metabolismo , Proteínas Repressoras/metabolismo
16.
BMC Neurol ; 22(1): 17, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996390

RESUMO

BACKGROUND: Charcot-Marie-Tooth disease (CMT) is a genetically heterogeneous hereditary neuropathy, and CMT1A is the most common form; it is caused by a duplication of the peripheral myelin protein 22 (PMP22) gene. Mutations in the transient sodium channel Nav1.4 alpha subunit (SCN4A) gene underlie a diverse group of dominantly inherited nondystrophic myotonias that run the spectrum from subclinical myopathy to severe muscle stiffness, disabling weakness, or frank episodes of paralysis. CASE PRESENTATION: We describe a Chinese family affected by both CMT1A and myotonia with concomitant alterations in both the PMP22 and SCN4A genes. In this family, the affected proband inherited the disease from his father in an autosomal dominant manner. Genetic analysis confirmed duplication of the PMP22 gene and a missense c.3917G > C (p. Gly1306Ala) mutation in SCN4A in both the proband and his father. The clinical phenotype in the proband showed the combined involvement of skeletal muscle and peripheral nerves. Electromyography showed myopathic changes, including myotonic discharges. MRI revealed the concurrence of neurogenic and myogenic changes in the lower leg muscles. Sural nerve biopsies revealed a chronic demyelinating and remyelinating process with onion bulb formations in the proband. The proband's father presented with confirmed subclinical myopathy, very mild distal atrophy and proximal hypertrophy of the lower leg muscles, pes cavus, and areflexia. CONCLUSION: This study reports the coexistence of PMP22 duplication and SCN4A mutation. The presenting features in this family suggested that both neuropathy and myopathy were inherited in an autosomal dominant manner. The proband had a typical phenotype of sodium channel myotonia (SCM) and CMT1A. However, his father with the same mutations presented a much milder clinical phenotype. Our study might expand the genetic and phenotypic spectra of neuromuscular disorders with concomitant mutations.


Assuntos
Artrogripose , Doença de Charcot-Marie-Tooth , Miotonia , Doença de Charcot-Marie-Tooth/complicações , Doença de Charcot-Marie-Tooth/genética , Humanos , Masculino , Proteínas da Mielina , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Proteínas
17.
Environ Res ; 215(Pt 2): 114339, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36115417

RESUMO

Corn stalk-based and wheat straw-based biochar were modified by lignin impregnation and applied to adsorb tetracycline hydrochloride (TCH) in wastewater. Porous properties of lignin impregnated biochar were improved and showed better adsorption performance for TCH. Lignin impregnated wheat straw biochar (WS-L) had the maximum adsorption capacity of 31.48 mg/g, which was 1.89 times compared to corresponding pristine biochar, because excellent pore structure developed via the lignin impregnation and carbonization. The adsorption behavior of TCH molecules on biochar could be interpreted well by two-step process, and it postulated to be a physical adsorption process based on pore filling, hydrogen bonding, π-π interaction, and electrostatic interactions. And cations including Na+, K+, Mg2+ and Al3+ could compete with TCH for adsorption, while Ca2+ could promote TCH adsorption by forming tetracycline-Ca2+ complexes. Maximum TCH adsorption occurred at pH of 7. The best performing lignin impregnated biochar was WS-L that demonstrated the biochar modulated by lignin had the potential to remove antibiotics from aqueous solutions.


Assuntos
Tetraciclina , Poluentes Químicos da Água , Adsorção , Antibacterianos , Carvão Vegetal , Cinética , Lignina , Tetraciclina/análise , Águas Residuárias/química , Poluentes Químicos da Água/análise
18.
Environ Res ; 212(Pt D): 113565, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35623441

RESUMO

Microplastics entering the digestive system of living organisms can serve as a carrier of hydrophobic organic pollutants (HOPs), increasing their exposure levels and the health risks they pose to both humans and animals. The desorption kinetics of six polyhalocarbazoles (PHCZs) from 5 mm and 0.15 mm polypropylene (PP) and polyvinyl chloride (PVC) microplastic particles were assessed using a combined microplastics and food system, representing the gastric system of vertebrates and invertebrates. Results showed that the chemical transfer of PHCZs is biphasic and reversible, with rapid exchange occurring within 2-48 h, followed by a period of slow transfer, which continues for weeks to months. The desorption capacity of PHCZs loaded on 0.15 mm microplastic particles was greater than that of 5 mm particles. The bioavailability percentage of PHCZ congeners for PP (24.2%-65.3%) and PVC (43.5%-57.2%) in the vertebrate fluid system were all lower than those in the invertebrate system (34.2%-70.7% for PP and 56.3%-72.7% for PVC, respectively). These findings indicate that physiological conditions, such as polarity, ingestion fluid, and microplastic affect the desorption of PHCZs from microplastics. In addition, desorption from PP was inhibited by the presence of foodstuff loaded with PHCZs due to competition, while desorption from PVC was not significantly affected by the presence of PHCZs contaminant food. Microplastics could provide a cleaning function in gastric fluid systems containing contaminated foodstuff, especially PP, which was capable of competitive adsorption of PHCZs from food. Few investigations have focused on the adverse effects of microplastic ingestion on human health, particularly in their role as vectors for HOPs, compared to other routes of exposure and transport. Therefore, these findings provide valuable insight into the health risks associated with dietary intake of microplastics and HOPs.


Assuntos
Microplásticos , Poluentes Químicos da Água , Adsorção , Animais , Peixes , Plásticos , Cloreto de Polivinila , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
19.
J Mater Sci Mater Med ; 33(10): 73, 2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209337

RESUMO

Although titanium (Ti) and Ti-based alloy have been widely used as dental and orthopedic implant materials, its bioinertness hindered the rapid osseointegration. Therefore, it is recommended to acquire ideal topographic and chemical characteristics through surface modification methods. 3D printing is a delicate manufacture technique which possesses superior controllability and reproducibility. While aspirin serve as a well-established non-steroidal anti-inflammatory agent. Recently, the importance of immune system in regulating bone dynamics has attracted increasing attention. We herein superimposed the aspirin/poly (lactic-co-glycolic acid) (ASP/PLGA) coating on the 3D-printed Ti-6Al-4V surface with uniform micro-structure to establish the Ti64-M-ASP/PLGA substrate. Scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS) and contact angle test confirmed the successful fabrication of the Ti64-M-ASP/PLGA substrate, with increased wettability and sustained release pattern of ASP. Compared with the Ti64 base material, the Ti64-M-ASP/PLGA substrate showed enhanced M2 and depressed M1 genes and proteins expressions in macrophages. The novel Ti64-M-ASP/PLGA substrate also displayed enhanced osteoblast proliferation, adhesion, extracellular mineralization ability and osteogenic gene expressions when cultured with macrophage conditioned medium in vitro. Furthermore, rat femora implantation model was used for in vivo evaluation. After 4 weeks of implantation, push out test, micro-computed tomography (micro-CT) and histological analyses all confirmed the superior osseointegration capabilities of the Ti64-M-ASP/PLGA implant than the other groups. Our study revealed the synergistic role played by 3D-printed micro topography and immunoregulatory drug aspirin in promoting osteogenesis in vitro and accelerating osseointegration in vivo, thus providing a promising method for better modifying the implant surface. Graphical abstract.


Assuntos
Osseointegração , Titânio , Ligas/farmacologia , Animais , Anti-Inflamatórios não Esteroides , Aspirina/farmacologia , Meios de Cultivo Condicionados/farmacologia , Preparações de Ação Retardada , Macrófagos , Osteoblastos , Osteogênese , Impressão Tridimensional , Ratos , Reprodutibilidade dos Testes , Propriedades de Superfície , Titânio/química , Microtomografia por Raio-X
20.
Parasitol Res ; 121(11): 3133-3145, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35852603

RESUMO

Infections caused by multivalvulid myxosporeans belonging to genera Unicapsula and Kudoa (Cnidaria: Myxozoa) occasionally affect commercial marine fish species. Postmortem myoliquefaction caused by a variety of Kudoa spp., including K. thyrsites, and unsightly cyst or pseudocyst formation, caused by K. amamiensis, U. muscularis, and other kudoid species, negatively affect commercial values of fillets. However, multivalvulid infections are often latent and imperceptible in the market. Biodiversity, host range, and epidemiology remain to be explored. Here, myxosporean infection was detected in four commercial fish species from southern China, using morphological and molecular analyses. Three Unicapsula spp. (U. pyramidata in Nemipterus japonicus; U. pflugfelderi in Dentex angolensis transported from the Eastern Central Atlantic Ocean, off West African coast; and U. aequilobata in Decapterus macarellus) and Kudoa megacapsula in Nemipterus virgatus were observed to form pseudocysts in the myofibers of the host trunk muscles. All fish hosts identified here, except for U. pyramidata, are new records. Kudoa megacapsula was morphologically characterized by gigantic, cruciform myxospores with four wing-like shell valves morphologically comparable to previous Japanese records of the same species in aquaculture facilities, acquiring fly from China or Korea (Sphyraena pinguis and Seriola quinqueradiata, respectively). Molecular analyses established the conspecificity of the present Chinese isolate with previously recorded Japanese isolates. To our knowledge, for the first time, a partial large subunit ribosomal RNA gene sequence of K. megacapsula was obtained, showing close phylogenetic relationships with Kudoa spp. harboring cruciform myxospores, such as K. thyrsites, K. gunterae, K. whippsi, and K. lateolabracis.


Assuntos
Doenças dos Peixes , Myxozoa , Doenças Parasitárias em Animais , Perciformes , Animais , DNA Ribossômico/genética , Doenças dos Peixes/epidemiologia , Peixes , Músculo Esquelético , Doenças Parasitárias em Animais/epidemiologia , Perciformes/genética , Filogenia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA