Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Mikrochim Acta ; 189(9): 360, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042107

RESUMO

A spherical chiral porous organic polymer (POPs) COP-1 is synthesized by the Friedel-Crafts alkylation reaction of Boc-3-(4-biphenyl)-L-alanine (BBLA) and 4,4'-bis(chloromethyl)-1,1'-biphenyl (BCMBP), which was used as a novel chiral stationary phase (CSPs) for mixed-mode high-performance liquid chromatography (HPLC) enantioseparation. The racemic compounds were resolved in normal-phase liquid chromatography (NPLC) using n-hexane/isopropanol as mobile phase and reversed-phase liquid chromatography (RPLC) using methanol/water as mobile phase. The COP-1-packed column exhibited excellent separation performance toward various racemic compounds including alcohols, amines, ketones, esters, epoxy compounds, organic acids, and amino acids in NPLC and RPLC modes. The effects of analyte mass and column temperature on the separation efficiency of racemic compounds were investigated. In addition, the chiral resolution ability of the COP-1-packed column not only can be complementary in RPLC/NPLC modes but also exhibit a good chiral recognition complementarity with Chiralpak AD-H column and chiral porous organic cage (POC) NC1-R column. The relative standard deviations (RSD) (n = 5) of the retention time, resolution value, and peak area by repeated separation of 1-(4-chiorophenyl)ethanol are all below 3.0%. The COP-1 column shows high column efficiency (e.g., 17,320 plates m-1 for 1-(4-chlorophenyl)ethanol on COP-1 column in NPLC), high enantioselectivity, and good reproducibility toward various racemates. This work demonstrates that chiral POPs microspheres are promising chiral materials for HPLC enantioseparation.


Assuntos
Aminas , Polímeros , Cromatografia Líquida de Alta Pressão/métodos , Etanol , Porosidade , Reprodutibilidade dos Testes , Estereoisomerismo
2.
Molecules ; 24(3)2019 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-30682770

RESUMO

Porous organic cages (POCs) have attracted extensive attention due to their unique structures and tremendous application potential in numerous areas. In this study, an enantioselective potentiometric sensor composed of a polyvinyl chloride (PVC) membrane electrode modified with CC3-R POC material was used for the recognition of enantiomers of 2-amino-1-butanol. After optimisation, the developed sensor exhibited enantioselectivity toward S-2-amino-1-butanol ( log K S , R P o t = -0.98) with acceptable sensitivity, and a near-Nernstian response of 25.8 ± 0.3 mV/decade within a pH range of 6.0⁻9.0.


Assuntos
Amino Álcoois/química , Técnicas Eletroquímicas , Eletrodos , Concentração de Íons de Hidrogênio , Membranas Artificiais , Estrutura Molecular , Cloreto de Polivinila/química , Porosidade , Potenciometria , Sensibilidade e Especificidade , Estereoisomerismo
3.
Electrophoresis ; 38(19): 2513-2520, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28678407

RESUMO

Natural amino acids are well known to form coordination polymers with transition metal ions. In this study, six homochiral metal-organic frameworks constructed from Zn2+ or Co2+ ions and various enantiopure amino acid (L-tyrosine, L-histidine, L-tryptophan and L-glutamic acid), namely [Zn(L-tyr)]n (L-tyrZn), [Zn4 (btc)2 (Hbtc)(L-His)2 (H2 O)4 ]·1.5H2 O, {[Zn2 (L-trp)2 (bpe)2 (H2 O)2 ]·2H2 O·2NO3 }n , [Co2 (L-Trp)(INT)2 (H2 O)2 (ClO4 )], [Co2 (sdba)((L-Trp)2 ] and [Co(L-Glu)(H2 O)·H2 O]∞ , were synthesized according to the methods previously reported in the literature. The six homochiral MOFs were explored as the chiral stationary phases for high-performance liquid chromatographic separation of enantiomers using hexane/isopropanol or hexane/dichloromethane as mobile phase. Various types of enantiomers such as alcohols, amines, ketones, ethers, organic acids, etc. can be resolved on these homochiral MOF columns. The results revealed that the enantioseletivities of homochiral MOFs based on amino acids as chiral bridging ligands used as stationary phases are practical in HPLC.


Assuntos
Aminoácidos/química , Cromatografia Líquida de Alta Pressão/métodos , Estruturas Metalorgânicas/química , Polímeros/química , 2-Propanol/química , Álcoois/isolamento & purificação , Aminas/isolamento & purificação , Cromatografia Líquida de Alta Pressão/instrumentação , Éteres/isolamento & purificação , Hexanos/química , Cetonas/isolamento & purificação , Cloreto de Metileno/química , Estereoisomerismo
4.
Molecules ; 21(11)2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27834837

RESUMO

Molecular organic cage compounds have attracted considerable attention due to their potential applications in gas storage, catalysis, chemical sensing, molecular separations, etc. In this study, a homochiral pentyl cage compound was synthesized from a condensation reaction of (S,S)-1,2-pentyl-1,2-diaminoethane and 1,3,5-triformylbenzene. The imine-linked pentyl cage diluted with a polysiloxane (OV-1701) was explored as a novel stationary phase for high-resolution gas chromatographic separation of organic compounds. Some positional isomers were baseline separated on the pentyl cage-coated capillary column. In particular, various types of enantiomers including chiral alcohols, esters, ethers and epoxides can be resolved without derivatization on the pentyl cage-coated capillary column. The reproducibility of the pentyl cage-coated capillary column for separation was investigated using nitrochlorobenzene and styrene oxide as analytes. The results indicate that the column has good stability and separation reproducibility after being repeatedly used. This work demonstrates that molecular organic cage compounds could become a novel class of chiral separation media in the near future.


Assuntos
Iminas/química , Compostos Orgânicos/síntese química , Cromatografia Gasosa , Estrutura Molecular , Compostos Orgânicos/química , Compostos Orgânicos/isolamento & purificação , Siloxanas/química
5.
Anal Chem ; 86(19): 9595-602, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25188539

RESUMO

Chiral nematic mesoporous silica (CNMS) has attracted widespread attention due to some unique features, such as its nematic structure, chirality, large pore size, high temperature resistance, low cost, and ease of preparation. We first reported the use of CNMS as a stationary phase for capillary gas chromatography (GC). The CNMS-coated capillary column not only gives good selectivity for the separation of linear alkanes, aromatic hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), and isomers but also offers excellent enantioselectivity for chiral compounds. Compared with enantioseparations on commercial ß-DEX 120 and Chirasil-l-Val columns, a CNMS-coated capillary column offers excellent enantioselectivity, chiral recognition complementarity, and the separation of analytes within short elution times. It can also be potentially applied in high-temperature GC at more than 350 °C. This work indicates that CNMS could soon become very attractive for separations.


Assuntos
Celulose/química , Cromatografia Gasosa/métodos , Compostos Inorgânicos/química , Cristalização , Microscopia Eletrônica de Varredura , Difração de Pó , Estereoisomerismo
6.
Water Res ; 233: 119795, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36871380

RESUMO

To unravel the low membrane fouling tendency and underlying membrane fouling mechanism of liquid-liquid hollow fiber membrane contactor (LL-HFMC) capturing ammonia from human urine, the ammonia flux decline trend, membrane fouling propensity, foulant-membrane thermodynamic interaction energy and microscale force analysis at different feed urine pH were comprehensively investigated. The 21-d continuous experiments showed that the ammonia flux decline trend and membrane fouling propensity significantly strengthened with the decrease of feed urine pH. The calculated foulant-membrane thermodynamic interaction energy decreased with the decreasing feed urine pH and agreed with the ammonia flux decline trend and membrane fouling propensity. The microscale force analysis showed that the absence of hydrodynamic water permeate drag force resulted in the foulant located at long distance from the membrane were difficult to approach the membrane surface, thus considerably alleviating membrane fouling. Additionally, the vital thermodynamic attractive force near the membrane surface increased with the decrease of feed urine pH, which made the membrane fouling further relieved at high pH condition. Therefore, the absence of water permeate drag force and operating at high pH condition minimized the membrane fouling during the LL-HFMC ammonia capture process. The obtained results provide a new insight into the low membrane tendency mechanism of LL-HFMC.


Assuntos
Amônia , Purificação da Água , Humanos , Membranas Artificiais , Termodinâmica , Água , Purificação da Água/métodos
7.
Appl Microbiol Biotechnol ; 96(6): 1539-50, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22797600

RESUMO

To develop a high efficiency Candida antarctica lipase B (CALB) yeast display system, we linked two CALB genes fused with Sacchromyces cerevisiae cell wall protein genes, the Sed1 and the 3'-terminal half of Sag1, separately by a 2A peptide of foot-and-mouth disease virus (FMDV) in a single open reading frame. The CALB copy number of recombinant strain KCSe2ACSa that harbored the ORF was identified, and the quantity of CALB displayed on the cell surface and the enzyme activity of the strain were measured. The results showed that the fusion of multiple genes linked by 2A peptide was translated into two independent proteins displayed on the cell surface of stain KCSe2ACSa. Judging from the data of immunolabeling assay, stain KCSe2ACSa displayed 94 % CALB-Sed1p compared with stain KCSe1 that harbored a single copy CALB-Sed1 and 64 % CALB-Sag1p compared with stain KCSa that harbored a single copy CALB-Sag1 on its surface. Besides, strain KCSe2ACSa possessed 170 % hydrolytic activity and 155 % synthetic activity compared with strain KCSe1 as well as 144 % hydrolytic activity and 121 % synthetic activity compared with strain KCSa. Strain KCSe2ACSa even owned 124 % hydrolytic activity compared with strain KCSe2 that harbored two copies CALB-Sed1. The heterogeneous glycosylphosphatidylinositol-anchored proteins co-displaying yeast system mediated by FMDV 2A peptide was shown to be an effective method for improving the efficiency of enzyme-displaying yeast biocatalysts.


Assuntos
Vírus da Febre Aftosa/genética , Proteínas Fúngicas/genética , Lipase/genética , Peptídeos/genética , Pichia/genética , Engenharia de Proteínas/métodos , Candida/enzimologia , Candida/genética , Vírus da Febre Aftosa/metabolismo , Proteínas Fúngicas/metabolismo , Expressão Gênica , Lipase/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Peptídeos/metabolismo , Pichia/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Water Res ; 207: 117811, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34763277

RESUMO

Hollow fiber membrane contactor (HFMC) is a promising technology for removing or recovering wastewaters' volatile components. Developing a rational design method is very important for guiding its further application. In this study, we proposed a method to design the multi-stage open-loop hollow fiber membrane contactor (HFMC) employing shell-side influent. In addition, a three-stage HFMC was designed to capture ammonia from real hydrolyzed human urine. A continuous 1344 h performance was conducted. The results showed that the experimental effluent total ammonium nitrogen (TAN) concentration and ammonia mass transfer coefficient matched the predicted results well, which indicated that the design method was feasible and accurate. The three-stage HFMC showed excellent ammonia capture capacity with a TAN recovery efficiency of 93.29%, and the final effluent TAN concentration was 30.98±14.70 mg/L which met our design requirement (lower than 50 mg/L). More than 98.92% of the inorganic ions and 96.85% of the organic matter were retained in the effluent. The stripping solution after ammonia capture was the high-purity ammonium sulfate solution with low concentration of small molecular weight hydrophilic organic substances. The inorganic and organic membrane fouling was mild and randomly distributed. The inorganic membrane fouling was attributed to the deposition of calcium-, magnesium-, phosphate-related inorganic compounds, while the organic membrane fouling was mainly protein and carbohydrate. After the ammonia capture process, the surface hydrophobicity and pore properties of the membranes had no significant changes. These results demonstrated that the multi-stage open-loop HFMC could be a potential alternative for ammonia recovery from the high concentration of ammonium nitrogen wastewater.


Assuntos
Amônia , Águas Residuárias , Sulfato de Amônio , Humanos , Membranas Artificiais , Nitrogênio
9.
Mater Sci Eng C Mater Biol Appl ; 78: 988-997, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28576076

RESUMO

The use of physical barriers, such as nanofiber membranes, is a potential method to prevent adhesion formation after surgery. In this study, we fabricated electrospun composite poly(ethylene glycol) (PEG)/poly(lactic-co-glycolic) (PLGA) nanofibrous membrane to prevent abdomen adhesion; this composite acts as a barrier between cecum and the surrounding tissues without interrupting mass transfer and cecum healing. PEG/PLGA nanofibrous membranes consisting of 0% (P0), 5% (P1), 10% (P2), 15% (P3), 20% (P4), and 25% (P5) PEG were prepared, and their physicochemical properties were characterized. The P0 shows the highest thermostability, whereas P1 exhibited the most homogenous morphology, the narrowest diameter distribution, and the largest ultimate stress and strain. In vitro cell adhesion and proliferation tests using fibroblasts indicate that all nanofibrous membranes inhibited cell proliferation, with P1 showing the lowest degree of cell attachment. In vivo application of nanofibrous membranes on the repaired site of rat cecum model demonstrated that all of the membranes prevent adhesion formation to a certain extent. We concluded based on gross observation, histological analysis, and functional assays that P1 served as an effective anti-adhesion membrane after cecum surgery in a clinical setting.


Assuntos
Nanofibras , Animais , Ácido Láctico , Membranas Artificiais , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos , Aderências Teciduais
10.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 31(8): 999-1005, 2017 08 15.
Artigo em Zh | MEDLINE | ID: mdl-29806441

RESUMO

Objective: Adopting poly- L-lactic/glycolic acid (PLGA) and polyethylene glycol (PEG) as the material to fabricate PLGA/PEG electrospun polymer membrane by electrospinning technology. And to study its preventive effect on postoperative intraperitoneal adhesion of rat. Methods: PLGA and PEG were mixed at the ratio of 19∶1( M/M), then dissolved in organic solvent. The PLGA/PEG electrospun polymer membrane was prepared by electrospinning technology, and then the gross observation and scanning electron microscope observation were taken. Fifty-four Sprague Dawley rats (weighing, 180-200 g), were randomly divided into 3 groups. The rats in control group ( n=6) were left intact. The rats in model group ( n=24) and PLGA/PEG group ( n=24) were treated with the method of mechanical injury of the cecal serosa in order to establish the intraperitoneal adhesion models; then the PLGA/PEG electrospun polymer membrane was used to cover the wound in PLGA/PEG group, but was not in the model group. The intraperitoneal adhesion in PLGA/PEG group and model group were observed at 3 days, 1 week, 2 weeks, and 8 weeks after operation, and the adhesion degree was assessed according to the self-generated standard. The degradation of PLGA/PEG electrospun polymer membrane was also observed in PLGA/PEG group. At each time point, the rats were harvested for histological observation. All the above indexes were compared with the control group. Results: Using the electrospinning technology, PLGA/PEG electrospun polymer membrane was prepared successfully. PLGA/PEG electrospun polymer membrane was white and opaque, with soft texture. Scanning electron microscopy observation showed that PLGA/PEG electrospun polymer membrane was mainly composed of disorderly staggered fibers, with microporous structure. All rats survived to the end of the experiment. Gross observation showed that PLGA/PEG electrospun polymer membrane gradually degraded after implantation in vivo, and the adhesion degree in PLGA/PEG group was significantly lower than that in model group ( P<0.05), but it had not yet reached to the level of the control group ( P<0.05). Histological observation showed that the proliferation of cecal fibrous connective tissue was slower in PLGA/PEG group than in model group, and adhesion severity significantly decreased, only with a small amount of inflammatory cell infiltration. Nevertheless, it was not up to the level of the control group. Conclusion: PLGA/PEG electrospun polymer membrane can effectively prevent postoperative intraperitoneal adhesion of rat, and has good biodegradability.


Assuntos
Polietilenoglicóis , Polímeros , Aderências Teciduais/prevenção & controle , Animais , Ácido Láctico , Doenças Peritoneais/prevenção & controle , Ácido Poliglicólico , Complicações Pós-Operatórias/prevenção & controle , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
11.
Bioelectrochemistry ; 111: 41-8, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27196632

RESUMO

Polymeric liposomes (denoted as ILs-polysomes) are a biocompatible and conductive nanomaterial, which was first utilised as the electrode material for immobilising and biosensing redox enzyme horseradish peroxide (HRP). The morphology and surface property of IL-polysomes was characterised and systematically compared with unpolymerised ionic liquid based liposomes (denoted as ILs-liposomes). Differing from IL-liposomes, IL-polysomes preserves their original morphology and bilayer membrane structure on glassy carbon (GC) electrodes due to the cross-linking of polymerised lipids, thus exhibiting excellent stability and specific biocompability. Because of the existence of imidazolium ionic liquid moieties on the outer surface, IL-polysomes displays a positive charge in aqueous solution, leading to oppositely charged HRP self-assembling onto the vesicles to form HRP/IL-polysomes/PVA/GC electrodes. Owing to the combined merits of ILs and liposomes, electron transfer between HRP-Fe(III)/Fe(II) redox couples of immobilised enzymes and GC electrodes can be achieved. Therefore, HRP/IL-polysomes/PVA/GC electrodes exhibited good electrocatalytic performance toward the electrocatalysis of H2O2. Accordingly, IL-polysomes could act as an efficient charged platform for the self-assembled redox enzymes to realise direct electrochemistry. IL-polysomes have a promising application in the fabrication of third-generation electrochemical biosensors.


Assuntos
Materiais Biocompatíveis/química , Técnicas Biossensoriais/métodos , Líquidos Iônicos/química , Lipossomos/química , Nanoestruturas/química , Polímeros/química , Carbono/química , Catálise , Estabilidade de Medicamentos , Eletroquímica , Eletrodos , Vidro/química , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Peróxido de Hidrogênio/análise , Peróxido de Hidrogênio/química , Modelos Lineares , Fenômenos Mecânicos , Álcool de Polivinil/química
12.
J Biomed Mater Res B Appl Biomater ; 75(2): 289-303, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16025445

RESUMO

To better understand the effects of scaffold materials for bone morphogenetic protein 2 (BMP-2) genetic tissue engineering in vivo, several gels, including alginate, collagen, agarose, hyaluronate, fibrin, or Pluronic, were mixed with adenovirus-mediated human BMP-2 gene (Adv-hBMP-2) transduced bone marrow stromal cells (BMSCs) and injected into the muscles of athymic mice to evaluate the resulting osteogenesis and chondrogenesis. These gel and gene-transduced BMSC mixtures were also loaded onto beta-TCP/HAP biphasic calcined bone (BCB) and observed under scanning electron microscopy (SEM). In addition, these composite scaffolds were implanted into the subcutaneous site of athymic mice to construct tissue-engineered bone. After injection, collagen, hyaluronate, or alginate gel mixed with gene-transduced BMSCs induced more bone formation than a cell suspension in alpha-MEM. The agarose-gene-transduced BMSC gel was found to contain much more hyaline cartilage. SEM showed the BMSCs could survive in alginate, agarose, and collagen gel in vitro for up to 8 d. After implantation of tissue-engineered bone, the alginate, collagen, and agarose gel could promote new bone formation within a BCB in vivo. Little or no bone formed after injection of fibrin or Pluronic gel mixed with BMSCs or implantation with BCB. These findings help to elucidate the effects of various scaffold materials for future research in orthopedic tissue engineering using BMP-2 transduced cells.


Assuntos
Materiais Biocompatíveis , Proteínas Morfogenéticas Ósseas , Ortopedia , Engenharia Tecidual , Fator de Crescimento Transformador beta , Adenoviridae/genética , Adulto , Animais , Células da Medula Óssea/ultraestrutura , Proteína Morfogenética Óssea 2 , Proteínas Morfogenéticas Ósseas/genética , Colágeno , Géis , Humanos , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Ortopedia/métodos , Células Estromais/ultraestrutura , Transdução Genética , Fator de Crescimento Transformador beta/genética
13.
J Chromatogr A ; 1426: 174-82, 2015 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-26632517

RESUMO

Porous solids composed of shape-persistent organic cage molecules have attracted considerable attention due to their important applications such as molecular separation, heterogeneous catalysis, and gas storage. In this study, an imine-linked porous organic cage (POC) CC10 diluted with a polysiloxane OV-1701 was explored as a novel stationary phase for high-resolution gas chromatography (GC). A wide variety of enantiomers belonging to different classes of organic compounds have been resolved on the coated capillary column, including chiral alcohols, esters, ketones, ethers, halohydrocarbons, epoxides, and organic acids. The fabricated column complements to commercial ß-DEX 120 column and our recently reported CC3-R column for separating enantiomers, which indicates that the excellent chiral recognition ability of CC10 is not only interesting academically, but also has potential for practical application. In addition, CC10 also exhibits good selectivity for the separation of n-alkanes, n-alcohols, Grob mixture, and positional isomers. This work also indicates that this type of chiral POCs will become a new class of chiral selector in the near future.


Assuntos
Iminas/química , Compostos Macrocíclicos/química , Compostos Orgânicos/isolamento & purificação , Cromatografia Gasosa/métodos , Porosidade , Siloxanas , Estereoisomerismo
14.
Stem Cells Dev ; 23(12): 1405-16, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24517722

RESUMO

Dental pulp/dentin regeneration using dental stem cells combined with odontogenic factors may offer great promise to treat and/or prevent premature tooth loss. We previously demonstrated that bone morphogenetic protein 9 (BMP9) is one of the most potent factors in inducing bone formation. Here, we investigate whether BMP9 can effectively induce odontogenic differentiation of the stem cells from mouse apical papilla (SCAPs). Using a reversible immortalization system expressing SV40 T flanked with Cre/loxP sites, we demonstrate that the SCAPs can be immortalized, resulting in immortalized SCAPs (iSCAPs) that express mesenchymal stem cell markers. BMP9 upregulates Runx2, Sox9, and PPARγ2 and odontoblastic markers, and induces alkaline phosphatase activity and matrix mineralization in the iSCAPs. Cre-mediated removal of SV40 T antigen decreases iSCAP proliferation. The in vivo stem cell implantation studies indicate that iSCAPs can differentiate into bone, cartilage, and, to lesser extent, adipocytes upon BMP9 stimulation. Our results demonstrate that the conditionally iSCAPs not only maintain long-term cell proliferation but also retain the ability to differentiate into multiple lineages, including osteo/odontoblastic differentiation. Thus, the reversibly iSCAPs may serve as an important tool to study SCAP biology and SCAP translational use in tooth engineering. Further, BMP9 may be explored as a novel and efficacious factor for odontogenic regeneration.


Assuntos
Diferenciação Celular/genética , Papila Dentária/crescimento & desenvolvimento , Fator 2 de Diferenciação de Crescimento/genética , Odontogênese , Animais , Proliferação de Células/genética , Papila Dentária/citologia , Regulação da Expressão Gênica no Desenvolvimento , Fator 2 de Diferenciação de Crescimento/biossíntese , Camundongos , Odontoblastos/metabolismo , Regeneração , Células-Tronco/metabolismo
15.
PLoS One ; 9(3): e92908, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24658746

RESUMO

Mesenchymal stem cells (MSCs) are multipotent progenitors, which can undergo self-renewal and give rise to multi-lineages. A great deal of attentions have been paid to their potential use in regenerative medicine as potential therapeutic genes can be introduced into MSCs. Genetic manipulations in MSCs requires effective gene deliveries. Recombinant adenoviruses are widely used gene transfer vectors. We have found that although MSCs can be infected in vitro by adenoviruses, high virus titers are needed to achieve high efficiency. Here, we investigate if the commonly-used cationic polymer Polybrene can potentiate adenovirus-mediated transgene delivery into MSCs, such as C2C12 cells and iMEFs. Using the AdRFP adenovirus, we find that AdRFP transduction efficiency is significantly increased by Polybrene in a dose-dependent fashion peaking at 8 µg/ml in C2C12 and iMEFs cells. Quantitative luciferase assay reveals that Polybrene significantly enhances AdFLuc-mediated luciferase activity in C2C12 and iMEFs at as low as 4 µg/ml and 2 µg/ml, respectively. FACS analysis indicates that Polybrene (at 4 µg/ml) increases the percentage of RFP-positive cells by approximately 430 folds in AdRFP-transduced iMEFs, suggesting Polybrene may increase adenovirus infection efficiency. Furthermore, Polybrene can enhance AdBMP9-induced osteogenic differentiation of MSCs as early osteogenic marker alkaline phosphatase activity can be increased more than 73 folds by Polybrene (4 µg/ml) in AdBMP9-transduced iMEFs. No cytotoxicity was observed in C2C12 and iMEFs at Polybrene up to 40 µg/ml, which is about 10-fold higher than the effective concentration required to enhance adenovirus transduction in MSCs. Taken together, our results demonstrate that Polybrene should be routinely used as a safe, effective and inexpensive augmenting agent for adenovirus-mediated gene transfer in MSCs, as well as other types of mammalian cells.


Assuntos
Adenoviridae/genética , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Brometo de Hexadimetrina/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Transdução Genética , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Citometria de Fluxo , Expressão Gênica , Genes Reporter , Humanos , Camundongos , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA