Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 216(Pt 2): 114532, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36243048

RESUMO

Microplastics' (MPs) aging process and environmental behavior have attracted extensive attention due to the potential long-term ecological impact. MPs enriched in sludge may accelerate aging during sludge treatment and the affecting environmental behavior, i.e., adsorption performance for pollutants. However, the related studies have not been well researched, especially for the biodegradable MPs. This study revealed the influences of hydrothermal treatment on the characteristics of polylactic acid microplastics (PLA-MPs) and the consequences on heavy metals adsorption. The changes in PLA-MPs' physiochemical properties were characterized and compared. PLA-MPs' surface became irregular, and the oxygen-containing functional groups increased through FTIR and XPS analysis. Meanwhile, the molecular weight and crystallinity of PLA-MPs decreased significantly with the rising in hydrothermal temperature. Accordingly, the adsorption capacity of PLA-MPs for Pb2+ increased from 93.97 µg g-1 for the raw PLA-MPs to 1058.03 µg g-1 for the aged PLA-MPs. Multiple adsorption kinetics and isotherms were discussed for the Pb2+ adsorption onto PLA-MPs with different aging of the PLA-MPs. The adsorption mechanisms of Pb2+ relate to electrostatic interaction and complexation. The main difference is that the adsorption for raw PLA-MPs is dominated by physical and chemical adsorption, whereas the adsorption for the aged PLA-MPs prefers chemical adsorption. In addition, we carefully evaluated the influences of pH, dissolved organic matter, and ionic strength on the PLA-MPs adsorption. The present study highlighted the significance of hydrothermal treatment on the MPs aging and the adsorption performance.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Microplásticos , Esgotos , Plásticos , Adsorção , Chumbo , Metais Pesados/química , Poliésteres , Poluentes Químicos da Água/análise
2.
Int J Mol Sci ; 23(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36233128

RESUMO

Hydrothermal pretreatment (HTP) has long been considered as an efficient and green treatment process on lignocellulosic biomass for bioconversion. However, the variations of cellulose supramolecular structures during HTP as well as their effects on subsequent enzymatic conversion are less understood. In this work, bamboo holocellulose with well-connected cellulose and hemicelluloses polysaccharides were hydrothermally treated under various temperatures. Chemical, morphological, and crystal structural determinations were performed systematically by a series of advanced characterizations. Xylan was degraded to xylooligosaccharides in the hydrolyzates accompanied by the reduced degree of polymerization for cellulose. Cellulose crystallites were found to swell anisotropically, despite the limited decrystallization by HTP. Hydrogen bond linkages between cellulose molecular chains were weakened due to above chemical and crystal variations, which therefore swelled, loosened, and separated the condensed cellulose microfibrils. Samples after HTP present notably increased surface area, favoring the adsorption and subsequent hydrolysis by cellulase enzymes. A satisfying enzymatic conversion yield (>85%) at rather low cellulase enzyme dosage (10 FPU/g glucan) was obtained, which would indicate new understandings on the green and efficient bioconversion process on lignocellulosic biomass.


Assuntos
Celulase , Lignina , Celulase/metabolismo , Celulose/química , Hidrólise , Lignina/metabolismo , Polissacarídeos/metabolismo , Xilanos
3.
J Environ Manage ; 318: 115524, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35717693

RESUMO

Sludge is a nutrient-rich organic waste generated from wastewater treatment plants. However, the application of sludge as a nutrient source is limited by its high contents of water and pollutants. In this study, the effects of biomass type on nutrient recovery and heavy metal removal from digested sludge by hydrothermal treatment (HTT) were investigated. Blending biomass with digested sludge for HTT at 180-240 °C increased the recovery of nitrogen in the treated solids. At the HTT temperature of 240 °C, HTT with hardwood sawdust led to the highest nitrogen recovery of 70.6%, compared to the lowest nitrogen recovery of 36.5% without biomass. Blending biomass slightly decreased the recovery of phosphorus compared to those without biomass. Nevertheless, the lowest phosphorus recovery of 91.3% with the use of hardwood sawdust at the HTT temperature of 240 °C was only ∼7.0% less than that without biomass. Blending biomass reduced the contents of macro-metals such as Ca, Fe, Mg and Al in treated solids but the metal contents varied with different biomasses. Regarding the heavy metals, the use of rice husk did not decrease the contents of Ni and Co while blending bagasse did not decrease the content of Cr at HTT temperatures of 210 °C and 240 °C compared to the use of other biomasses. The different effects of biomass type on nutrient recovery and heavy metals were likely related to the types and abundances of organic acids such as acetic acid, oxygen-containing functional groups such as C-OH and COOH, oxide minerals such as silica from biomasses and the overall effects of these factors. This study provides very useful information in selection of lignocellulosic biomass for HTT of sludge for nutrient recovery and heavy metal removal.


Assuntos
Metais Pesados , Esgotos , Biomassa , Lignina , Nitrogênio/análise , Nutrientes , Fósforo
4.
Clin Oral Implants Res ; 32(11): 1366-1383, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34416034

RESUMO

OBJECTIVES: The aim of the current study was to explore effects of strontium-incorporated titanium implant surfaces by hydrothermal treatment on osseointegration in diabetic rats. MATERIALS AND METHODS: The surface characteristics of SLA and SLA-Sr surfaces were detected by related instruments. Thirty-six male Sprague-Dawley rats were induced into diabetes, and thirty-six rats were normal. SLA and SLA-Sr implants were, respectively, inserted into bilateral tibial metaphysis of each rat. Percentage of bone-to-implant contact (BIC%) and percentage of bone area (BA%) were analyzed at 4 and 8 weeks after implantation. Immunohistochemistry of osteoprotegerin (OPG) and Wnt5a were conducted at 1 and 4 weeks. Gene expression levels of inflammatory cytokines and related signaling molecules in peri-implant bone tissue were detected at 3 and 7 days. RESULTS: Strontium was uniformly distributed on SLA-Sr surfaces, and it was released in an effective concentration range. SLA-Sr surfaces showed significantly higher BIC% in diabetic rats at 4 (p < .05) and 8 weeks (p < .05). Besides, it displayed higher BIC% at 4 weeks (p < .05) in normal rats. Also, SLA-Sr surfaces upregulated expression of OPG at 4 weeks (p < .05) in diabetic rats. What's more, SLA-Sr surfaces downregulated inflammation (TNF-α, IL-1ß, and IL-6; p < .01) in diabetic rats at 3 days. In addition, expression of Wnt5a and ROR2 was upregulated (p < .05) at 7 days after implantation under diabetes. CONCLUSION: It is suggested that strontium-incorporated titanium implant surfaces by hydrothermal treatment could enhance implant osseointegration as compared with SLA implant surfaces in diabetic rats.


Assuntos
Implantes Dentários , Diabetes Mellitus Experimental , Animais , Masculino , Osseointegração , Ratos , Ratos Sprague-Dawley , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase , Estrôncio/farmacologia , Propriedades de Superfície , Titânio
5.
Int J Mol Sci ; 22(4)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572076

RESUMO

Silica-based mesoporous systems have gained great interest in drug delivery applications due to their excellent biocompatibility and high loading capability. However, these materials face challenges in terms of pore-size limitations since they are characterized by nanopores ranging between 6-8 nm and thus unsuitable to host large molecular weight molecules such as proteins, enzymes and growth factors (GFs). In this work, for an application in the field of bone regeneration, large-pore mesoporous silicas (LPMSs) were developed to vehicle large biomolecules and release them under a pH stimulus. Considering bone remodeling, the proposed pH-triggered mechanism aims to mimic the release of GFs encased in the bone matrix due to bone resorption by osteoclasts (OCs) and the associated pH drop. To this aim, LPMSs were prepared by using 1,3,5-trimethyl benzene (TMB) as a swelling agent and the synthesis solution was hydrothermally treated and the influence of different process temperatures and durations on the resulting mesostructure was investigated. The synthesized particles exhibited a cage-like mesoporous structure with accessible pores of diameter up to 23 nm. LPMSs produced at 140 °C for 24 h showed the best compromise in terms of specific surface area, pores size and shape and hence, were selected for further experiments. Horseradish peroxidase (HRP) was used as model protein to evaluate the ability of the LPMSs to adsorb and release large biomolecules. After HRP-loading, LPMSs were coated with a pH-responsive polymer, poly(ethylene glycol) (PEG), allowing the release of the incorporated biomolecules in response to a pH decrease, in an attempt to mimic GFs release in bone under the acidic pH generated by the resorption activity of OCs. The reported results proved that PEG-coated carriers released HRP more quickly in an acidic environment, due to the protonation of PEG at low pH that catalyzes polymer hydrolysis reaction. Our findings indicate that LPMSs could be used as carriers to deliver large biomolecules and prove the effectiveness of PEG as pH-responsive coating. Finally, as proof of concept, a collagen-based suspension was obtained by incorporating PEG-coated LPMS carriers into a type I collagen matrix with the aim of designing a hybrid formulation for 3D-printing of bone scaffolds.


Assuntos
Colágeno Tipo I/química , Portadores de Fármacos/química , Peroxidase do Rábano Silvestre/administração & dosagem , Impressão Tridimensional , Dióxido de Silício/química , Derivados de Benzeno/química , Liberação Controlada de Fármacos , Peroxidase do Rábano Silvestre/farmacocinética , Concentração de Íons de Hidrogênio , Nanopartículas/química , Polietilenoglicóis/química , Porosidade , Estudo de Prova de Conceito , Alicerces Teciduais
6.
J Environ Manage ; 226: 329-339, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30125812

RESUMO

Sugarcane bagasse was pretreated with sodium carbonate, sodium sulfite, and sodium acetate in concentrations of 0.5 M and 0.25 M, as well as hydrothermal pretreatment, to break down its structural recalcitrance and improve biogas and ethanol production. The pretreatments were conducted at 100, 140, and 180 °C for 1 h. The highest biogas and ethanol production was observed for sugarcane bagasse pretreated with 0.5 M sodium carbonate solution at 140 °C, which was 239 ±â€¯20 Nml CH4/g VS, and 7.27 ±â€¯0.70 g/l, respectively, containing gasoline equivalents of 164.2 ±â€¯14.3 l/ton of raw bagasse and 147.8 ±â€¯14.2 l/ton of raw bagasse, respectively. The highest gasoline equivalent was obtained for biogas production from the substrate pretreated with 0.5 M sodium sulfite solution at 100 °C (190.2 ±â€¯2.1 l/ton of raw bagasse). In comparison to sodium carbonate and sodium sulfite, sodium acetate had less effect on biofuel production and was comparable with hydrothermal pretreatment. In contradiction to sodium acetate pretreated bagasse, in which increased pretreatment temperature intensified biofuel production, a reduction of biofuel production was observed for sodium carbonate and sodium sulfite pretreatment when temperature was increased from 140 to 180 °C. Besides considerable amounts of biofuel production at the best conditions obtained, over 762 and 543 kilotons of equivalent CO2 can be reduced annually in Iran by biogas and ethanol production from sugarcane, respectively.


Assuntos
Biocombustíveis , Celulose , Etanol , Saccharum , Hidrólise , Irã (Geográfico) , Sódio
7.
J Environ Sci (China) ; 69: 261-270, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29941262

RESUMO

Sewage sludge (SS) and deinking sludge (DS) were used to comparatively study the hydrothermal dewatering of sludge with different components. For a better overview, an insight into the relationship between physicochemical properties and dewaterability of hydrothermal sludge was provided. Results found that not all kinds of sludge were suitably conditioned by hydrothermal treatment (HT) in term of the elevation of dewaterability. Higher hydrothermal temperature tended to enhance the dewaterability of SS rather than DS, which was supported by the variation of their physicochemical properties (including water distribution, bonding energy, extracellular polymeric substance (EPS), particles size, acid functional groups and zeta potential in this study). In addition, the changes in surface morphology suggested that the reverse effect of HT on sludge dewaterability was mainly due to their dewatering behavior. For SS, the destruction of EPS structure leaded to the release of bound water, thereby strengthening sludge dewatering. Conversely, "Bridging effect" generated by lignocellulose in DS was beneficial for sludge dewatering; however, the increasing hydrothermal temperature degraded part of lignocellulose and weakened "bridging effect", finally resulting in worse dewaterability of DS.


Assuntos
Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Dessecação , Temperatura Alta , Tamanho da Partícula , Polímeros , Temperatura
8.
Prep Biochem Biotechnol ; 47(7): 687-698, 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28277946

RESUMO

In this study, Faujasite (FAU) zeolite was coated on low-cost tubular ceramic support as a separating layer through hydrothermal route. The mixture of silicate and aluminate solutions was used to create a zeolitic separation layer on the support. The prepared zeolite ceramic composite membrane was characterized using X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), particle size distribution (PSD), field emission scanning electron microscopy (FESEM), and zeta potential measurements. The porosity of ceramic support (53%) was reduced by the deposition of FAU (43%) zeolite layer. The pore size and water permeability of the membrane were evaluated as 0.179 µm and 1.62 × 10-7 m3/m2 s kPa, respectively, which are lower than that of the support (pore size of 0.309 µm and water permeability of 5.93 × 10-7 m3/m2 s kPa). The permeate flux and rejection potential of the prepared membrane were evaluated by microfiltration of bovine serum albumin (BSA). To study the influences of three independent variables such as operating pressure (68.94-275.79 kPa), concentration of BSA (100-500 ppm), and solution pH (2-4) on permeate flux and percentage of rejection, the response surface methodology (RSM) was used. The predicted models for permeate flux and rejection were further subjected to biobjective genetic algorithm (GA). The hybrid RSM-GA approach resulted in a maximum permeate flux of 2.66 × 10-5 m3/m2 s and BSA rejection of 88.02%, at which the optimum conditions were attained as 100 ppm BSA concentration, 2 pH solution, and 275.79 kPa applied pressure. In addition, the separation efficiency was compared with other membranes applied for BSA separation to know the potential of the fabricated FAU zeolite ceramic composite membrane.


Assuntos
Filtração/instrumentação , Membranas Artificiais , Soroalbumina Bovina/isolamento & purificação , Zeolitas/química , Algoritmos , Animais , Bovinos , Permeabilidade , Porosidade , Pressão , Água/química , Difração de Raios X
9.
J Food Sci Technol ; 51(6): 1110-7, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24876643

RESUMO

Upma, a popular breakfast of southern India, traditionally made from wheat, was prepared using pearl millet semolina (PMS). Prior to preparation of semolina, pearl millet grains were hydro-thermally treated to reduce anti-nutritional factors and inactivate lipase activity. Hydrothermal treatments (soaking up to moisture 30 ± 2%, steaming 1.05 kg cm(-2), 20 min) reduced the anti-nutritional factors significantly (p ≤ 0.05). No lipase activity was detected after steaming. Central composite rotatable design (CCRD) with three independent variables i.e. vanaspati (vegetable fat), citric acid and water for rehydration were used to design the experiments. Sensory responses and rehydration ratio were used to study the individual and interactive effects of variables. Sensory score for taste varied from 6.5 to 8.1, mouth feel 6.7-8.0, overall acceptability 6.7-8.1 and rehydration ratio from 2.4 to 3.3. Based upon the experiments, the optimized level of ingredients was: vanaspati 46.5 g 100 g(-1) PMS, citric acid 0.17 g 100 g(-1) PMS and water for rehydration 244.6 ml 100 g(-1) dry mix with 98.5% desirability. The prepared upma mix was monitored for peroxide value, free fatty acids and thiobarbituric acid value as well as sensory quality during storage and was found stable for 6 months at ambient conditions (20-35 °C) in poly ethylene pouches (75 µ).

10.
Int J Biol Macromol ; 266(Pt 2): 131456, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588844

RESUMO

The red macroalga Sarcopeltis skottsbergii was subjected to hydrothermal processing to maximize the solubilization and recovery of carrageenan. Once isolated by ethanol precipitation, the carrageenan was further chemically (oligosaccharides composition), and structurally (TGA/DTG, DSC, HPSEC, FTIR-ATR, 1H NMR, SEM, etc.) characterized, as well as employed as source for the synthesis of hydrogels. The rheological properties of the carrageenan showed promising results as biopolymer for food applications due to the high molecular weight (500 kDa) presenting higher cell viability than 70 %. The evaluation of immune activation using ELISA test reflected a lower inflammatory response for concentrations of 0.025 % of carrageenan. Conversely, the cell viability of the synthesized hydrogels did not surpass 50 %. This work represents a considerable step forward to obtain a biopolymer from natural sources and a thorough study of their chemical, structural and biological properties.


Assuntos
Carragenina , Hidrogéis , Rodófitas , Engenharia Tecidual , Carragenina/química , Engenharia Tecidual/métodos , Hidrogéis/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Camundongos , Reologia , Humanos , Materiais Biocompatíveis/química , Peso Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA