Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 253
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Exp Physiol ; 109(10): 1683-1697, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39141787

RESUMO

The objective was to assess if post-exercise ingestion of carbonated water in a hot environment ameliorates hypotension, enhances cerebral blood flow and heat loss responses, and positively modulates perceptions and mood states. Twelve healthy, habitually active young adults (five women) performed 60 min of cycling at 45% peak oxygen uptake in a hot climate (35°C). Subsequently, participants consumed 4°C carbonated or non-carbonated (control) water (150 and 100 mL for males and females regardless of drink type) at 20 and 40 min into post-exercise periods. Mean arterial pressure decreased post-exercise at 20 min only (P = 0.032) compared to the pre-exercise baseline. Both beverages transiently (∼1 min) increased mean arterial pressure and middle cerebral artery mean blood velocity (cerebral blood flow index) regardless of post-exercise periods (all P ≤ 0.015). Notably, carbonated water ingestion led to greater increases in mean arterial pressure (2.3 ± 2.8 mmHg vs. 6.6 ± 4.4 mmHg, P < 0.001) and middle cerebral artery mean blood velocity (1.6 ± 2.5 cm/s vs. 3.8 ± 4.1 cm/s, P = 0.046) at 20 min post-exercise period compared to non-carbonated water ingestion. Both beverages increased mouth exhilaration and reduced sleepiness regardless of post-exercise periods, but these responses were more pronounced with carbonated water ingestion at 40 min post-exercise (mouth exhilaration: 3.1 ± 1.4 vs. 4.7 ± 1.7, P = 0.001; sleepiness: -0.7 ± 0.91 vs. -1.9 ± 1.6, P = 0.014). Heat loss responses and other perceptions were similar between the two conditions throughout (all P ≥ 0.054). We show that carbonated water ingestion temporarily ameliorates hypotension and increases the cerebral blood flow index during the early post-exercise phase in a hot environment, whereas it enhances mouth exhilaration and reduces sleepiness during the late post-exercise phase.


Assuntos
Afeto , Água Carbonatada , Circulação Cerebrovascular , Exercício Físico , Temperatura Alta , Hipotensão , Humanos , Masculino , Feminino , Afeto/fisiologia , Exercício Físico/fisiologia , Adulto Jovem , Adulto , Hipotensão/fisiopatologia , Circulação Cerebrovascular/fisiologia , Pressão Sanguínea/fisiologia , Velocidade do Fluxo Sanguíneo/fisiologia , Pressão Arterial/fisiologia , Artéria Cerebral Média/fisiologia , Ingestão de Líquidos/fisiologia , Consumo de Oxigênio/fisiologia
2.
Nanotechnology ; 35(30)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38640906

RESUMO

Graphene oxide nanosheet (GO) is a multifunctional platform for binding with nanoparticles and stacking with two dimensional substrates. In this study, GO nanosheets were sonochemically decorated with zinc oxide nanoparticles (ZnO) and self-assembled into a hydrogel of GO-ZnO nanocomposite. The GO-ZnO hydrogel structure is a bioinspired approach for preserving graphene-based nanosheets from van der Waals stacking. X-ray diffraction analysis (XRD) showed that the sonochemical synthesis led to the formation of ZnO crystals on GO platforms. High water content (97.2%) of GO-ZnO hydrogel provided good property of ultrasonic dispersibility in water. Ultraviolet-visible spectroscopic analysis (UV-vis) revealed that optical band gap energy of ZnO nanoparticles (∼3.2 eV) GO-ZnO nanosheets (∼2.83 eV). Agar well diffusion tests presented effective antibacterial activities of GO-ZnO hydrogel against gram-negative bacteria (E. coli) and gram-positive bacteria (S. aureus). Especially, GO-ZnO hydrogel was directly used for brush painting on biodegradable polylactide (PLA) thin films. Graphene-based nanosheets with large surface area are key to van der Waals stacking and adhesion of GO-ZnO coating to the PLA substrate. The GO-ZnO/PLA films were characterized using photography, light transmittance spectroscopy, coating stability, scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopic mapping (EDS), antibacterial test and mechanical tensile measurement. Specifically, GO-ZnO coating on PLA substrate exhibited stability in aqueous food simulants for packaging application. GO-ZnO coating inhibited the infectious growth ofE. colibiofilm. GO-ZnO/PLA films had strong tensile strength and elastic modulus. As a result, the investigation of antibacterial GO-ZnO hydrogel and GO-ZnO coating on PLA film is fundamental for sustainable development of packaging and biomedical applications.


Assuntos
Antibacterianos , Escherichia coli , Grafite , Hidrogéis , Poliésteres , Staphylococcus aureus , Óxido de Zinco , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Grafite/química , Grafite/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Poliésteres/química , Poliésteres/farmacologia , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Hidrogéis/síntese química , Testes de Sensibilidade Microbiana , Nanocompostos/química , Ondas Ultrassônicas
3.
Skin Res Technol ; 30(9): e70073, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39324311

RESUMO

PURPOSE: The study explored the enhanced skin moisturizing capabilities and moisture retention effects achieved by forming a polyion complex using sulfated glycosaminoglycan (GAG), specifically chondroitin sulfate (CS), and amino acids (AA) such as glutamine (Q) and arginine (R). The overall hydration effect of this CS-AA complex was examined. METHODS: After analyzing the CS-AA polyion complex structure using spectroscopic methods, the ex vivo moisture retention ability was assessed under dry conditions using porcine skin samples. Additionally, the efficacy of the CS-AA polyion complex in reducing transepidermal water loss (TEWL) and improving skin hydration was evaluated on human subjects using a digital evaporimeter and a corneometer, respectively. RESULTS: Validating a systematic reduction in particle size, the following order was observed: CS > CS/AA simple mixture > CS-AA complex based on dynamic light scattering (DLS) and transmission electron microscopy (TEM) analysis. Furthermore, observations revealed that the CS-AA complex exhibits negligible surface charge. Additionally, Fourier-transform infrared spectroscopy (FT-IR) analysis demonstrated a distinct peak shift in the complex, confirming the successful formation of the CS-AA complex. Subsequently, the water-holding effect through porcine skin was assessed, revealing a notable improvement in moisture retention (weight loss) for the CS-Q complex: 40.6% (1 h), 20.5% (2 h), and 18.7% (4 h) compared to glycerin. Similarly, the CS-R complex demonstrated enhancements of 50.2% (1 h), 37.5% (2 h), and 33% (4 h) compared to glycerin. Furthermore, TEWL improvement efficacy on human skin demonstrated approximately 25% improvement for both the CS-Q complex and CS-R complex, surpassing the modest 12.5% and 18% improvements witnessed with water and glycerin applications, respectively. Finally, employing a corneometer, hydration changes in the skin were monitored over 4 weeks. Although CS alone exhibited nominal alterations, the CS-Q complex and CS-R complex showed a significant increase in moisture levels after 4 weeks of application. CONCLUSION: In this study, polyion complexes were successfully formed between CS, a sulfated GAG, and AA. Comparisons with glycerin, a well-known moisturizing agent, confirmed that the CS-AA complex exhibits superior moisturizing effects in various aspects. These findings suggest that the CS-AA complex is a more effective ingredient than CS or AA alone in terms of efficacy.


Assuntos
Sulfatos de Condroitina , Cosméticos , Perda Insensível de Água , Humanos , Animais , Suínos , Perda Insensível de Água/efeitos dos fármacos , Cosméticos/farmacologia , Cosméticos/química , Sulfatos de Condroitina/química , Sulfatos de Condroitina/farmacologia , Feminino , Pele/química , Pele/efeitos dos fármacos , Pele/metabolismo , Adulto , Aminoácidos/química , Aminoácidos/farmacologia , Emolientes/farmacologia , Emolientes/administração & dosagem , Emolientes/química , Polímeros/farmacologia , Polímeros/química , Glutamina/farmacologia , Polieletrólitos
4.
Lasers Surg Med ; 56(1): 107-118, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37974375

RESUMO

OBJECTIVES: Erbium lasers have become an accepted tool for performing both ablative and non-ablative medical procedures, especially when minimal invasiveness is desired. Hard-tissue desiccation during Er:YAG laser procedures is a well-known phenomenon in dentistry, the effect of which is to a certain degree being addressed by the accompanying cooling water spray. The desiccation of soft tissue has attracted much less attention due to the soft tissue's high-water content, resulting in a smaller effect on the ablation process. MATERIALS AND METHODS: In this study, the characteristics of skin temperature decay following irradiations with Er:YAG laser pulses were measured using a fast thermal camera. RESULTS: The measurements revealed a substantial increase in temperature decay times and resulting thermal exposure times following irradiations with Er:YAG pulses with fluences below the laser ablation threshold. Based on an analytical model where the skin surface cooling time is calculated from the estimated thickness of the heated superficial layer of the stratum corneum (SC), the observed phenomena is attributed to the accelerated evaporation of water from the SC's surface. By using an Arrhenius damage integral-based variable heat shock model to describe the dependence of the critical temperature on the duration of thermal exposure, it is shown that contrary to what an inexperienced practitioner might expect, the low-to-medium level fluences may result in a larger thermal damage in comparison to treatments where higher fluences are used. This effect may be alleviated by hydrating the skin before Er:YAG treatments. CONCLUSION: Our study indicates that tissue desiccation may play a more important role than expected for soft-tissue procedures. It is proposed that its effect may be alleviated by hydrating the skin before Er:YAG treatments.


Assuntos
Terapia a Laser , Lasers de Estado Sólido , Lasers de Estado Sólido/uso terapêutico , Temperatura , Dessecação , Terapia a Laser/efeitos adversos , Terapia a Laser/métodos , Água
5.
BMC Palliat Care ; 23(1): 209, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39160544

RESUMO

BACKGROUND: Oral fluid intake decreases in advanced cancer in the dying phase of illness. There is inadequate evidence to support the assessment, and management, of hydration in the dying. Bioelectrical impedance analysis (BIA) is a body composition assessment tool. BIA has the potential to inform clinal management in advanced cancer, by examining the relationships between hydration status and clinical variables. AIM: BIA was used to determine the association between hydration status, symptoms, clinical signs, quality-of-life and survival in advanced cancer, including those who are dying (i.e. in the last week of life). MATERIALS AND METHODS: We conducted a prospective observational study of people with advanced cancer in three centres. Advance consent methodology was used to conduct hydration assessments in the dying. Total body water was estimated using the BIA Impedance index (Height - H (m)2 /Resistance - R (Ohms)). Backward regression was used to identify factors (physical signs, symptoms, quality of life) that predicted H2/R. Participants in the last 7 days of life were further assessed with BIA to assess hydration changes, and its relationship with clinical outcomes. RESULTS: One hundred and twenty-five people participated (males n = 74 (59.2%), females, n = 51 (40.8%)). We used backward regression analysis to describe a statistical model to predict hydration status in advanced cancer. The model demonstrated that 'less hydration' (lower H2/R) was associated with female sex (Beta = -0.39, p < 0.001), increased appetite (Beta = -0.12, p = 0.09), increased dehydration assessment scale score (dry mouth, dry axilla, sunken eyes - Beta = -0.19, p = 0.006), and increased breathlessness (Beta = -0.15, p = 0.03). 'More hydration' (higher H2/R) was associated with oedema (Beta = 0.49, p < 0.001). In dying participants (n = 18, 14.4%), hydration status (H2/R) was not significantly different compared to their baseline measurements (n = 18, M = 49.6, SD = 16.0 vs. M = 51.0, SD = 12.1; t(17) = 0.64, p = 0.53) and was not significantly associated with agitation (rs = -0.85, p = 0.74), pain (rs = 0.31, p = 0.23) or respiratory tract secretions (rs = -0.34, p = 0.19). CONCLUSIONS: This is the first study to use bioimpedance to report a model (using clinical factors) to predict hydration status in advanced cancer. Our data demonstrates the feasibility of using an advance consent method to conduct research in dying people. This method can potentially improve the evidence base (and hence, quality of care) for the dying. Future BIA research can involve hydration assessment of cancers (according to type and stage) and associated variables (e.g., stage of illness, ethnicity and gender). Further work can use BIA to identify clinically relevant outcomes for hydration studies and establish a core outcome set to evaluate how hydration affects symptoms and quality-of-life in cancer.


Assuntos
Impedância Elétrica , Neoplasias , Qualidade de Vida , Humanos , Feminino , Masculino , Neoplasias/complicações , Neoplasias/psicologia , Estudos Prospectivos , Idoso , Pessoa de Meia-Idade , Qualidade de Vida/psicologia , Desidratação/diagnóstico , Desidratação/fisiopatologia , Idoso de 80 Anos ou mais , Estado de Hidratação do Organismo/fisiologia , Composição Corporal/fisiologia , Água Corporal , Adulto
6.
Biomed Chromatogr ; 38(8): e5899, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38797863

RESUMO

Nanoliposomes (NLs) are ideal carriers for delivering complex molecules and phytochemical products, but ginger by-products, despite their therapeutic benefits, have poor bioavailability due to their low water solubility and stability. Crude ginger extracts (CGEs) and 6-gingerol were individually encapsulated within NLs for in vitro activity assessment. In vitro evaluation of anti-proliferative and anti-inflammatory properties of encapsulated 6-gingerol and CGE was performed on healthy human periodontal ligament (PDL) fibroblasts and MDA-MB-231 breast cancer cells. Encapsulation efficiency and loading capacity of 6-gingerol reached 25.23% and 2.5%, respectively. NLs were found stable for up to 30 days at 4°C with a gradual load loss of up to 20%. In vitro cytotoxic effect of encapsulated 6-gingerol exceeded 70% in the MDA-MB-231 cell line, in a comparable manner with non-encapsulated 6-gingerol and CGE. The effect of CGE with an IC50 of 3.11 ± 0.39, 7.14 ± 0.80, and 0.82 ± 0.55 µM and encapsulated 6-gingerol on inhibiting IL-8 was evident, indicating its potential anti-inflammatory activity. Encapsulating 6-gingerol within NLs enhanced its stability and facilitated its biological activity. All compounds, including vitamin C, were equivalent at concentrations below 2 mg/mL, with a slight difference in antioxidant activity. The concentrations capable of inhibiting 50% of 2,2-diphenyl-1-picrylhydrazyl (DPPH) substrate were comparable.


Assuntos
Anti-Inflamatórios , Catecóis , Álcoois Graxos , Lipossomos , Zingiber officinale , Álcoois Graxos/química , Álcoois Graxos/farmacologia , Humanos , Catecóis/química , Catecóis/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacocinética , Lipossomos/química , Linhagem Celular Tumoral , Zingiber officinale/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/farmacocinética , Sobrevivência Celular/efeitos dos fármacos , Nanopartículas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Interleucina-8/metabolismo , Proliferação de Células/efeitos dos fármacos
7.
Nano Lett ; 23(21): 9858-9864, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37869786

RESUMO

The unique properties of water are critical for life. Water molecules have been reported to hydrate cations and anions asymmetrically in bulk water, being a key element in the balance of biochemical interactions. We show here that this behavior extends to charged lipid nanoscale interfaces. Charge hydration asymmetry was investigated by using nonlinear light scattering methods on lipid nanodroplets and liposomes. Nanodroplets covered with negatively charged lipids induce strong water ordering, while droplets covered with positively charged lipids induce negligible water ordering. Surprisingly, this charge-induced hydration asymmetry is reversed around liposomes. This opposite behavior in charge hydration asymmetry is caused by a delicate balance of electrostatic and hydrogen-bonding interactions. These findings highlight the importance of not only the charge state but also the specific distribution of neutral and charged lipids in cellular membranes.


Assuntos
Gotículas Lipídicas , Lipossomos , Lipossomos/química , Membrana Celular , Lipídeos , Água/química
8.
Molecules ; 29(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39124916

RESUMO

Poly[2-(methacryloyloxy)ethyl phosphorylcholine] liposomes (pMPC liposomes) gained attention during the last few years because of their potential use in treating osteoarthritis. pMPC liposomes that serve as boundary lubricants are intended to restore the natural lubrication properties of articular cartilage. For this purpose, it is important that the liposomes remain intact and do not fuse and spread as a lipid film on the cartilage surface. Here, we investigate the stability of the liposomes and their interaction with two types of solid surfaces, gold and carbon, by using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). With the aid of a hydrophilic species used as an electroactive probe in the solution, the charge transfer characteristics of the electrode surfaces are obtained. Additionally, from EIS, the capacitance characteristics of the surfaces are derived. No decrease of the peak currents and no displacement of the peak potentials to greater overpotentials are observed in the CV experiments. No decrease in the apparent capacitance and increase in the charge transfer resistance is observed in the EIS experiments. On the contrary, all parameters in both CV and EIS do change in the opposite direction. The obtained results confirm that there is only physical adsorption without fusion and spreading of the pMPC liposomes and without the formation of lipid films on the surfaces of both gold and carbon electrodes.


Assuntos
Espectroscopia Dielétrica , Lipossomos , Lipossomos/química , Ouro/química , Técnicas Eletroquímicas , Eletrodos , Carbono/química , Fosforilcolina/química , Fosforilcolina/análogos & derivados
9.
J Tissue Viability ; 33(2): 305-311, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38553355

RESUMO

OBJECTIVE: this study was undertaken to evaluate the efficacy of multilayer polyurethane foam with silicone (MPF) compared to transparent polyurethane film (TPF) dressings in the control of heel skin microclimate (temperature and moisture) of hospitalized patients undergoing elective surgeries. METHOD: the study took of a secondary analysis of a randomized self-controlled trial, involving patients undergoing elective surgical procedure of cardiac and gastrointestinal specialties in a university hospital in southern Brazil, from March 2019 to February 2020. Patients served as their own control, with their heels randomly allocated to either TPF (control) or MPF (intervention). Skin temperature was measured using a digital infrared thermometer; and moisture determined through capacitance, at the beginning and end of surgery. The study was registered in the Brazilian Registry of Clinical Trials: RBR-5GKNG5. RESULTS: significant difference in the microclimate variables were observed when the groups (intervention and control) and the timepoint of measurement (beginning and end of surgery) were compared. When assessing temperature, an increase (+3.3 °C) was observed with TPF and a decrease (-7.4 °C) was recorded with MPF. Regarding skin moisture, an increase in moisture (+14.6 AU) was recorded with TPF and a slight decrease (-0.3 AU) with MPF. CONCLUSIONS: The findings of this study suggest that MPF is more effective than TPF in controlling skin microclimate (temperature and moisture) in heels skin of hospitalized patients undergoing elective surgeries. However, this control should be better investigated in other studies.


Assuntos
Calcanhar , Microclima , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Brasil , Idoso , Temperatura Cutânea/fisiologia , Bandagens/normas , Bandagens/estatística & dados numéricos , Poliuretanos , Adulto
10.
Methods ; 199: 9-15, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34000392

RESUMO

Development of nanocarriers has opened new avenues for the delivery of therapeutics of various pharmacological activities with improved targeting properties and reduced side effects. Niosomes, non-ionic-based vesicles, have drawn much interest in various biomedical applications, owing to their unique characteristics and their ability to encapsulate both hydrophilic and lipophilic cargoes. Niosomes share structural similarity with liposomes while overcoming limitations associated with stability, sterilization, and large-scale production of liposomes. Different methods for preparation of niosomes have been described in the literature, each having its own merits and a great impact on the sizes and characteristics of the formed niosomes. In this article, procedures involved in the thin-film hydration method, a commonly used method for the preparation of niosomes, are described in detail, while highlighting precautions that should be considered for consistent and reproducible construction of niosomes.


Assuntos
Sistemas de Liberação de Medicamentos , Lipossomos , Sistemas de Liberação de Medicamentos/métodos , Lipossomos/química , Tamanho da Partícula , Tensoativos/química
11.
Chem Pharm Bull (Tokyo) ; 71(7): 576-583, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37394606

RESUMO

Time-domain NMR (TD-NMR) was used for continuous monitoring of the hydration behavior of hydrophilic matrix tablets. The model matrix tablets comprised high molecular weight polyethylene oxide (PEO), hydroxypropyl methylcellulose (HPMC), and polyethylene glycol (PEG). The model tablets were immersed in water. Their T2 relaxation curves were acquired by TD-NMR with solid-echo sequence. A curve-fitting analysis was conducted on the acquired T2 relaxation curves to identify the NMR signals corresponding to the nongelated core remaining in the samples. The amount of nongelated core was estimated from the NMR signal intensity. The estimated values were consistent with the experiment measurement values. Next, the model tablets immersed in water were monitored continuously using TD-NMR. The difference in hydration behaviors of the HPMC and PEO matrix tablets was then characterized fully. The nongelated core of the HPMC matrix tablets disappeared more slowly than that of the PEO matrix tablets. The behavior of HPMC was significantly affected by the PEG content in the tablets. It is suggested that the TD-NMR method has potential to be utilized to evaluate the gel layer properties, upon replacement of the immersion medium: purified (nondeuterated) water is replaced with heavy (deuterated) water. Finally, drug-containing matrix tablets were tested. Diltiazem hydrochloride (a highly water-soluble drug) was employed for this experiment. Reasonable in vitro drug dissolution profiles, which were in accordance with the results from TD-NMR experiments, were observed. We concluded that TD-NMR is a powerful tool to evaluate the hydration properties of hydrophilic matrix tablets.


Assuntos
Polietilenoglicóis , Água , Preparações de Ação Retardada , Polietilenoglicóis/química , Espectroscopia de Ressonância Magnética , Comprimidos , Derivados da Hipromelose/química , Solubilidade , Metilcelulose/química
12.
Clin Oral Investig ; 27(3): 1193-1206, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36585527

RESUMO

OBJECTIVES: To investigate the effects of blood and platelet-rich fibrin (PRF), commonly used scaffolds in regenerative endodontic treatment (RET), on the hydration, microstructure, and color stability of three hydraulic calcium silicate cements (HCSCs), OrthoMTA, RetroMTA, and TotalFill-BC-RRM. MATERIALS AND METHODS: The HCSCs were prepared and placed into polyethylene molds and transferred to Eppendorf tubes containing PRF, blood, or PBS and then incubated for 1 week or 1 month. The microstructure and hydration of the cements were studied by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). The chromatic alteration of materials was also measured using a spectrophotometer. The data for color stability were analyzed using 2-way analysis of variance and Tukey post hoc tests. RESULTS: There was no significant difference between the color stability of cements exposed to PBS (p > 0.05). The chromatic alteration of cements exposed to blood was significantly greater than those exposed to PRF and PBS (p < 0.001). In the presence of blood and PRF, the color change of OrthoMTA was significantly greater than that of RetroMTA and TotalFill (p < 0.05), with no significant difference between RetroMTA and TotalFill (p > 0.05). XRD analysis of all cements revealed a calcium hydroxide peak after 1-week and 1-month exposure to the media; however, OrthoMTA and TotalFill exposed to blood and PRF for 1 month showed weaker calcium hydroxide peaks. SEM images revealed cements exposed to PBS had a different surface microstructure compared to those exposed to blood and PRF. Furthermore, the surface microstructure of HCSCs was influenced by the type of cement radiopacifier (bismuth oxide or zirconium oxide). EDS analysis of the elemental composition in all groups displayed peaks of Ca, O, C, Si, P, and Al. CONCLUSIONS: Color stability, hydration behavior, and microstructure of HCSCs were affected by exposure to PRF and blood and the type of cement radiopacifier. CLINICAL RELEVANCE: As some important physicochemical properties of HCSCs could be influenced by the environmental conditions and the type of radiopacifier, alternatives to blood clot and HCSCs containing substitutes for bismuth oxide might be more suitable in RETs.


Assuntos
Hidróxido de Cálcio , Fibrina Rica em Plaquetas , Hidróxido de Cálcio/química , Propriedades de Superfície , Teste de Materiais , Compostos de Cálcio/química , Óxidos/química , Silicatos/química , Cimentos Dentários/química , Combinação de Medicamentos , Compostos de Alumínio/química
13.
Int J Mol Sci ; 24(14)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37511123

RESUMO

Optically active liquid-crystalline dispersions (LCD) of nucleic acids, obtained by polymer- and salt-induced (psi-) condensation, e.g., by mixing of aqueous saline solutions of low molecular weight DNA (≤106 Da) and polyethylene glycol (PEG), possess an outstanding circular dichroism (CD) signal (so-called psi-CD) and are of interest for sensor applications. Typically, such CD signals are observed in PEG content from ≈12.5% to ≈22%. However, in the literature, there are very conflicting data on the existence of psi-CD in DNA LCDs at a higher content of crowding polymer up to 30-40%. In the present work, we demonstrate that, in the range of PEG content in the system above ≈24%, optically polymorphic LCDs can be formed, characterized by both negative and positive psi-CD signals, as well as by ones rather slightly differing from the spectrum of isotropic DNA solution. Such a change in the CD signal is determined by the concentration of the stock solution of PEG used for the preparation of LCDs. We assume that various saturation of polymer chains with water molecules may affect the amount of active water, which in turn leads to a change in the hydration of DNA molecules and their transition from B-form to Z-form.


Assuntos
DNA , Polímeros , Polímeros/química , Conformação de Ácido Nucleico , DNA/química , Polietilenoglicóis/química , Dicroísmo Circular , Água
14.
Int J Mol Sci ; 24(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36902057

RESUMO

The current study focuses on the development of innovative and highly-stable curcumin (CUR)-based therapeutics by encapsulating CUR in biocompatible poly(n-butyl acrylate)-block-poly(oligo(ethylene glycol) methyl ether acrylate) (PnBA-b-POEGA) micelles. State-of-the-art methods were used to investigate the encapsulation of CUR in PnBA-b-POEGA micelles and the potential of ultrasound to enhance the release of encapsulated CUR. Dynamic light scattering (DLS), attenuated total reflection Fourier transform infrared (ATR-FTIR), and ultraviolet-visible (UV-Vis) spectroscopies confirmed the successful encapsulation of CUR within the hydrophobic domains of the copolymers, resulting in the formation of distinct and robust drug/polymer nanostructures. The exceptional stability of the CUR-loaded PnBA-b-POEGA nanocarriers over a period of 210 days was also demonstrated by proton nuclear magnetic resonance (1H-NMR) spectroscopy studies. A comprehensive 2D NMR characterization of the CUR-loaded nanocarriers authenticated the presence of CUR within the micelles, and unveiled the intricate nature of the drug-polymer intermolecular interactions. The UV-Vis results also indicated high encapsulation efficiency values for the CUR-loaded nanocarriers and revealed a significant influence of ultrasound on the release profile of CUR. The present research provides new understanding of the encapsulation and release mechanisms of CUR within biocompatible diblock copolymers and has significant implications for the advancement of safe and effective CUR-based therapeutics.


Assuntos
Antineoplásicos , Curcumina , Curcumina/química , Polímeros/química , Micelas , Antineoplásicos/química , Portadores de Fármacos/química , Polietilenoglicóis/química
15.
Molecules ; 28(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37630372

RESUMO

Phytochromes are bistable red/far-red light-responsive photoreceptor proteins found in plants, fungi, and bacteria. Light-activation of the prototypical phytochrome Cph1 from the cyanobacterium Synechocystis sp. PCC 6803 allows photoisomerization of the bilin chromophore in the photosensory module and a subsequent series of intermediate states leading from the red absorbing Pr to the far-red-absorbing Pfr state. We show here via osmotic and hydrostatic pressure-based measurements that hydration of the photoreceptor modulates the photoconversion kinetics in a controlled manner. While small osmolytes like sucrose accelerate Pfr formation, large polymer osmolytes like PEG 4000 delay the formation of Pfr. Thus, we hypothesize that an influx of mobile water into the photosensory domain is necessary for proceeding to the Pfr state. We suggest that protein hydration changes are a molecular event that occurs during photoconversion to Pfr, in addition to light activation, ultrafast electric field changes, photoisomerization, proton release and uptake, and the major conformational change leading to signal transmission, or simultaneously with one of these events. Moreover, we discuss this finding in light of the use of Cph1-PGP as a hydration sensor, e.g., for the characterization of novel hydrogel biomaterials.


Assuntos
Materiais Biocompatíveis , Fitocromo , Osmose , Transporte Biológico , Eletricidade
16.
Chemphyschem ; 23(19): e202200337, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35775165

RESUMO

Vesicles contain two aqueous regions: inner core and outer-to-bulk. It has remained an open question whether hydration behaviour in the inner core differs from the outer-to-bulk region, mostly owning to the inability of the conventional spectroscopic techniques to deconvolute the contribution from these two regions. We, using THz-FTIR spectroscopy (1.5-13.5 THz) experimentally probe the inner hydration of three differently charged surfactant/cholesterol vesicles composed of SDS, CTAB and Brij 30. Both dynamic light scattering (DLS) and atomic force microscopy (AFM) measurements affirm the transition from micelles to vesicles as cholesterol is added into surfactant solutions. FTIR measurements show that hydration behaviour changes significantly as micelles are converted into vesicles, the change been exclusively caused due to the formation of an inner core. Our measurements on the hydrogen bond stretch and librational motion of the inner hydration show distinct features compared to the overall hydration, which in turn is found to be surfactant type and cholesterol concentration dependent.


Assuntos
Micelas , Tensoativos , Cetrimônio , Colesterol/química , Polidocanol , Análise Espectral , Tensoativos/química
17.
Pharm Res ; 39(11): 2761-2780, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36171346

RESUMO

PURPOSE: Cancer is one of the most common and fatal disease, chemotherapy is the major treatment against many cancer types. The anti-apoptotic BCL-2 protein's expression was increased in many cancer types and Venetoclax (VLX; BCL-2 inhibitor) is a small molecule, which selectively inhibits this specified protein. In order to increase the clinical performance of this promising inhibitor as a repurposed drug, polymeric mixed micelles formulations approach was explored. METHODS: The Venetoclax loaded polymeric mixed micelles (VPMM) were prepared by using Pluronic® F-127 and alpha tocopherol polyethylene glycol 1000 succinate (TPGS) as excipients by thin film hydration method and characteristics. The percentage drug loading capacity, entrapment efficiency and in-vitro drug release studies were performed using HPLC method. The cytotoxicity assay, cell uptake and anticancer activities were evaluated in two different cancer cells i.e. MCF-7 (breast cancer) and A-549 (lung cancer). RESULTS: Particle size, polydispersity index and zeta potential of the VPMM was found to be 72.88 ± 0.09 nm, 0.078 ± 0.009 and -4.29 ± 0.24 mV, respectively. The entrapment efficiency and %drug loading were found to be 80.12 ± 0.23% and 2.13% ± 0.14%, respectively. The IC50 of VLX was found to be 4.78, 1.30, 0.94 µg/ml at 24, 48 and 72 h, respectively in MCF-7 cells and 1.24, 0.68, and 0.314 µg/ml at 24, 48, and 72 h, respectively in A549 cells. Whereas, IC50 of VPMM was found to be 0.42, 0.29, 0.09 µg/ml at 24, 48 and 72 h, respectively in MCF-7 cells and 0.85, 0.13, 0.008 µg/ml at 24, 48 and 72 h in A549 cells, respectively, indicating VPMM showing better anti-cancer activity compared to VLX. The VPMM showed better cytotoxicity which was further proven by other assays and explained the anti-cancer activity is shown through the generation of ROS, nuclear damage,apoptotic cell death and expression of caspase-3,7, and 9 activities in apoptotic cells. CONCLUSION: The current investigation revealed that the Venetoclax loaded polymeric mixed micelles (VPMM) revealed the enhanced therapeutic efficacy against breast and lung cancer in vitro models.


Assuntos
Neoplasias Pulmonares , Micelas , Humanos , Linhagem Celular Tumoral , Polietilenoglicóis , Polímeros , Tamanho da Partícula , Proteínas Proto-Oncogênicas c-bcl-2 , Portadores de Fármacos , Vitamina E
18.
Int J Mol Sci ; 23(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36430294

RESUMO

The aim of this research was to prepare novel block copolymer-surfactant hybrid nanosystems using the triblock copolymer Pluronic 188, along with surfactants of different hydrophilic to lipophilic balance (HLB ratio-which indicates the degree to which a surfactant is hydrophilic or hydrophobic) and thermotropic behavior. The surfactants used were of non-ionic nature, of which Tween 80® and Brij 58® were more hydrophilic, while Span 40® and Span 60® were more hydrophobic. Each surfactant has unique innate thermal properties and an affinity towards Pluronic 188. The nanosystems were formulated through mixing the pluronic with the surfactants at three different ratios, namely 90:10, 80:20, and 50:50, using the thin-film hydration technique and keeping the pluronic concentration constant. The physicochemical characteristics of the prepared nanosystems were evaluated using various light scattering techniques, while their thermotropic behavior was characterized via microDSC and high-resolution ultrasound spectroscopy. Microenvironmental parameters were attained through the use of fluorescence spectroscopy, while the cytotoxicity of the nanocarriers was studied in vitro. The results indicate that the combination of Pluronic 188 with the above surfactants was able to produce hybrid homogeneous nanoparticle populations of adequately small diameters. The different surfactants had a clear effect on physicochemical parameters such as the size, hydrodynamic diameter, and polydispersity index of the final formulation. The mixing of surfactants with the pluronic clearly changed its thermotropic behavior and thermal transition temperature (Tm) and highlighted the specific interactions that occurred between the different materials, as well as the effect of increasing the surfactant concentration on inherent polymer characteristics and behavior. The formulated nanosystems were found to be mostly of minimal toxicity. The obtained results demonstrate that the thin-film hydration method can be used for the formulation of pluronic-surfactant hybrid nanoparticles, which in turn exhibit favorable characteristics in terms of their possible use in drug delivery applications. This investigation can be used as a road map for the selection of an appropriate nanosystem as a novel vehicle for drug delivery.


Assuntos
Surfactantes Pulmonares , Tensoativos , Tensoativos/química , Poloxâmero/química , Excipientes , Polissorbatos , Polímeros/química , Lipoproteínas
19.
J Environ Manage ; 317: 115367, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35636111

RESUMO

Two-dimensional (2D) lamellar graphene oxide (GO) membranes are emerging as attractive materials for molecular separation in water treatment because of their single atomic thickness, excellent hydrophilicity, large specific surface areas, and controllable properties. To yet, commercialization of GO laminar membranes has been hindered by their propensity to swell in hydrated conditions. Thus, chemical crosslinking of GO sheets with the polymer matrix is used to improve GO membrane hydration stability. This review focuses on pertinent themes such as how chemical crosslinking improves the hydration stability, separation performance, and antifouling properties of GO membranes.


Assuntos
Grafite , Purificação da Água , Grafite/química , Membranas Artificiais , Polímeros/química , Purificação da Água/métodos
20.
Molecules ; 27(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35630551

RESUMO

Zwitterionic polymers as crucial antifouling materials exhibit excellent antifouling performance due to their strong hydration ability. The structure−property relationship at the molecular level still remains to be elucidated. In this work, the surface hydration ability of three antifouling polymer membranes grafting on polysiloxane membranes Poly(sulfobetaine methacrylate) (T4-SB), poly(3-(methacryloyloxy)propane-1-sulfonate) (T4-SP), and poly(2-(dimethylamino)ethyl methacrylate) (T4-DM) was investigated. An orderly packed, and tightly bound surface hydration layer above T4-SP and T4-SB antifouling membranes was found by means of analyzing the dipole orientation distribution, diffusion coefficient, and average residence time. To further understand the surface hydration ability of three antifouling membranes, the surface structure, density profile, roughness, and area percentage of hydrophilic surface combining electrostatic potential, RDFs, SDFs, and noncovalent interactions of three polymers' monomers were studied. It was concluded that the broadest distribution of electrostatic potential on the surface and the nature of anionic SO3- groups led to the following antifouling order of T4-SB > T4-SP > T4-DM. We hope that this work will gain some insight for the rational design and optimization of ecofriendly antifouling materials.


Assuntos
Incrustação Biológica , Polímeros , Incrustação Biológica/prevenção & controle , Membranas , Metacrilatos , Simulação de Dinâmica Molecular , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA