Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 12(3): e0172327, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28249039

RESUMO

Large skeletal defects caused by trauma, congenital malformations, and post-oncologic resections of the calvarium present major challenges to the reconstructive surgeon. We previously identified BMP-9 as the most osteogenic BMP in vitro and in vivo. Here we sought to investigate the bone regenerative capacity of murine-derived calvarial mesenchymal progenitor cells (iCALs) transduced by BMP-9 in the context of healing critical-sized calvarial defects. To accomplish this, the transduced cells were delivered to the defect site within a thermoresponsive biodegradable scaffold consisting of poly(polyethylene glycol citrate-co-N-isopropylacrylamide mixed with gelatin (PPCN-g). A total of three treatment arms were evaluated: PPCN-g alone, PPCN-g seeded with iCALs expressing GFP, and PPCN-g seeded with iCALs expressing BMP-9. Defects treated only with PPCN-g scaffold did not statistically change in size when evaluated at eight weeks postoperatively (p = 0.72). Conversely, both animal groups treated with iCALs showed significant reductions in defect size after 12 weeks of follow-up (BMP9-treated: p = 0.0025; GFP-treated: p = 0.0042). However, H&E and trichrome staining revealed more complete osseointegration and mature bone formation only in the BMP9-treated group. These results suggest that BMP9-transduced iCALs seeded in a PPCN-g thermoresponsive scaffold is capable of inducing bone formation in vivo and is an effective means of creating tissue engineered bone for critical sized defects.


Assuntos
Consolidação da Fratura , Fatores de Diferenciação de Crescimento , Células-Tronco Mesenquimais/metabolismo , Osseointegração , Crânio/lesões , Alicerces Teciduais/química , Transdução Genética , Animais , Linhagem Celular , Gelatina/química , Fator 2 de Diferenciação de Crescimento , Fatores de Diferenciação de Crescimento/biossíntese , Fatores de Diferenciação de Crescimento/genética , Humanos , Camundongos , Polietilenoglicóis/química
2.
Biomed Mater ; 11(2): 025021, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27097687

RESUMO

Successful bone tissue engineering requires at the minimum sufficient osteoblast progenitors, efficient osteoinductive factors, and biocompatible scaffolding materials. We previously demonstrated that bone morphogenetic protein 9 (BMP9) is one of the most potent factors in inducing osteogenic differentiation of mesenchymal stem cells (MSCs). Here, we investigated the potential use of a biodegradable citrate-based thermosensitive macromolecule, poly(polyethyleneglycol citrate-co-N-isopropylacrylamide) (PPCN) mixed with gelatin (PPCNG) as a scaffold for the delivery of BMP9-stimulated MSCs to promote localized bone formation. The addition of gelatin to PPCN effectively enhanced the cell adhesion and survival properties of MSCs entrapped within the gel in 3D culture. Using the BMP9-transduced MSC line immortalized mouse embryonic fibroblasts (iMEFs), we found that PPCNG facilitated BMP9-induced osteogenic differentiation of iMEFs in vivo and promoted the formation of well-ossified and vascularized trabecular bone-like structures in a mouse model of ectopic bone formation. Histologic evaluation revealed that vascularization of the bony masses retrieved from the iMEFs + PPCNG group was significantly more pronounced than that of the direct cell injection group. Accordingly, vascular endothelial growth factor (VEGF) expression was shown to be significantly higher in the bony masses recovered from the iMEFs + PPCNG group. Taken together, our results suggest that PPCNG may serve as a novel biodegradable and injectable scaffold and carrier for gene and cell-based bone tissue engineering.


Assuntos
Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Osteogênese/fisiologia , Engenharia Tecidual/métodos , Alicerces Teciduais , Resinas Acrílicas/química , Animais , Materiais Biocompatíveis/química , Adesão Celular , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular , Citratos/química , Feminino , Gelatina/química , Fator 2 de Diferenciação de Crescimento , Fatores de Diferenciação de Crescimento/genética , Fatores de Diferenciação de Crescimento/fisiologia , Células HEK293 , Humanos , Teste de Materiais , Melanoma Experimental , Camundongos , Camundongos Nus , Polietilenoglicóis/química , Temperatura , Alicerces Teciduais/química , Transdução Genética
3.
Biomaterials ; 39: 145-54, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25468367

RESUMO

Dental pulp/dentin regeneration using dental stem cells combined with odontogenic factors may offer great promise to treat and/or prevent premature tooth loss. Here, we investigate if BMP9 and Wnt/ß-catenin act synergistically on odontogenic differentiation. Using the immortalized SCAPs (iSCAPs) isolated from mouse apical papilla tissue, we demonstrate that Wnt3A effectively induces early osteogenic marker alkaline phosphatase (ALP) in iSCAPs, which is reduced by ß-catenin knockdown. While Wnt3A and BMP9 enhance each other's ability to induce ALP activity in iSCAPs, silencing ß-catenin significantly diminishes BMP9-induced osteo/odontogenic differentiation. Furthermore, silencing ß-catenin reduces BMP9-induced expression of osteocalcin and osteopontin and in vitro matrix mineralization of iSCAPs. In vivo stem cell implantation assay reveals that while BMP9-transduced iSCAPs induce robust ectopic bone formation, iSCAPs stimulated with both BMP9 and Wnt3A exhibit more mature and highly mineralized trabecular bone formation. However, knockdown of ß-catenin in iSCAPs significantly diminishes BMP9 or BMP9/Wnt3A-induced ectopic bone formation in vivo. Thus, our results strongly suggest that ß-catenin may play an important role in BMP9-induced osteo/ondontogenic signaling and that BMP9 and Wnt3A may act synergistically to induce osteo/odontoblastic differentiation of iSCAPs. It's conceivable that BMP9 and/or Wnt3A may be explored as efficacious biofactors for odontogenic regeneration and tooth engineering.


Assuntos
Papila Dentária/citologia , Fatores de Diferenciação de Crescimento/farmacologia , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Sinergismo Farmacológico , Feminino , Gossipol/análogos & derivados , Gossipol/farmacologia , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Odontogênese , Ratos , Transdução de Sinais/efeitos dos fármacos , Proteínas Wnt
4.
Stem Cells Dev ; 23(12): 1405-16, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24517722

RESUMO

Dental pulp/dentin regeneration using dental stem cells combined with odontogenic factors may offer great promise to treat and/or prevent premature tooth loss. We previously demonstrated that bone morphogenetic protein 9 (BMP9) is one of the most potent factors in inducing bone formation. Here, we investigate whether BMP9 can effectively induce odontogenic differentiation of the stem cells from mouse apical papilla (SCAPs). Using a reversible immortalization system expressing SV40 T flanked with Cre/loxP sites, we demonstrate that the SCAPs can be immortalized, resulting in immortalized SCAPs (iSCAPs) that express mesenchymal stem cell markers. BMP9 upregulates Runx2, Sox9, and PPARγ2 and odontoblastic markers, and induces alkaline phosphatase activity and matrix mineralization in the iSCAPs. Cre-mediated removal of SV40 T antigen decreases iSCAP proliferation. The in vivo stem cell implantation studies indicate that iSCAPs can differentiate into bone, cartilage, and, to lesser extent, adipocytes upon BMP9 stimulation. Our results demonstrate that the conditionally iSCAPs not only maintain long-term cell proliferation but also retain the ability to differentiate into multiple lineages, including osteo/odontoblastic differentiation. Thus, the reversibly iSCAPs may serve as an important tool to study SCAP biology and SCAP translational use in tooth engineering. Further, BMP9 may be explored as a novel and efficacious factor for odontogenic regeneration.


Assuntos
Diferenciação Celular/genética , Papila Dentária/crescimento & desenvolvimento , Fator 2 de Diferenciação de Crescimento/genética , Odontogênese , Animais , Proliferação de Células/genética , Papila Dentária/citologia , Regulação da Expressão Gênica no Desenvolvimento , Fator 2 de Diferenciação de Crescimento/biossíntese , Camundongos , Odontoblastos/metabolismo , Regeneração , Células-Tronco/metabolismo
5.
PLoS One ; 9(3): e92908, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24658746

RESUMO

Mesenchymal stem cells (MSCs) are multipotent progenitors, which can undergo self-renewal and give rise to multi-lineages. A great deal of attentions have been paid to their potential use in regenerative medicine as potential therapeutic genes can be introduced into MSCs. Genetic manipulations in MSCs requires effective gene deliveries. Recombinant adenoviruses are widely used gene transfer vectors. We have found that although MSCs can be infected in vitro by adenoviruses, high virus titers are needed to achieve high efficiency. Here, we investigate if the commonly-used cationic polymer Polybrene can potentiate adenovirus-mediated transgene delivery into MSCs, such as C2C12 cells and iMEFs. Using the AdRFP adenovirus, we find that AdRFP transduction efficiency is significantly increased by Polybrene in a dose-dependent fashion peaking at 8 µg/ml in C2C12 and iMEFs cells. Quantitative luciferase assay reveals that Polybrene significantly enhances AdFLuc-mediated luciferase activity in C2C12 and iMEFs at as low as 4 µg/ml and 2 µg/ml, respectively. FACS analysis indicates that Polybrene (at 4 µg/ml) increases the percentage of RFP-positive cells by approximately 430 folds in AdRFP-transduced iMEFs, suggesting Polybrene may increase adenovirus infection efficiency. Furthermore, Polybrene can enhance AdBMP9-induced osteogenic differentiation of MSCs as early osteogenic marker alkaline phosphatase activity can be increased more than 73 folds by Polybrene (4 µg/ml) in AdBMP9-transduced iMEFs. No cytotoxicity was observed in C2C12 and iMEFs at Polybrene up to 40 µg/ml, which is about 10-fold higher than the effective concentration required to enhance adenovirus transduction in MSCs. Taken together, our results demonstrate that Polybrene should be routinely used as a safe, effective and inexpensive augmenting agent for adenovirus-mediated gene transfer in MSCs, as well as other types of mammalian cells.


Assuntos
Adenoviridae/genética , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Brometo de Hexadimetrina/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Transdução Genética , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Citometria de Fluxo , Expressão Gênica , Genes Reporter , Humanos , Camundongos , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA