Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Anat ; 217(2): 97-105, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20557404

RESUMO

Apert syndrome is caused mainly by gain-of-function mutations of fibroblast growth factor receptor 2. We have generated a mouse model (Fgfr2(+/P253R)) mimicking human Apert syndrome resulting from fibroblast growth factor receptor 2 Pro253Arg mutation using the knock-in approach. This mouse model in general has the characteristic skull morphology similar to that in humans with Apert syndrome. To characterize the detailed changes of form in the overall skull and its major anatomic structures, euclidean distance matrix analysis was used to quantitatively compare the form and growth difference between the skulls of mutants and their wild-type controls. There were substantial morphological differences between the skulls of mutants and their controls at 4 and 8 weeks of age (P < 0.01). The mutants showed shortened skull dimensions along the rostrocaudal axis, especially in their face. The width of the frontal bone and the distance between the two orbits were broadened mediolaterally. The neurocrania were significantly increased along the dorsoventral axis and slightly increased along the mediolateral axis, and also had anteriorly displayed opisthion along the rostrocaudal axis. Compared with wild-type, the mutant mandible had an anteriorly displaced coronoid process and mandibular condyle along the rostrocaudal axis. We further found that there was catch-up growth in the nasal bone, maxilla, zygomatic bone and some regions of the mandible of the mutant skulls during the 4-8-week interval. The above-mentioned findings further validate the Fgfr2(+/P253R) mouse strain as a good model for human Apert syndrome. The changes in form characterized in this study will help to elucidate the mechanisms through which the Pro253Arg mutation in fibroblast growth factor receptor 2 affects craniofacial development and causes Apert syndrome.


Assuntos
Acrocefalossindactilia/patologia , Mutação , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Crânio/patologia , Acrocefalossindactilia/genética , Acrocefalossindactilia/fisiopatologia , Envelhecimento/patologia , Animais , Cefalometria/métodos , Modelos Animais de Doenças , Ossos Faciais/crescimento & desenvolvimento , Ossos Faciais/patologia , Técnicas de Introdução de Genes , Camundongos , Camundongos Mutantes , Crânio/crescimento & desenvolvimento
2.
Stem Cells Dev ; 23(12): 1405-16, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24517722

RESUMO

Dental pulp/dentin regeneration using dental stem cells combined with odontogenic factors may offer great promise to treat and/or prevent premature tooth loss. We previously demonstrated that bone morphogenetic protein 9 (BMP9) is one of the most potent factors in inducing bone formation. Here, we investigate whether BMP9 can effectively induce odontogenic differentiation of the stem cells from mouse apical papilla (SCAPs). Using a reversible immortalization system expressing SV40 T flanked with Cre/loxP sites, we demonstrate that the SCAPs can be immortalized, resulting in immortalized SCAPs (iSCAPs) that express mesenchymal stem cell markers. BMP9 upregulates Runx2, Sox9, and PPARγ2 and odontoblastic markers, and induces alkaline phosphatase activity and matrix mineralization in the iSCAPs. Cre-mediated removal of SV40 T antigen decreases iSCAP proliferation. The in vivo stem cell implantation studies indicate that iSCAPs can differentiate into bone, cartilage, and, to lesser extent, adipocytes upon BMP9 stimulation. Our results demonstrate that the conditionally iSCAPs not only maintain long-term cell proliferation but also retain the ability to differentiate into multiple lineages, including osteo/odontoblastic differentiation. Thus, the reversibly iSCAPs may serve as an important tool to study SCAP biology and SCAP translational use in tooth engineering. Further, BMP9 may be explored as a novel and efficacious factor for odontogenic regeneration.


Assuntos
Diferenciação Celular/genética , Papila Dentária/crescimento & desenvolvimento , Fator 2 de Diferenciação de Crescimento/genética , Odontogênese , Animais , Proliferação de Células/genética , Papila Dentária/citologia , Regulação da Expressão Gênica no Desenvolvimento , Fator 2 de Diferenciação de Crescimento/biossíntese , Camundongos , Odontoblastos/metabolismo , Regeneração , Células-Tronco/metabolismo
3.
PLoS One ; 9(3): e92908, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24658746

RESUMO

Mesenchymal stem cells (MSCs) are multipotent progenitors, which can undergo self-renewal and give rise to multi-lineages. A great deal of attentions have been paid to their potential use in regenerative medicine as potential therapeutic genes can be introduced into MSCs. Genetic manipulations in MSCs requires effective gene deliveries. Recombinant adenoviruses are widely used gene transfer vectors. We have found that although MSCs can be infected in vitro by adenoviruses, high virus titers are needed to achieve high efficiency. Here, we investigate if the commonly-used cationic polymer Polybrene can potentiate adenovirus-mediated transgene delivery into MSCs, such as C2C12 cells and iMEFs. Using the AdRFP adenovirus, we find that AdRFP transduction efficiency is significantly increased by Polybrene in a dose-dependent fashion peaking at 8 µg/ml in C2C12 and iMEFs cells. Quantitative luciferase assay reveals that Polybrene significantly enhances AdFLuc-mediated luciferase activity in C2C12 and iMEFs at as low as 4 µg/ml and 2 µg/ml, respectively. FACS analysis indicates that Polybrene (at 4 µg/ml) increases the percentage of RFP-positive cells by approximately 430 folds in AdRFP-transduced iMEFs, suggesting Polybrene may increase adenovirus infection efficiency. Furthermore, Polybrene can enhance AdBMP9-induced osteogenic differentiation of MSCs as early osteogenic marker alkaline phosphatase activity can be increased more than 73 folds by Polybrene (4 µg/ml) in AdBMP9-transduced iMEFs. No cytotoxicity was observed in C2C12 and iMEFs at Polybrene up to 40 µg/ml, which is about 10-fold higher than the effective concentration required to enhance adenovirus transduction in MSCs. Taken together, our results demonstrate that Polybrene should be routinely used as a safe, effective and inexpensive augmenting agent for adenovirus-mediated gene transfer in MSCs, as well as other types of mammalian cells.


Assuntos
Adenoviridae/genética , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Brometo de Hexadimetrina/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Transdução Genética , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Citometria de Fluxo , Expressão Gênica , Genes Reporter , Humanos , Camundongos , Transgenes
4.
J Biomed Mater Res A ; 101(12): 3542-50, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23629940

RESUMO

Articular cartilage lesions in the knee are common injuries. Chondrocyte transplant represents a promising therapeutic modality for articular cartilage injuries. Here, we characterize the viability and transgene expression of articular chondrocytes cultured in three-dimensional scaffolds provided by four types of carriers. Articular chondrocytes are isolated from rabbit knees and cultured in four types of scaffolds: type I collagen sponge, fibrin glue, hyaluronan, and open-cell polylactic acid (OPLA). The cultured cells are transduced with adenovirus expressing green fluorescence protein (AdGFP) and luciferase (AdGL3-Luc). The viability and gene expression in the chondrocytes are determined with fluorescence microscopy and luciferase assay. Cartilage matrix production is assessed by Alcian blue staining. Rabbit articular chondrocytes are effectively infected by AdGFP and exhibited sustained GFP expression. All tested scaffolds support the survival and gene expression of the infected chondrocytes. However, the highest transgene expression is observed in the OPLA carrier. At 4 weeks, Alcian blue-positive matrix materials are readily detected in OPLA cultures. Thus, our results indicate that, while all tested carriers can support the survival of chondrocytes, OPLA supports the highest transgene expression and is the most conductive scaffold for matrix production, suggesting that OPLA may be a suitable scaffold for cell-based gene therapy of articular cartilage repairs.


Assuntos
Cartilagem Articular/patologia , Condrócitos/citologia , Condrócitos/metabolismo , Terapia Genética , Alicerces Teciduais/química , Cicatrização , Adenoviridae/metabolismo , Animais , Cartilagem Articular/efeitos dos fármacos , Separação Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Condrócitos/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Transferência de Genes , Vetores Genéticos/metabolismo , Células HEK293 , Humanos , Ácido Láctico/farmacologia , Masculino , Poliésteres , Polímeros/farmacologia , Coelhos , Recombinação Genética , Transgenes/genética , Cicatrização/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA