Detalhe da pesquisa
1.
Direct analysis by time-of-flight secondary ion mass spectrometry reveals action of bacterial laccase-mediator systems on both hardwood and softwood samples.
Physiol Plant;
164(1): 5-16, 2018 Sep.
Artigo
em Inglês
| MEDLINE | ID: mdl-29286544
2.
Microplate-Based Detection of Lytic Polysaccharide Monooxygenase Activity by Fluorescence-Labeling of Insoluble Oxidized Products.
Biomacromolecules;
18(2): 610-616, 2017 02 13.
Artigo
em Inglês
| MEDLINE | ID: mdl-28125213
3.
Enzymatically Debranched Xylans in Graft Copolymerization.
Biomacromolecules;
18(5): 1634-1641, 2017 May 08.
Artigo
em Inglês
| MEDLINE | ID: mdl-28429930
4.
Comparative analysis of lignin peroxidase and manganese peroxidase activity on coniferous and deciduous wood using ToF-SIMS.
Appl Microbiol Biotechnol;
100(18): 8013-20, 2016 Sep.
Artigo
em Inglês
| MEDLINE | ID: mdl-27138198
5.
Effect of xylan structure on reactivity in graft copolymerization and subsequent binding to cellulose.
Biomacromolecules;
16(4): 1102-11, 2015 Apr 13.
Artigo
em Inglês
| MEDLINE | ID: mdl-25715921
6.
Debranching of soluble wheat arabinoxylan dramatically enhances recalcitrant binding to cellulose.
Biotechnol Lett;
37(3): 633-41, 2015 Mar.
Artigo
em Inglês
| MEDLINE | ID: mdl-25335745
7.
Time-dependent profiles of transcripts encoding lignocellulose-modifying enzymes of the white rot fungus Phanerochaete carnosa grown on multiple wood substrates.
Appl Environ Microbiol;
78(5): 1596-600, 2012 Mar.
Artigo
em Inglês
| MEDLINE | ID: mdl-22210217
8.
Expression and regulation of genes encoding lignocellulose-degrading activity in the genus Phanerochaete.
Appl Microbiol Biotechnol;
94(2): 339-51, 2012 Apr.
Artigo
em Inglês
| MEDLINE | ID: mdl-22391967
9.
Mode of coniferous wood decay by the white rot fungus Phanerochaete carnosa as elucidated by FTIR and ToF-SIMS.
Appl Microbiol Biotechnol;
94(5): 1303-11, 2012 Jun.
Artigo
em Inglês
| MEDLINE | ID: mdl-22290642
10.
Proteomic characterization of lignocellulose-degrading enzymes secreted by Phanerochaete carnosa grown on spruce and microcrystalline cellulose.
Appl Microbiol Biotechnol;
86(6): 1903-14, 2010 May.
Artigo
em Inglês
| MEDLINE | ID: mdl-20306191
11.
KORRIGAN1 and its aspen homolog PttCel9A1 decrease cellulose crystallinity in Arabidopsis stems.
Plant Cell Physiol;
50(6): 1099-115, 2009 Jun.
Artigo
em Inglês
| MEDLINE | ID: mdl-19398462
12.
Enhanced Polysaccharide Binding and Activity on Linear ß-Glucans through Addition of Carbohydrate-Binding Modules to Either Terminus of a Glucooligosaccharide Oxidase.
PLoS One;
10(5): e0125398, 2015.
Artigo
em Inglês
| MEDLINE | ID: mdl-25932926
13.
Enhancement of acetyl xylan esterase activity on cellulose acetate through fusion to a family 3 cellulose binding module.
Enzyme Microb Technol;
79-80: 27-33, 2015 Nov.
Artigo
em Inglês
| MEDLINE | ID: mdl-26320711
14.
Advancing lignocellulose bioconversion through direct assessment of enzyme action on insoluble substrates.
Curr Opin Biotechnol;
27: 123-33, 2014 Jun.
Artigo
em Inglês
| MEDLINE | ID: mdl-24525082
15.
The impact of alkali pretreatment and post-pretreatment conditioning on the surface properties of rice straw affecting cellulose accessibility to cellulases.
Bioresour Technol;
167: 232-40, 2014 Sep.
Artigo
em Inglês
| MEDLINE | ID: mdl-24983695
16.
Recombinant expression and enzymatic characterization of PttCel9A, a KOR homologue from Populus tremula x tremuloides.
Biochemistry;
43(31): 10080-9, 2004 Aug 10.
Artigo
em Inglês
| MEDLINE | ID: mdl-15287736