Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
Odontology ; 109(4): 895-903, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34086131


Pulp regeneration with stem cells is a promising alternative for treating periapical and pulp diseases of young permanent teeth. The aim of this study was to characterize decellularized dental pulp extracellular matrix (dECM) and investigate whether bone morphogenetic protein 4 (BMP4) regulates dental pulp stromal cells (DPSC)-mediated pulp regeneration combined with dECM. Dental pulp isolated from healthy third molars was decellularized with 10% sodium dodecyl sulfate (SDS) and Triton X-100. H&E staining, DAPI staining and electron microscopy were used to observe the dECM structure. The Cell Counting Kit-8 assay was used to analyse cell proliferation. Recombinant adenovirus was used to overexpress BMP4 in DPSCs. The cells were cultured in dECM and dECM + three-dimensional (3D) Vitrogel systems, and bone/dentin/angiogenesis marker expression was evaluated by real-time polymerase chain reaction (RT-PCR) and ALP staining. DPSCs mixed with dECM and BMP4 were transplanted into nude mice, and pulp-like tissue formation was evaluated. The expression of osteogenic and angioblastic genes was increased, and pulp-like tissue formed in vivo. Thus, dECM promotes DPSC proliferation, BMP4 and dECM together accelerate pulp-like tissue formation by DPSCs in vitro.

Polpa Dentária , Regeneração , Animais , Proteína Morfogenética Óssea 4 , Diferenciação Celular , Humanos , Camundongos , Camundongos Nus , Células Estromais
Front Bioeng Biotechnol ; 10: 1036061, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36324890


Apical periodontitis is a common clinical disease caused by bacteria; bacterial metabolites can cause an imbalance in bone homeostasis, bone mass reduction, and tooth loss. Bone resorption in apical periodontitis causes a concentration of stress in the tooth and periodontal tissues during occlusion, which aggravates the disease. Emerging evidence indicates that bone morphogenetic protein 9 (BMP9), also known as growth differentiation factor 2(Gdf2), may play an important role in tooth and dentoalveolar development. Herein, we investigated the role of BMP9 in the development of apical periodontitis and its effects on the biomechanics of dentoalveolar bone. Apical periodontitis models were established in five BMP9 knockout (KO) mice and five C57BL/6 WT (wild-type) mice. At baseline and 14, 28, and 42 days after modeling, in vivo micro-computed tomography analysis and three-dimensional (3D) reconstruction were performed to evaluate the apical lesion in each mouse, and confirm that the animal models were successfully established. Finite element analysis (FEA) was performed to study the stress and strain at the alveolar fossa of each mouse under the same vertical and lateral stress. FEA revealed that the stress and strain at the alveolar fossa of each mouse gradually concentrated on the tooth cervix. The stress and strain at the tooth cervix gradually increased with time but were decreased at day 42. Under the same lingual loading, the maximum differences of the stress and strain at the tooth root in KO mice were greater than those in WT mice. Thus, these findings demonstrate that BMP9 could affect the biomechanical response of the alveolar fossa at the tooth root in mice with apical periodontitis. Moreover, the effects of BMP9 on the biomechanical response of the alveolar bone may be site-dependent. Overall, this work contributes to an improved understanding of the pathogenesis of apical periodontitis and may inform the development of new treatment strategies for apical periodontitis.