Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 279
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Gene Med ; 26(8): e3725, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39134478

RESUMO

INTRODUCTION: Esophageal cancer is one of the major cancers in China. Most patients with esophageal cancer are diagnosed at an advanced stage, and the 5 year survival rate is discouraging. Combined chemotherapy is a common method for the treatment of esophageal cancer. METHODS: In this study, distearoyl phosphatidyl ethanolamine polyethylene glycol 2000 (DSPE-PEG2000) nanoliposomes (NLPs) encapsulating the anticancer drugs docetaxel (DOX) and oridonin (ORD) were prepared, and their ability to enhance the release of anticancer drugs was determined. The NLP system was characterized by transmission electron microscopy, particle size and encapsulation efficiency. In addition, the release characteristics and pharmacodynamics of these drugs were also studied in detail. RESULTS: When the DOX/ORD ratio was 2:1, the higher proportion of DOX led to a stronger synergy effect. DOX/ORD NLPs were prepared by the high-pressure homogenization method and had a uniform spherical morphology. The mean particle size and polydispersity index were determined to be 246.4 and 0.163, respectively. The stability results showed that no significant change was observed in particle size, zeta potential, Encapsulation efficiency and dynamic light scattering for DOX/ORD NLPs during the observation period. The results of in vitro release illustrated that the acidic environment of tumor might be beneficial to drug release. The three-dimensional tumorsphere showed that DOX/ORD NLPs can reach the interior of tumor spheres, which destroys the structure of cells, resulting in irregular spherical tumor spheres. The in vivo study results indicated that DOX/ORD NLPs had an obvious targeting effect on subcutaneous tumors and have the potential to actively deliver drugs to tumor tissues. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was used to detect apoptosis. The results showed that DOX/ORD NLP treatment could significantly induce apoptosis and inhibit tumor growth. CONCLUSION: The DOX/ORD NLPs prepared in this study can enhance the anti-tumor activity, and are expected to be a promising co-delivery platform for the treatment of esophageal cancer.


Assuntos
Diterpenos do Tipo Caurano , Docetaxel , Neoplasias Esofágicas , Lipossomos , Diterpenos do Tipo Caurano/farmacologia , Diterpenos do Tipo Caurano/química , Diterpenos do Tipo Caurano/administração & dosagem , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/patologia , Docetaxel/farmacologia , Docetaxel/administração & dosagem , Docetaxel/química , Lipossomos/química , Animais , Humanos , Linhagem Celular Tumoral , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Nanopartículas/química , Tamanho da Partícula , Ensaios Antitumorais Modelo de Xenoenxerto , Liberação Controlada de Fármacos , Sistemas de Liberação de Medicamentos/métodos , Camundongos Nus , Camundongos Endogâmicos BALB C , Sistemas de Liberação de Fármacos por Nanopartículas/química
2.
Pharm Res ; 41(7): 1493-1505, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38918308

RESUMO

PURPOSE: Joint destruction is a major burden and an unsolved problem in rheumatoid arthritis (RA) patients. We designed an intra-articular mesoporous silica nanosystem (MSN-TP@PDA-GlcN) with anti-inflammatory and joint protection effects. The nanosystem was synthesized by encapsulating triptolide (TP) in mesoporous silica nanoparticles and coating it with pH-sensitive polydopamine (PDA) and glucosamine (GlcN) grafting on the PDA. The nano-drug delivery system with anti-inflammatory and joint protection effects should have good potency against RA. METHODS: A template method was used to synthesize mesoporous silica (MSN). MSN-TP@PDA-GlcN was synthesized via MSN loading with TP, coating with PDA and grafting of GlcN on PDA. The drug release behavior was tested. A cellular inflammatory model and a rat RA model were used to evaluate the effects on RA. In vivo imaging and microdialysis (MD) system were used to analyze the sustained release and pharmacokinetics in RA rats. RESULTS: TMSN-TP@PDA-GlcN was stable, had good biocompatibility, and exhibited sustained release of drugs in acidic environments. It had excellent anti-inflammatory effects in vitro and in vivo. It also effectively repaired joint destruction in vivo without causing any tissue toxicity. In vivo imaging and pharmacokinetics experiments showed that the nanosystem prolonged the residence time, lowered the Cmax value and enhanced the relative bioavailability of TP. CONCLUSIONS: These results demonstrated that MSN-TP@PDA-GlcN sustained the release of drugs in inflammatory joints and produced effective anti-inflammatory and joint protection effects on RA. This study provides a new strategy for the treatment of RA.


Assuntos
Anti-Inflamatórios , Artrite Reumatoide , Diterpenos , Liberação Controlada de Fármacos , Indóis , Nanopartículas , Fenantrenos , Polímeros , Dióxido de Silício , Animais , Dióxido de Silício/química , Artrite Reumatoide/tratamento farmacológico , Nanopartículas/química , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacocinética , Fenantrenos/química , Fenantrenos/administração & dosagem , Fenantrenos/farmacocinética , Fenantrenos/farmacologia , Ratos , Diterpenos/administração & dosagem , Diterpenos/química , Diterpenos/farmacocinética , Diterpenos/farmacologia , Indóis/administração & dosagem , Indóis/química , Indóis/farmacocinética , Indóis/farmacologia , Polímeros/química , Porosidade , Masculino , Compostos de Epóxi/química , Compostos de Epóxi/administração & dosagem , Glucosamina/química , Glucosamina/administração & dosagem , Ratos Sprague-Dawley , Portadores de Fármacos/química , Humanos , Camundongos , Preparações de Ação Retardada , Inflamação/tratamento farmacológico , Inflamação/prevenção & controle
3.
Int J Mol Sci ; 25(2)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38279291

RESUMO

Previously reported amphiphilic linear and graft copolymers, derived from the ionic liquid [2-(methacryloyloxy)ethyl]trimethylammonium chloride (TMAMA_Cl‾), along with their conjugates obtained through modification either before or after polymerization with p-aminosalicylate anions (TMAMA_PAS‾), were employed as matrices in drug delivery systems (DDSs). Based on the counterion type in TMAMA units, they were categorized into single drug systems, manifesting as ionic polymers with chloride counterions and loaded isoniazid (ISO), and dual drug systems, featuring ISO loaded in self-assembled PAS conjugates. The amphiphilic nature of these copolymers was substantiated through the determination of the critical micelle concentration (CMC), revealing an increase in values post-ion exchange (from 0.011-0.063 mg/mL to 0.027-0.181 mg/mL). The self-assembling properties were favorable for ISO encapsulation, with drug loading content (DLC) ranging between 15 and 85% in both single and dual systems. In vitro studies indicated ISO release percentages between 16 and 61% and PAS release percentages between 20 and 98%. Basic cytotoxicity assessments using the 2,5-diphenyl-2H-tetrazolium bromide (MTT) test affirmed the non-toxicity of the studied systems toward human non-tumorigenic lung epithelial cell line (BEAS-2B) cell lines, particularly in the case of dual systems bearing both ISO and PAS simultaneously. These results confirmed the effectiveness of polymeric carriers in drug delivery, demonstrating their potential for co-delivery in combination therapy.


Assuntos
Líquidos Iônicos , Polímeros , Humanos , Polímeros/química , Portadores de Fármacos/química , Cloretos , Sistemas de Liberação de Medicamentos , Micelas
4.
Environ Res ; 239(Pt 2): 117292, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37806480

RESUMO

Combination therapy has been considered one of the most promising approaches for improving the therapeutic effects of anticancer drugs. This is the first study that uses two different antioxidants in full-characterized niosomal formulation and thoroughly evaluates their synergistic effects on breast cancer cells. In this study, in-silico studies of hydrophilic and hydrophobic drugs (ascorbic acid: Asc and curcumin: Cur) interactions and release were investigated and validated by a set of in vitro experiments to reveal the significant improvement in breast cancer therapy using a co-delivery approach by niosomal nanocarrier. The niosomal nanoparticles containing surfactants (Span 60 and Tween 60) and cholesterol at 2:1 M ratio were prepared through the film hydration method. A systematic evaluation of nanoniosomes was carried out. The release profile demonstrated two phases (initial burst followed by sustained release) and a pH-dependent release schedule over 72 h. The optimized niosomal preparation displayed superior storage stability for up to 2 months at 4 °C, exhibiting extremely minor changes in pharmaceutical encapsulation efficiency and size. Free dual drugs (Asc + Cur) and dual-drug loaded niosomes (Niosomal (Asc + Cur)) enhanced the apoptotic activity and cytotoxicity and inhibited cell migration which confirmed the synergistic effect of co-encapsulated drugs. Also, significant up-regulation of p53 and Bax genes was observed in cells treated with Asc + Cur and Niosomal (Asc + Cur), while the anti-apoptotic Bcl-2 gene was down-regulated. These results were in correlation with the increase in the enzyme activity of SOD, CAT, and caspase, and the levels of malondialdehyde (MDA) and reactive oxygen species (ROS) upon treatment with the mentioned drugs. Furthermore, these anti-cancer effects were higher when using Niosomal (Asc + Cur) than Asc + Cur. Histopathological examination also revealed that Niosomal (Asc + Cur) had a lower mitosis index, invasion, and pleomorphism than Asc + Cur. These findings indicated that niosomal formulation for co-delivery of Asc and Cur would offer a promising delivery system for an effective breast cancer treatment.


Assuntos
Antineoplásicos , Neoplasias da Mama , Curcumina , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Lipossomos/química , Lipossomos/farmacologia , Lipossomos/uso terapêutico , Curcumina/farmacologia , Curcumina/química , Polissorbatos/química , Polissorbatos/uso terapêutico
5.
Drug Dev Ind Pharm ; 49(1): 62-74, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36803267

RESUMO

Due to the complexity of the pathophysiology of non-small cell lung cancer (NSCLC) and the susceptibility of single chemotherapy to drug resistance, the combination of drugs and small interfering RNA (siRNA) may produce a desired therapeutic effect on NSCLC through the action of multiple pathways. We designed to develop poly-γ-glutamic acid-modified cationic liposomes (γ-PGA-CL) to co-deliver pemetrexed disodium (PMX) and siRNA to treat NSCLC. Firstly, γ-PGA was modified on the surface of PMX and siRNA co-loaded cationic liposomes by electrostatic interaction (γ-PGA modified PMX/siRNA-CL). In order to evaluate whether the prepared γ-PGA modified PMX/siRNA-CL could be taken up by tumor cells and exert significant anti-tumor effects, in vitro and in vivo studies were performed, with A549 cells and LLC-bearing BABL/c mice as experimental models, respectively. The particle size and zeta potential of γ-PGA modified PMX/siRNA-CL was (222.07 ± 1.23) nm and (-11.38 ± 1.44) mV. A preliminary stability experiment showed the complex could protect siRNA from degradation. In vitro cell uptake experiment indicated the complex group exerted stronger fluorescence intensity and expressed higher flow detection value. Cytotoxicity study showed the cell survival rate of γ-PGA-CL was (74.68 ± 0.94)%. Polymerase chain reaction (PCR) analysis and western blot technology displayed that the complex could inhibit the expression of Bcl-2 mRNA and protein to promote cell apoptosis. In vivo anti-tumor experiments represented the complex group showed a significant inhibitory effect on tumor growth, while the vector showed no obvious toxicity. Therefore, the current studies proved the feasibility of combining PMX and siRNA by γ-PGA-CL as a potential strategy for the treatment of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Camundongos , Pemetrexede/farmacologia , Lipossomos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Ácido Glutâmico/uso terapêutico , RNA Interferente Pequeno , Neoplasias Pulmonares/tratamento farmacológico , Linhagem Celular Tumoral
6.
Nanotechnology ; 33(15)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34963110

RESUMO

Loading of chemotherapeutic agents into nanoparticles has been demonstrated to be an effective strategy for cancer therapy. However, simultaneous delivery of different functional drugs to tumor sites for chemotherapy still remains challenging. In this study, nanogels formed by an engineered coiled-coil polypeptide PC10A were designed and prepared as a carrier for co-delivery of paclitaxel (PTX) and doxorubicin (DOX) through ultrasonic treatment and electrostatic adsorption. The drug loading content and encapsulation efficiency of PTX and DOX in the PC10A/PTX/DOX nanogels were 5.98 wt%, 70 wt%, and 8.55 wt%, 83 wt%, respectively. Because the polypeptide PC10A was non-toxic and biodegradable, the PC10A/PTX/DOX nanogels exhibited good biocompatibility. Thein vitroandin vivoantitumor experiments showed that the PC10A/PTX/DOX nanogels possessed obviously synergistic therapy effect of tumors and lower side effects compared with free PTX/DOX. Therefore, the PC10A/PTX/DOX nanogels are promising to provide a new strategy for combination therapy of different functional drugs.


Assuntos
Antineoplásicos , Doxorrubicina , Portadores de Fármacos , Nanogéis/química , Paclitaxel , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Quimioterapia Combinada , Feminino , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Células NIH 3T3 , Paclitaxel/química , Paclitaxel/farmacocinética , Paclitaxel/farmacologia , Peptídeos/química
7.
J Nanobiotechnology ; 20(1): 140, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35303868

RESUMO

Chemotherapeutics that can trigger immunogenic cell death (ICD) and release tumor-specific antigens are effective on treating a variety of cancers. The codelivery of chemotherapeutics with adjuvants is a promising strategy to achieve synergistic therapeutic effect. However, low drug loading and complicated preparation of current delivery systems lead to carrier-associated toxicity and immunogenicity. Herein, we developed a facile approach to construct liposomal spherical nucleic acids (SNA) by the self-assembly of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE)-doxorubicin conjugate and DOPE-matrix metalloproteinases-9 (MMP-9) responsive peptide-CpG conjugate (DOPE-MMP-CpG). Liposomal SNAs efficiently co-delivered DOX and CpG into tumors and released the two drugs upon biological stimuli of MMP-9 enzyme in tumor microenvironment (TME) and high concentration of endogenous glutathione in tumor cells. We demonstrated that liposomal SNA enhanced activation of dendritic cells (DCs), promoted expansion of CD8+ and CD4+ T cells in both tumors and spleen, inhibited tumor growth, and extended animal survival. This work provided a simple strategy of delivering chemotherapeutics and adjuvants to tumors with synergistic therapeutic effect and reduced side effect.


Assuntos
Neoplasias , Ácidos Nucleicos , Animais , Doxorrubicina/farmacologia , Lipossomos , Neoplasias/tratamento farmacológico , Microambiente Tumoral
8.
J Nanobiotechnology ; 20(1): 177, 2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35366888

RESUMO

BACKGROUND: Small interfering RNA (siRNA) is utilized as a potent agent for cancer therapy through regulating the expression of genes associated with tumors. While the widely application of siRNAs in cancer treatment is severely limited by their insufficient biological stability and its poor ability to penetrate cell membranes. Targeted delivery systems hold great promise to selectively deliver loaded drug to tumor site and reduce toxic side effect. However, the elevated tumor interstitial fluid pressure and efficient cytoplasmic release are still two significant obstacles to siRNA delivery. Co-delivery of chemotherapeutic drugs and siRNA represents a potential strategy which may achieve synergistic anticancer effect. Herein, we designed and synthesized a dual pH-responsive peptide (DPRP), which includes three units, a cell-penetrating domain (polyarginine), a polyanionic shielding domain (ehG)n, and an imine linkage between them. Based on the DPRP surface modification, we developed a pH-responsive liposomal system for co-delivering polo-like kinase-1 (PLK-1) specific siRNA and anticancer agent docetaxel (DTX), D-Lsi/DTX, to synergistically exhibit anti-tumor effect. RESULTS: In contrast to the results at the physiological pH (7.4), D-Lsi/DTX lead to the enhanced penetration into tumor spheroid, the facilitated cellular uptake, the promoted escape from endosomes/lysosomes, the improved distribution into cytoplasm, and the increased cellular apoptosis under mildly acidic condition (pH 6.5). Moreover, both in vitro and in vivo study indicated that D-Lsi/DTX had a therapeutic advantage over other control liposomes. We provided clear evidence that liposomal system co-delivering siPLK-1 and DTX could significantly downregulate expression of PLK-1 and inhibit tumor growth without detectable toxic side effect, compared with siPLK-1-loaded liposomes, DTX-loaded liposomes, and the combinatorial administration. CONCLUSION: These results demonstrate great potential of the combined chemo/gene therapy based on the multistage pH-responsive codelivery liposomal platform for synergistic tumor treatment.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/química , Docetaxel/farmacologia , Concentração de Íons de Hidrogênio , Lipossomos/química , Neoplasias/tratamento farmacológico , RNA Interferente Pequeno
9.
J Liposome Res ; 32(3): 265-275, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34904521

RESUMO

In order to enhance the targeting efficiency and reduce the side effects and drug resistance, crizotinib (Cri) and F7 were co-loaded in a thermosensitive liposome (TSL) (F7-Cri-TSL), which showed enhanced permeability and retention in breast cancer model, as well as local controlled release by external hyperthermia. Cri is an inhibitor for cell proliferation and a promoter of apoptosis, by inhibiting the phosphorylation of intracellular ALK and c-Met, but its drug resistance limits its application. F7 is a novel drug candidate with significant resistance to cyclin-dependent kinase, but its use was restricted by its high toxicity. The F7-Cri-TSL was found with excellent particle size (about 108 nm), high entrapment efficiency (>95%), significant thermosensitive property, and good stability. Furthermore, F7-Cri-TSL/H had strongest cell lethality compared with other formulations. On the MCF-7 xenograft mice model, the F7-Cri-TSL also exhibited therapeutic synergism of Cri, F7 and hyperthermia. Meanwhile, it was shown that the TSL reduced the systemic toxicity of the chemotherapy drug. Therefore, the F7-Cri-TSL may serve as a promising system for temperature triggered breast cancer treatment.


Assuntos
Neoplasias da Mama , Lipossomos , Animais , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Crizotinibe/farmacologia , Crizotinibe/uso terapêutico , Doxorrubicina , Feminino , Humanos , Lipossomos/uso terapêutico , Camundongos , Temperatura
10.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36499061

RESUMO

Polymerizable choline-based ionic liquid (IL), i.e., [2-(methacryloyloxy)ethyl]-trimethylammonium (TMAMA/Cl¯), was functionalized by an ion exchange reaction with pharmaceutical anions, i.e., cloxacillin (CLX¯) and fusidate (FUS¯), as the antibacterial agents. The modified biocompatible IL monomers (TMAMA/CLX¯, TMAMA/FUS¯) were copolymerized with methyl methacrylate (MMA) to prepare the graft copolymers (19-50 mol% of TMAMA units) serving as the drug (co)delivery systems. The in vitro drug release, which was driven by the exchange reaction of the pharmaceutical anions to phosphate ones in PBS medium, was observed for 44% of CLX¯ (2.7 µg/mL) and 53% of FUS¯ (3.6 µg/mL) in the single systems. Similar amounts of released drugs were detected for the dual system, i.e., 41% of CLX¯ (2.2 µg/mL) and 33% of FUS¯ (2.0 µg/mL). The investigated drug ionic polymer conjugates were examined for their cytotoxicity by MTT test, showing a low toxic effect against human bronchial epithelial cells (BEAS-2B) and normal human dermal fibroblasts (NHDF) as the normal cell lines. The satisfactory drug contents and the release profiles attained for the well-defined graft polymers with ionically bonded pharmaceuticals in the side chains make them promising drug carriers in both separate and combined drug delivery systems.


Assuntos
Líquidos Iônicos , Polímeros , Humanos , Polímeros/química , Líquidos Iônicos/química , Sistemas de Liberação de Medicamentos , Portadores de Fármacos/química , Íons
11.
Int J Mol Sci ; 23(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35163814

RESUMO

Combining multiple drugs or biologically active substances for wound healing could not only resist the formation of multidrug resistant pathogens, but also achieve better therapeutic effects. Herein, the hydrophobic fluoroquinolone antibiotic ciprofloxacin (CIP) and the hydrophilic broad-spectrum antibiotic tetracycline hydrochloride (TH) were introduced into the coaxial polycaprolactone/gelatin (PCL/GEL) nanofiber mat with CIP loaded into the PCL (core layer) and TH loaded into the GEL (shell layer), developing antibacterial wound dressing with the co-delivering of the two antibiotics (PCL-CIP/GEL-TH). The nanostructure, physical properties, drug release, antibacterial property, and in vitro cytotoxicity were investigated accordingly. The results revealed that the CIP shows a long-lasting release of five days, reaching the releasing rate of 80.71%, while the cumulative drug release of TH reached 83.51% with a rapid release behavior of 12 h. The in vitro antibacterial activity demonstrated that the coaxial nanofiber mesh possesses strong antibacterial activity against E. coli and S. aureus. In addition, the coaxial mats showed superior biocompatibility toward human skin fibroblast cells (hSFCs). This study indicates that the developed PCL-CIP/GEL-TH nanofiber membranes hold enormous potential as wound dressing materials.


Assuntos
Ciprofloxacina/administração & dosagem , Escherichia coli/crescimento & desenvolvimento , Pele/citologia , Staphylococcus aureus/crescimento & desenvolvimento , Tetraciclina/administração & dosagem , Cicatrização , Animais , Bandagens , Linhagem Celular , Ciprofloxacina/química , Ciprofloxacina/farmacologia , Modelos Animais de Doenças , Composição de Medicamentos , Sinergismo Farmacológico , Escherichia coli/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Gelatina/química , Humanos , Viabilidade Microbiana , Nanofibras , Poliésteres/química , Pele/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Tetraciclina/química , Tetraciclina/farmacologia
12.
Pharm Dev Technol ; 27(10): 1049-1056, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36398607

RESUMO

Recent findings revealed that low-concentration paclitaxel(DTX) could enhance cytotoxicity by upregulating p53 expression in lung cancer cell lines. So, co-delivery of DTX and RFP-p53 gene with PEA nanoparticles (NPs) was studied. The prepared DTX loaded PEA NPs (PEA/DTX) were characterized by particle size distribution, morphology, zeta potential, and crystallography and cytotoxicity. Results showed that the PEA/DTX NPs had a mall particle size (≤100 nm), moderate zeta potential (≥40 mV) and drug loading of 9.0%, DTX was released from PEA/DTX NPs in an extended period in vitro. More important, agarose gel electrophoresis showed that PEA/DTX cationic NPs were able to completely bind RFP-p53 gene with mean particles size and zeta potential. Studies on cellular uptake of (PEA/DTX)/RFP-p53 NPs demonstrated that both drug and gene were effectively taken up by A549 tumor cells. It was found that intravenous injection of (PEA/DTX)/RFP-p53 NPs efficiently inhibited growth of subcutaneous A549 carcinoma in vivo (p < 0.05) and was significantly less side effect than that of mice treated with the other groups. Therefore, the (PEA/DTX)/RFP-p53 NPs might be a promising candidate for A549 cancer therapy.


Assuntos
Nanopartículas , Polietilenoimina , Camundongos , Animais , Docetaxel/farmacologia , Pisum sativum , Genes p53 , Proteína Supressora de Tumor p53/genética , Taxoides , Nanopartículas/química
13.
Angew Chem Int Ed Engl ; 61(14): e202113703, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-34989079

RESUMO

The impermeable barriers of solid tumors restrict the co-delivery of protein-based drugs and chemotherapeutics for cancer treatment. Therefore, we developed a ZIF-DOX/RA@DG nanosystem that encapsulates ribonuclease A (RA) and doxorubicin (DOX) in a zeolitic imidazolate framework (ZIF-8) core, with a dextran-based coating (DG). The nanosystem exhibits dual-responsiveness due to γ-glutamyl transpeptidase-activatable cationization and acidic microenvironment-triggered degradation. The DG-coating process was achieved using a microfluidic approach, which stabilized the polymer responsiveness, ZIF-8-based structure, and bioactivity of the encapsulated therapeutics. In vivo results confirmed that the nanosystem could co-deliver RA and DOX to deep impermeable lesions with a synergistic anticancer therapeutic effects. Such a multi-drug delivery system based on an intelligent-responsive design and a microfluidics-assisted synthesis strategy shows great clinical prospects.


Assuntos
Neoplasias , Zeolitas , Doxorrubicina/química , Sistemas de Liberação de Medicamentos , Humanos , Concentração de Íons de Hidrogênio , Microfluídica , Neoplasias/tratamento farmacológico , Polímeros/química , Microambiente Tumoral
14.
J Nanobiotechnology ; 19(1): 447, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34952594

RESUMO

BACKGROUND: Autophagy is a conserved catabolic process, which plays an important role in regulating tumor cell motility and degrading protein aggregates. Chemotherapy-induced autophagy may lead to tumor distant metastasis and even chemo-insensitivity in the therapy of hepatocellular carcinoma (HCC). Therefore, a vast majority of HCC cases do not produce a significant response to monotherapy with autophagy inhibitors. RESULTS: In this work, we developed a biomimetic nanoformulation (TH-NP) co-encapsulating Oxaliplatin (OXA)/hydroxychloroquine (HCQ, an autophagy inhibitor) to execute targeted autophagy inhibition, reduce tumor cell migration and invasion in vitro and attenuate metastasis in vivo. The tumor cell-specific ligand TRAIL was bioengineered to be stably expressed on HUVECs and the resultant membrane vesicles were wrapped on OXA/HCQ-loaded PLGA nanocores. Especially, TH-NPs could significantly improve OXA and HCQ effective concentration by approximately 21 and 13 times in tumor tissues compared to the free mixture of HCQ/OXA. Moreover, the tumor-targeting TH-NPs released HCQ alkalized the acidic lysosomes and inhibited the fusion of autophagosomes and lysosomes, leading to effective blockade of autophagic flux. In short, the system largely improved chemotherapeutic performance of OXA on subcutaneous and orthotopic HCC mice models. Importantly, TH-NPs also exhibited the most effective inhibition of tumor metastasis in orthotopic HCCLM3 models, and in the HepG2, Huh-7 or HCCLM3 metastatic mice models. Finally, we illustrated the enhanced metastasis inhibition was attributed to the blockade or reverse of the autophagy-mediated degradation of focal adhesions (FAs) including E-cadherin and paxillin. CONCLUSIONS: TH-NPs can perform an enhanced chemotherapy and antimetastatic effect, and may represent a promising strategy for HCC therapy in clinics.


Assuntos
Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Materiais Biomiméticos/química , Nanopartículas/química , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/uso terapêutico , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Adesões Focais/química , Adesões Focais/efeitos dos fármacos , Adesões Focais/metabolismo , Humanos , Hidroxicloroquina/química , Hidroxicloroquina/metabolismo , Hidroxicloroquina/farmacologia , Hidroxicloroquina/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/secundário , Camundongos , Neoplasias/patologia , Oxaliplatina/química , Oxaliplatina/metabolismo , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Paxilina/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química
15.
J Nanobiotechnology ; 19(1): 238, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34380471

RESUMO

BACKGROUND: Cancer synergistic therapy strategy in combination with therapeutic gene and small molecule drug offers the possibility to amplify anticancer efficiency. Colon cancer-associated transcript-1 (CCAT1) is a well identified oncogenic long noncoding RNA (lncRNA) exerting tumorigenic effects in a variety of cancers including colorectal cancer (CRC). RESULTS: In the present work, curcumin (Cur) and small interfering RNA targeting lncRNA CCAT1(siCCAT1) were co-incorporated into polymeric hybrid nanoparticles (CSNP), which was constructed by self-assembling method with two amphiphilic copolymers, polyethyleneimine-poly (D, L-lactide) (PEI-PDLLA) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol) (DSPE-mPEG). Owing to the multicolor fluorescence characteristics of PEI-PDLLA, the constructed CSNP could be served as a theranostic nanomedicine for synchronous therapy and imaging both in vitro and in vivo. Resultantly, proliferation and migration of HT-29 cells were efficiently inhibited, and the highest apoptosis ratio was induced by CSNP with coordination patterns. Effective knockdown of lncRNA CCAT1 and concurrent regulation of relevant downstream genes could be observed. Furthermore, CSNP triggered conspicuous anti-tumor efficacy in the HT-29 subcutaneous xenografts model with good biosafety and biocompatibility during the treatment. CONCLUSION: On the whole, our studies demonstrated that the collaborative lncRNA CCAT1 silencing and Cur delivery based on CSNP might emerge as a preferable and promising strategy for synergetic anti-CRC therapy.


Assuntos
Curcumina/farmacologia , Nanopartículas/química , RNA Longo não Codificante/genética , RNA Longo não Codificante/farmacologia , Animais , Apoptose/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Combinação de Medicamentos , Sistemas de Liberação de Medicamentos/métodos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HT29 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Polímeros , Medicina de Precisão , Interferência de RNA , RNA Longo não Codificante/química , RNA Interferente Pequeno/genética
16.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34360714

RESUMO

In the present study, a magnetic niosomal nanocarrier for co-delivery of curcumin and letrozole into breast cancer cells has been designed. The magnetic NiCoFe2O4 core was coated by a thin layer of silica, followed by a niosomal structure, allowing us to load letrozole and curcumin into the silica layer and niosomal layer, respectively, and investigate their synergic effects on breast cancer cells. Furthermore, the nanocarriers demonstrated a pH-dependent release due to the niosomal structure at their outer layer, which is a promising behavior for cancer treatment. Additionally, cellular assays revealed that the nanocarriers had low cellular uptake in the case of non-tumorigenic cells (i.e., MCF-10A) and related high viability but high cellular uptake in cancer cell lines (i.e., MDA-MB-231 and SK-BR-3) and related low viability, which is evidenced in their high cytotoxicity against different breast cancer cell lines. The cytotoxicity of the letrozole/curcumin co-loaded nanocarrier is higher than that of the aqueous solutions of both drugs, indicating their enhanced cellular uptake in their encapsulated states. In particular, NiCoFe2O4@L-Silica-L@C-Niosome showed the highest cytotoxicity effects on MDA-MB-231 and SK-BR-3 breast cancer cells. The observed cytotoxicity was due to regulation of the expression levels of the studied genes in breast cancer cells, where downregulation was observed for the Bcl-2, MMP 2, MMP 9, cyclin D, and cyclin E genes while upregulation of the expression of the Bax, caspase-3, and caspase-9 genes was observed. The flow cytometry results also revealed that NiCoFe2O4@L-Silica-L@C-Niosome enhanced the apoptosis rate in both MDA-MB-231 and SK-BR-3 cells compared to the control samples. The findings of our research show the potential of designing magnetic niosomal formulations for simultaneous targeted delivery of both hydrophobic and hydrophilic drugs into cancer cells in order to enhance their synergic chemotherapeutic effects. These results could open new avenues into the future of nanomedicine and the development of theranostic agents.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias da Mama/tratamento farmacológico , Campos Magnéticos , Protocolos de Quimioterapia Combinada Antineoplásica/química , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Curcumina/química , Curcumina/farmacocinética , Curcumina/farmacologia , Feminino , Humanos , Letrozol/química , Letrozol/farmacocinética , Letrozol/farmacologia , Lipossomos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapêutico , Proteínas de Neoplasias/metabolismo
17.
AAPS PharmSciTech ; 23(1): 9, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34859319

RESUMO

Osteoarthritis is a chronic joint disease characterized by chronic inflammation, progressive destruction of articular cartilage, and subchondral bone sclerosis. When compared to individual treatment, the combined administration of genes and small-molecule drugs for osteoarthritis may not only provide superior inflammation control and pain relief, but may also repair cartilage damage. Here, cationic liposomes (CL) were used to deliver small hydrophobic drugs and microRNA into chondrocytes to treat osteoarthritis. Lornoxicam cationic liposomes (Lnxc-CL) were prepared by film dispersion, and loaded with microRNA-140 (miR-140) by electrostatic interaction to obtain cationic liposomes co-loaded with lornoxicam and miR-140 (Lnxc-CL/miR-140). The prepared Lnxc-CL/miR-140 had a particle size of 286.6 ± 7.3 nm, polydispersity index (PDI) of 0.261 ± 0.029 and zeta potential of 26.5 ± 0.5 mV and protected miR-140 from RNase degradation for 24 h. Lnxc-CL/miR-140 was evaluated for its ability to regulate gene expression in chondrocytes in vitro and to provide in vivo therapeutic effects for knee osteoarthritis in rats. The results of in vitro uptake experiments and polymerase chain reaction (PCR) analysis showed that Lnxc-CL/miR-140 efficiently delivered miR-140 into chondrocytes and up-regulated the expression of miR-140 and COL2A1 mRNA. Pharmacodynamics studies demonstrated that Lnxc-CL/miR-140 effectively treated osteoarthritis by eliminating joint inflammation and repairing damaged cartilage cells, with superior therapeutic effects compared to Lnxc or miR-140 alone. Overall, the findings of this study support the co-delivery of Lnxc and miR-140 with cationic liposomes as a potential new therapeutic strategy for the treatment of osteoarthritis.


Assuntos
MicroRNAs , Osteoartrite , Animais , Injeções Intra-Articulares , Lipossomos , MicroRNAs/genética , Osteoartrite/tratamento farmacológico , Piroxicam/análogos & derivados , Ratos
18.
Cancer Sci ; 111(2): 621-636, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31777993

RESUMO

Chemotherapy for non-small cell lung cancer (NSCLC) is far from satisfactory, mainly due to poor targeting of antitumor drugs and self-adaptations of the tumors. Angiogenesis, vasculogenic mimicry (VM) channels, migration, and invasion are the main ways for tumors to obtain nutrition. Herein, RPV-modified epirubicin and dioscin co-delivery liposomes were successfully prepared. These liposomes showed ideal physicochemical properties, enhanced tumor targeting and accumulation in tumor sites, and inhibited VM channel formation, tumor angiogenesis, migration and invasion. The liposomes also downregulated VM-related and angiogenesis-related proteins in vitro. Furthermore, when tested in vivo, the targeted co-delivery liposomes increased selective accumulation of drugs in tumor sites and showed extended stability in blood circulation. In conclusion, RPV-modified epirubicin and dioscin co-delivery liposomes showed strong antitumor efficacy in vivo and could thus be considered a promising strategy for NSCLC treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Peptídeos Penetradores de Células/química , Diosgenina/análogos & derivados , Epirubicina/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Células A549 , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/química , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Diosgenina/administração & dosagem , Diosgenina/química , Diosgenina/farmacologia , Epirubicina/química , Epirubicina/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Lipossomos , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Ratos , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Int J Mol Sci ; 21(17)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899269

RESUMO

We have previously reported the fabrication of a polycaprolactone and hydroxyapatite composite scaffold incorporating growth factors to be used for bone regeneration. Two growth factors were incorporated employing a multilayered coating based on polydopamine (PDA). In particular, Bone morphogenetic protein-2 (BMP-2) was bound onto the inner PDA layer while vascular endothelial growth factor (VEGF) was immobilized onto the outer one. Herein, the in vitro release of both growth factors is evaluated. A fastest VEGF delivery followed by a slow and more sustained release of BMP-2 was demonstrated, thus fitting the needs for bone tissue engineering applications. Due to the relevance of the crosstalk between bone-promoting and vessel-forming cells during bone healing, the functionalized scaffolds are further assessed on a co-culture setup of human mesenchymal stem cells and human endothelial progenitor cells. Osteogenic and angiogenic gene expression analysis indicates a synergistic effect between the growth factor-loaded scaffolds and the co-culture conditions. Taken together, these results indicate that the developed scaffolds hold great potential as an efficient platform for bone-tissue applications.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Células Progenitoras Endoteliais/citologia , Indóis/química , Células-Tronco Mesenquimais/citologia , Neovascularização Fisiológica , Osteogênese , Polímeros/química , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Cultivadas , Técnicas de Cocultura , Células Progenitoras Endoteliais/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Engenharia Tecidual/métodos , Alicerces Teciduais/química
20.
Pharm Dev Technol ; 25(7): 865-873, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32266855

RESUMO

Fenretinide (4-HPR), as a semi-synthetic retinoid, has apoptosis-promoting effects as a single agent and chemotherapy synergist in vitro. When a human ovarian cancer cells line (A2780s) was treated with both PTX and 4-HPR, there was a synergistic anti-cancer effect demonstrated with a average combination index of 0.44. In this research, a new TPGS-Soluplus® mixed micelles were developed which encapsulation efficiencies of paclitaxel (PTX) and fenretinide (4-HPR) were as high as 98%, and the average diameter of the micelles was 66.26 nm. Cytotoxicity of the mixed micelles co-delivered with PTX and 4-HPR reduced significantly 7.3 and 25.1 times compared with free drug respectively in A2780s cells. More importantly, in vivo pharmacokinetic study, the loaded drugs in mixed micelles exhibited higher AUC and t1/2 values than free drugs. Furthermore, in vivo antitumor efficacy experiments demonstrated that PF-TS exhibited superior in vivo antitumor activity on the inhibition rate of tumor growth than other treatment groups (77.8% corresponding tumor growth inhibition in PF-TS treated group vs 19.9, 12.5, and 26.0% of tumor growth inhibition rate in Taxol®, 4-HPR, and Taxol®+4-HPR, respectively). Therefore, the mixed micelles of co-deliver PTX and 4-HPR successfully constructed may hopefully be applied to the cancer combination treatment with less toxic effect and more antitumor activity.


Assuntos
Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Fenretinida/administração & dosagem , Micelas , Paclitaxel/administração & dosagem , Polietilenoglicóis/administração & dosagem , Polivinil/administração & dosagem , Vitamina E/administração & dosagem , Animais , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/farmacocinética , Feminino , Fenretinida/farmacocinética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Paclitaxel/farmacocinética , Polietilenoglicóis/farmacocinética , Polivinil/farmacocinética , Ratos , Ratos Wistar , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/fisiologia , Vitamina E/farmacocinética , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA