Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Cell Physiol ; 233(12): 9437-9446, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29968910

RESUMO

The purpose of this study was to evaluate the anti-head and neck squamous cell carcinoma (anti-HNSCC) cell activity by C6 ceramide and multikinase inhibitor PKC412. Experiments were performed on HNSCC cell lines (SQ20B and SCC-9) and primary human oral carcinoma cells. Results showed that PKC412 inhibited HNSCC cell proliferation without provoking apoptosis activation. Cotreatment of C6 ceramide significantly augmented PKC412-induced lethality in HNSCC cells. PKC412 decreased Akt-mammalian target of rapamycin (mTOR) activation in HNSCC cells, facilitated with cotreatment of C6 ceramide. In contrast, exogenous expression of a constitutively active Akt restored Akt-mTOR activation and attenuated lethality by the cotreatment. We propose that Mcl-1 is a primary resistance factor of PKC412. The cytotoxicity of PKC412 in HNSCC cells was potentiated with Mcl-1 short hairpin RNA knockdown, but was attenuated with Mcl-1 overexpression. Intriguingly, C6 ceramide downregulated Mcl-1 in HNSCC cells. In vivo, PKC412 oral administration inhibited SQ20B xenograft tumor growth in severe combined immunodeficient mice. The antitumor activity of PKC412 was further sensitized with coadministration of liposomal C6 ceramide. Together, we suggest that PKC412 could be further studied as a promising anti-HNSCC strategy, alone or in combination with C6 ceramide.


Assuntos
Ceramidas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Lipossomos , Masculino , Camundongos SCID , Pessoa de Meia-Idade , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço , Estaurosporina/análogos & derivados , Serina-Treonina Quinases TOR/metabolismo
2.
Mol Pharm ; 13(6): 1996-2009, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27170232

RESUMO

Platinum (Pt) based chemotherapy is widely used to treat many types of cancer. Pt therapy faces challenges such as dose limiting toxicities, cumulative side effects, and multidrug resistance. Nanoemulsions (NEs) have tremendous potential in overcoming these challenges as they can be designed to improve circulation time, limit non-disease tissue uptake, and enhance tumor uptake by surface modification. We designed novel synthesis of three difattyacid platins, dimyrisplatin, dipalmiplatin, and distearyplatin, suitable for encapsulation in the oil core of an NE. The dimyrisplatin, dipalmiplatin, and distearyplatin were synthesized, characterized, and loaded into the oil core of our NEs, NMI-350, NMI-351, and NMI-352 respectively. Sequestration of the difattyacid platins was accomplished through high energy microfluidization. To target the NE, FA-PEG3400-DSPE was incorporated into the surface during microfluidization. The FA-NEs selectively bind the folate receptor α (FR-α) and utilize receptor mediated endocytosis to deliver Pt past cell surface resistance mechanisms. FR-α is overexpressed in a number of oncological conditions including ovarian cancer. The difattyacid platins, lipidated Gd-DTPA, and lipidated folate were characterized by nuclear magnetic resonance (NMR), mass spectrometry (MS), and elemental analysis. NEs were synthesized using high shear microfluidization process and characterized for size, zeta-potential, and loading efficiency. In vitro cytotoxicity was determined using KB-WT (Pt-sensitive) and KBCR-1000 (Pt-resistant) cancer cells and measured by MTT assay. Pharmacokinetic profiles were studied in CD-1 mice. NEs loaded with difattyacid platins are highly stable and had size distribution in the range of ∼120 to 150 nm with low PDI. Cytotoxicity data indicates the longer the fatty acid chains, the less potent the NEs. The inclusion of C6-ceramide, an apoptosis enhancer, and surface functionalization with folate molecules significantly increased in vitro potency. Pharmacokinetic studies show that the circulation time for all three difattyacid platins encapsulated in NE remained identical, thus indicating that chain length did not influence circulation time. A stable NMI-350 family of NEs were successfully designed, formulated, and characterized. The Pt-resistance in KBCR-1000 cells was reversed with the NMI-350 family. Dimyrisplatin loaded NE (NMI-350) was most potent in vitro. The NMI-350 family demonstrated identical pharmacokinetic profiles to one another and circulated much longer than cisplatin. These data indicate that NMI-350 warrants further preclinical and clinical development as a replacement for current Pt regimens especially for those afflicted with multi drug resistant cancers.


Assuntos
Emulsões/administração & dosagem , Emulsões/química , Ácido Fólico/administração & dosagem , Ácido Fólico/química , Compostos Organoplatínicos/administração & dosagem , Compostos Organoplatínicos/química , Neoplasias Ovarianas/tratamento farmacológico , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Linhagem Celular Tumoral , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Feminino , Receptor 1 de Folato/metabolismo , Gadolínio DTPA/química , Células HeLa , Humanos , Camundongos , Neoplasias Ovarianas/metabolismo , Tamanho da Partícula , Polietilenoglicóis/química , Nanomedicina Teranóstica/métodos
3.
Mol Pharm ; 13(2): 428-37, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26702994

RESUMO

Current research in cancer therapy is beginning to shift toward the use of combinational drug treatment regimens. However, the efficient delivery of drug combinations is governed by a number of complex factors in the clinical setting. Therefore, the ability to synchronize the pharmacokinetics of the individual therapeutic agents present in combination not only to allow for simultaneous tumor accumulation but also to allow for a synergistic relationship at the intracellular level could prove to be advantageous. In this work, we report the development of a novel folic acid-targeted liposomal formulation simultaneously co-loaded with C6 ceramide and doxorubicin [FA-(C6+Dox)-LP]. In vitro cytotoxicity assays showed that the FA-(C6+Dox)-LP was able to significantly reduce the IC50 of Dox when compared to that after the treatment with the doxorubicin-loaded liposomes (Dox-LP) as well as the untargeted drug co-loaded (C6+Dox)-LP on HeLa, A2780-ADR, and H69-AR cells. The analysis of the cell cycle distribution showed that while the C6 liposomes (C6-LP) did not cause cell cycle arrest, all the Dox-containing liposomes mediated cell cycle arrest in HeLa cells in the G2 phase at Dox concentrations of 0.3 and 1 µM and in the S phase at the higher concentrations. It was also found that this arrest in the S phase precedes the progression of the cells to apoptosis. The targeted FA-(C6+Dox)-LP were able to significantly enhance the induction of apoptotic events in HeLa cell monolayers as compared to the other treatment groups. Next, using time-lapse phase holographic imaging microscopy, it was found that upon treatment with the FA-(C6+Dox)-LP, the HeLa cells underwent rapid progression to apoptosis after 21 h as evidenced by a drastic drop in the average area of the cells after loss of cell membrane integrity. Finally, upon evaluation in a HeLa spheroid cell model, treatment with the FA-(C6+Dox)-LP showed significantly higher levels of cell death compared to those with C6-LP and Dox-LP. Overall, this study clearly shows that the co-delivery of C6 ceramide and Dox using a liposomal platform significantly correlates with an antiproliferative effect due to cell cycle regulation and subsequent induction of apoptosis and thus warrants its further evaluation in preclinical animal models.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Ceramidas/química , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Ácido Fólico/química , Lipossomos/administração & dosagem , Antibióticos Antineoplásicos/química , Ciclo Celular/efeitos dos fármacos , Doxorrubicina/química , Portadores de Fármacos , Feminino , Humanos , Técnicas In Vitro , Lipossomos/química , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Células Tumorais Cultivadas , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia
4.
Biochem Biophys Res Commun ; 468(1-2): 274-80, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26505795

RESUMO

Osteosarcoma (OS) remains one deadly disease for many affected patients. The search for novel and more efficient anti-OS agents is urgent. In the current study, we demonstrated that liposome-packed C6 ceramide exerted potent cytotoxic effect against established (U2OS and MG-63 lines) and primary human OS cells. Meanwhile, the liposomal C6 (ceramide) induced caspase-mediated apoptotic death in OS cells. Liposomal C6 was significantly more potent than conventional free C6 in inhibiting OS cells, yet it was safe to non-cancerous bone cells (primary murine osteoblasts or human MLO-Y4 osteocytic cells). At the signaling level, we showed that liposomal C6 potently inhibited Akt activation in OS cells. Further studies revealed that a low dose of liposomal C6 dramatically sensitized the in vitro anti-OS activity of two conventional chemodrugs: methotrexate (MTX) and doxorubicin. In vivo, intravenous injection of liposomal C6 inhibited Akt activation and suppressed U2OS xenograft growth in nude mice without causing apparent toxicities. Meanwhile, when given at a low-dose (5 mg/kg body weight), liposomal C6 dramatically sensitized MTX's anti-U2OS activity in vivo. Collectively, our data demonstrate that liposomal C6 exerts potent anti-tumor activity in preclinical OS models.


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Ceramidas/administração & dosagem , Ceramidas/uso terapêutico , Osteossarcoma/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/patologia , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Linhagem Celular Tumoral , Ceramidas/farmacologia , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Sinergismo Farmacológico , Feminino , Humanos , Lipossomos , Metotrexato/administração & dosagem , Metotrexato/farmacologia , Metotrexato/uso terapêutico , Camundongos Nus , Osteossarcoma/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Tumorais Cultivadas
5.
Eur J Pharm Biopharm ; 172: 61-77, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35104605

RESUMO

One of the major assets of anticancer nanomedicine is the ability to co-deliver drug combinations, as it enables targeting of different cellular populations and/or signaling pathways implicated in tumorigenesis and thus tackling tumor heterogeneity. Moreover, drug resistance can be circumvented, for example, upon co-encapsulation and delivery of doxorubicin and sphingolipids, as ceramides. Herein, the impact of short (C6) and long (C18) alkyl chain length ceramides on the nature of drug interaction, within the scope of combination with doxorubicin, was performed in bulk triple-negative breast cancer (TNBC) cells, as well as on the density of putative cancer stem cells and phenotype, including live single-cell tracking. C6- or C18-ceramide enabled a synergistic drug interaction in all conditions and (bulk) cell lines tested. However, differentiation among these two ceramides was reflected on the migratory potential of cancer cells, particularly significant against the highly motile MDA-MB-231 cells. This effect was supported by the downregulation of the PI3K/Akt pathway enabled by C6-ceramide and in contrast with C18-ceramide. The decrease of the migratory potential enabled by the targeted liposomal combinations is of high relevance in the context of TNBC, due to the underlying metastatic potential. Surprisingly, the nature of the drug interaction assessed at the level of bulk cancer cells revealed to be insufficient to predict whether a drug combination enables a decrease in the percentage of the master regulators of tumor relapse as ALDH+/high putative TNBC cancer stem cells, suggesting, for the first time, that it should be extended further down to this level.


Assuntos
Doxorrubicina , Fosfatidilinositol 3-Quinases , Apoptose , Linhagem Celular Tumoral , Ceramidas , Doxorrubicina/análogos & derivados , Doxorrubicina/farmacologia , Interações Medicamentosas , Humanos , Fosfatidilinositol 3-Quinases/farmacologia , Polietilenoglicóis
6.
J Control Release ; 196: 122-31, 2014 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-25305563

RESUMO

Drug resistance remains the Achilles tendon undermining the success of chemotherapy. It has been recognized that success requires the identification of compounds that, when combined, lead to synergistic tumor inhibition while simultaneously minimizing systemic toxicity. However, in vivo application of such protocols is dependent on the ability to deliver the appropriate drug ratio at the tumor level. In this respect, nanotechnology-based delivery platforms, like liposomes, offer an elegant solution for the in vivo translation of such strategy. In this work, we propose the active intracellular delivery of combinations of doxorubicin and the pro-apoptotic sphingolipid, C6-ceramide, using our previously described cytosolic triggered release-enabling liposomes, targeting nucleolin with the F3 peptide. Combination of doxorubicin (DXR):C6-ceramide (C6-Cer) at 1:2 molar ratio interacted synergistically against drug resistant/triple negative MDA-MB-231 breast cancer cells, as well as drug sensitive MDA-MB-435S melanoma cells. Cell viability studies indicated that F3-targeted liposomes encapsulating DXR:C6-Cer 1:2 molar ratio (p[F3]DC12) performed similarly as targeted liposomal DXR (p[F3]SL), encapsulating twice the amount of DXR, at the IC50, for an incubation time of 24 h. Importantly, F3-targeted liposomes encapsulating DXR:C6-Cer 1:2 molar ratio (p[F3]DC12) enabled a cell death above 90% at 24 h of treatment against both DXR-resistant and sensitive cells, unattainable by the F3-targeted liposomal doxorubicin. Furthermore, a F3-targeted formulation encapsulating a mildly additive/antagonistic DXR:C6-Cer 1:1 molar ratio (p[F3]DC11) enabled an effect above 90% for an incubation period as short as 4 h, suggesting that the delivery route at the cell level may shift the nature of drug interaction. Such activity, including the one for p[F3]DC12, induced a marked cell and nucleus swelling at similar extent, consistent with necrotic cell death. Overall, these results demonstrated that F3-targeted intracellular delivery of different DXR/C6-Cer ratios, with diversed drug interactions, enabled a highly relevant increased efficacy against chemotherapy resistant cells.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Ceramidas/química , Doxorrubicina/análogos & derivados , Animais , Antibióticos Antineoplásicos/química , Linhagem Celular Tumoral , Química Farmacêutica , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Sistemas de Liberação de Medicamentos , Interações Medicamentosas , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Humanos , Concentração de Íons de Hidrogênio , Lipossomos/química , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA