Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Zoolog Sci ; 40(5): 390-403, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37818888

RESUMO

Variations of the radula and shell microstructures in 33 species of Japanese chiton were investigated along with molecular phylogenetic trees. The molecular phylogenetic trees indicated that Chitonida was composed of four clades, of which two clades formed Acanthochitonina and corresponded to Mopalioidea and Cryptoplacoidea, respectively, and the other clades formed Chitonina. In the radula, the shapes of the central and centro-lateral teeth and the petaloid process varied greatly among species or genera and were useful for the identification of particular species or genera. The presence of accessory and petaloid processes and the cusp shape were relatively conserved and useful for recognizing particular genera or even suborders. In the valves, four to six shell layers were found at the section, but the ventral mesostracum was not observed in Acanthochitonina. The shell microstructures in the ventral sublayer of the tegmentum varied at suborder, but those in the other layers were almost constant. The megalaesthete chamber type varied at superfamily and was helpful to identify particular families or superfamilies. The characteristics of the shell layers and shell microstructures appear to be a synapomorphy shared by the members of Acanthochitonina. The classification within Chitonina needs to be reexamined because the variations of the cusp shape and megalaesthete chamber type were relatively large and did not correspond to the current classification. Callochiton formed a sister group with Chitonida and would be equally closely related to Chitonina and Acanthochitonina because of possessing a mosaic of characteristics from both.


Assuntos
Estruturas Animais , Poliplacóforos , Animais , Filogenia , Poliplacóforos/genética , Água , Exoesqueleto , Estruturas Animais/anatomia & histologia , Dente
2.
J Proteome Res ; 21(11): 2736-2742, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36287021

RESUMO

The radula is a unique foraging organ to Mollusca, which is important for their evolution and taxonomic classification. Many radulae are mineralized with metals. Although the remarkable mechanical properties of mineralized radulae are well-studied, the formation of mineralization from nonmineralized radulae is poorly understood. Taking advantage of the recently sequenced octopus and chiton genomes, we were able to identify more species-specific radular proteins by proteomics. Comparing these proteomes with the known limpet radula proteome enabled us to gain insight into the molecular components of nonmineralized and mineralized radula, highlighting that iron mineralization in the chiton radula is possibly due to the evolution of ferritins and peroxiredoxins. Through an in vitro binding assay, ferritin is shown to be important to iron accumulation into the nonmineralized radula. Moreover, radular proteomes reflect their adaption to dietary habits to some extent. The octopus radula has many scaffold modification proteins to suit flexibility while the chiton radula has abundant sugar metabolism proteins (e.g., glycosyl hydrolases) to adapt to algae feeding. This study provides a foundation for the understanding of molluscan radula formation and evolution and may inspire the synthesis of iron nanomaterials.


Assuntos
Proteômica , Dente , Animais , Ferro/metabolismo , Proteoma/genética , Proteoma/metabolismo , Moluscos/genética , Moluscos/química , Moluscos/metabolismo
3.
Front Zool ; 19(1): 19, 2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690761

RESUMO

BACKGROUND: The radula, a chitinous membrane with embedded teeth, is one important molluscan autapomorphy. In some taxa (Polyplacophora and Patellogastropoda) one tooth type (the dominant lateral tooth) was studied intensively in the last decades with regard to its mechanical properties, chemical and structural composition, and the relationship between these parameters. As the dominant lateral tooth is probably one of the best studied biological materials, it is surprising, that data on elements and mechanical properties of the other tooth types, present on a chiton radula, is lacking. RESULTS: We provide data on the elemental distribution and mechanical properties (hardness and elasticity, i.e. Young's modulus) of all teeth from the Polyplacophora Lepidochitona cinerea (Linnaeus, 1767) [Chitonidae: Ischnochitonidae]. The ontogeny of elements, studied by energy-dispersive X-ray spectroscopy, and of the mechanical properties, determined by nanoindentation, was analysed in every individual tooth type. Additionally, we performed breaking stress experiments with teeth under dry and wet condition, highlighting the high influence of the water content on the mechanical behaviour of the radula. We thereby could determine the forces and stresses, teeth can resist, which were previously not studied in representatives of Polyplacophora. Overall, we were able to relate the mineral (iron, calcium) content with the mechanical parameters (hardness and Young's modulus) and the breaking force and stress in every tooth type. This led to a better understanding of the relationship between structure, material, and function in radular teeth. Further, we aimed at determining the role of calcium for the mechanical behaviour of the teeth: we decalcified radulae by ethylene diamine tetra acetic acid and performed afterwards elemental analyses, breaking stress experiments, and nanoindentation. Among other things, we detected that wet and decalcified radular teeth could resist highest forces, since teeth have a higher range of bending motion leading to a higher capability of teeth to gain mechanical support from the adjacent tooth row. This indicates, that the tooth material is the result of a compromise between failure reduction and the ability to transfer forces onto the ingesta. CONCLUSION: We present novel data on the elemental composition, mechanical properties, and the mechanical behaviour of chiton teeth, which allows conclusions about tooth function. We could also relate the parameters mentioned, which contributes to our understanding on the origins of mechanical property gradients and the processes reducing structural failure in radular teeth. Additionally, we add more evidence, that the elemental composition of radular is probably species-specific and could be used as taxonomic character.

4.
Naturwissenschaften ; 109(6): 58, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36454372

RESUMO

The molluscan phylum is characterized by the radula, used for the gathering and processing of food. This structure can consist of a chitinous membrane with embedded rows of teeth, which show structural, chemical, and biomechanical adaptations to the preferred ingesta. With regard to the chemical composition of teeth, some taxa (Polyplacophora and Patellogastropoda) were extensively studied, and high proportions of incorporated iron, calcium, and silicon were previously reported. However, outside these two groups, there is an immense lack of knowledge about the elemental composition of radular teeth. The here presented work aims at shedding some light on the radular composition by performing energy-dispersive X-ray spectroscopy (EDX) on six non-patelliform gastropod species (Anentome helena, Cornu aspersum, Lavigeria nassa, Littorina littorea, Reymondia horei, and Vittina turrita), with the focus on the ontogeny of the elemental composition. Proportions of elements, which are not part of chitin and other purely organic molecules, were documented for overall 1027 individual teeth of all ontogenetic radular stages, i.e., for the building zone, the maturation zone, and the working zone. We detected that the proportions of these elements increased from the building to the maturation zone. However, from the maturation to the working zone, two general trends are visible: either the proportions of the elements increased or decreased. The latter trend could potentially be explained by the acidic pH of the gastropod saliva, which awaits further investigations.


Assuntos
Gastrópodes , Animais , Aclimatação , Cálcio
5.
Naturwissenschaften ; 109(6): 52, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36322292

RESUMO

The radula, a chitinous membrane spiked with teeth, is the molluscan autapomorphy for the gathering and processing of food. The teeth, as actual interfaces between the organism and the ingesta, act as load transmitting regions and have to withstand high stresses during foraging - without structural failure or high degrees of wear. Mechanisms contributing to this were studied previously in paludomid gastropods from Lake Tanganyika. For some species, gradients in hardness and Young's modulus along the teeth were detected, enabling the bending and relying of teeth onto the next row, distributing the stresses more equally. The here presented study on one of them - Lavigeria grandis - aims at shedding light on the origin of these functional gradients. The mechanical properties were identified by nanoindentation technique and compared to the elemental composition, determined by elemental dispersive X-ray spectroscopy (EDX, EDS). This was done for the complete radular (mature and immature tooth rows), resulting in overall 236 EDX and 700 nanoindentation measurements. Even though teeth showed regional differences in elemental composition, we could not correlate the mechanical gradients with the elemental proportions. By applying confocal laser scanning microscopy (CLSM), we were finally able to relate the mechanical properties with the degree of tanning. CLSM is a common technique used on arthropod cuticle, but was never applied on radular teeth before. In general, we found that nanoindentation and CLSM techniques complement one another, as for example, CLSM is capable of revealing heterogeneities in material or micro-gradients, which leads to a better understanding of the functionalities of biological materials and structures.


Assuntos
Gastrópodes , Dente , Animais , Dureza , Módulo de Elasticidade
6.
Philos Trans A Math Phys Eng Sci ; 380(2232): 20210335, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-35909353

RESUMO

Most molluscan taxa forage with their radula, a chitinous membrane with embedded teeth. The teeth are the actual interfaces between the animal and its ingesta and serve as load-transmitting regions. During foraging, these structures have to withstand high stresses without structural failure and without a high degree of wear. Mechanisms contributing to this failure- and wear-resistance were well studied in the heavily mineralized teeth of Polyplacophora and Patellogastropoda, but for the rather chitinous teeth of non-limpet snails, we are confronted with a large gap in data. The work presented here on the paludomid gastropod Lavigeria grandis aims to shed some light on radular tooth composition and its contribution to failure- and wear-prevention in this type of radula. The teeth were fractured and the micro-cracks studied in detail by scanning electron microscopy, revealing layers within the teeth. Two layers of distinct fibre densities and orientations were detected, covered by a thin layer containing high proportions of calcium and silicon, as determined by elemental dispersive X-ray spectroscopy. Our results clearly demonstrate the presence of failure- and wear-prevention mechanisms in snail radulae without the involvement of heavy mineralization-rendering this an example of a highly functional biological lightweight structure. This article is part of the theme issue 'Nanocracks in nature and industry'.


Assuntos
Gastrópodes , Poliplacóforos , Dente , Animais , Microscopia Eletrônica de Varredura , Dente/química
7.
Cell Tissue Res ; 377(3): 475-503, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31478138

RESUMO

The phylum Mollusca is one of the largest and more diversified among metazoan phyla, comprising many thousand species living in ocean, freshwater and terrestrial ecosystems. Mollusc-feeding biology is highly diverse, including omnivorous grazers, herbivores, carnivorous scavengers and predators, and even some parasitic species. Consequently, their digestive system presents many adaptive variations. The digestive tract starting in the mouth consists of the buccal cavity, oesophagus, stomach and intestine ending in the anus. Several types of glands are associated, namely, oral and salivary glands, oesophageal glands, digestive gland and, in some cases, anal glands. The digestive gland is the largest and more important for digestion and nutrient absorption. The digestive system of each of the eight extant molluscan classes is reviewed, highlighting the most recent data available on histological, ultrastructural and functional aspects of tissues and cells involved in nutrient absorption, intracellular and extracellular digestion, with emphasis on glandular tissues.


Assuntos
Sistema Digestório/ultraestrutura , Moluscos/ultraestrutura , Animais
8.
BMC Evol Biol ; 17(1): 217, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28915788

RESUMO

BACKGROUND: The Spiralia are a large, morphologically diverse group of protostomes (e.g. molluscs, annelids, nemerteans) that share a homologous mode of early development called spiral cleavage. One of the most highly-conserved features of spiralian development is the contribution of the primary quartet cells, 1a-1d, to the anterior region of the embryo (including the brain, eyes, and the anterior ciliary band, called the prototroch). Yet, very few studies have analyzed the ultimate fates of primary quartet sub-lineages, or examined the morphogenetic events that take place in the anterior region of the embryo. RESULTS: This study focuses on the caenogastropod slipper snail, Crepidula fornicata, a model for molluscan developmental biology. Through direct lineage tracing of primary quartet daughter cells, and examination of these cells during gastrulation and organogenesis stages, we uncovered behaviors never described before in a spiralian. For the first time, we show that the 1a2-1d2 cells do not contribute to the prototroch (as they do in other species) and are ultimately lost before hatching. During gastrulation and anterior-posterior axial elongation stages, these cells cleavage-arrest and spread dramatically, contributing to a thin provisional epidermis on the dorsal side of the embryo. This spreading is coupled with the displacement of the animal pole, and other pretrochal cells, closer to the ventrally-positioned mouth, and the vegetal pole. CONCLUSIONS: This is the first study to document the behavior and fate of primary quartet sub-lineages among molluscs. We speculate that the function of 1a2-1d2 cells (in addition to two cells derived from 1d12, and the 2b lineage) is to serve as a provisional epithelium that allows for anterior displacement of the other progeny of the primary quartet towards the anterior-ventral side of the embryo. These data support a new and novel mechanism for axial bending, distinct from canonical models in which axial bending is suggested to be driven primarily by differential proliferation of posterior dorsal cells. These data suggest also that examining sub-lineages in other spiralians will reveal greater variation than previously assumed.


Assuntos
Caramujos/citologia , Caramujos/crescimento & desenvolvimento , Animais , Padronização Corporal , Diferenciação Celular , Cílios/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Morfogênese , Caramujos/metabolismo
9.
Dev Dyn ; 244(10): 1215-48, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26197970

RESUMO

BACKGROUND: During gastrulation, endoderm and mesoderm are specified from a bipotential precursor (endomesoderm) that is argued to be homologous across bilaterians. Spiralians also generate mesoderm from ectodermal precursors (ectomesoderm), which arises near the blastopore. While a conserved gene regulatory network controls specification of endomesoderm in deuterostomes and ecdysozoans, little is known about genes controlling specification or behavior of either source of spiralian mesoderm or the digestive tract. RESULTS: Using the mollusc Crepidula, we examined conserved regulatory factors and compared their expression to fate maps to score expression in the germ layers, blastopore lip, and digestive tract. Many genes were expressed in both ecto- and endomesoderm, but only five were expressed in ectomesoderm exclusively. The latter may contribute to epithelial-to-mesenchymal transition seen in ectomesoderm. CONCLUSIONS: We present the first comparison of genes expressed during spiralian gastrulation in the context of high-resolution fate maps. We found variation of genes expressed in the blastopore lip, mouth, and cells that will form the anus. Shared expression of many genes in both mesodermal sources suggests that components of the conserved endomesoderm program were either co-opted for ectomesoderm formation or that ecto- and endomesoderm are derived from a common mesodermal precursor that became subdivided into distinct domains during evolution.


Assuntos
Gastrulação , Genes Reguladores , Caramujos/embriologia , Animais , Expressão Gênica , Camadas Germinativas/metabolismo , Organogênese , Caramujos/genética , Caramujos/metabolismo
10.
Zoology (Jena) ; 158: 126083, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36924694

RESUMO

Gastropods of the superfamily Conoidea are present in high diversity in the oceans and are characterized by having modified foregut anatomy and radular morphology. This study provides details on variations in the radula teeth of the species Hastula cinerea, which have hypodermic radula teeth of the toxoglossan type and are part of the Terebridae family - inserted in the Conoidea superfamily. Hastula cinerea specimens were collected at Flecheiras beach, Trairi, Ceará, Brazil. Scanning Electron Microscopy (SEM) was performed to analyse the radula specificities. Thirty specimens were used between females and males, with different sizes. The total length of the shell and the length of the teeth of all analysed specimens were measured. With the SEM result, more than one radula tooth morphotype was found for the species H. cinerea. The pattern of the teeth found is similar to the hypodermic teeth of the group, however, with structural and length differences between smaller and larger individuals. It was possible to observe three radula variations (morphotype-1, morphotype-2 and morphotype-3), 26 related to different sizes of individuals, regardless of sex, configuring a variation in the radula teeth. Therefore, this result brings a contribution that stimulates future research with the functional morphology of H. cinerea and others auger snails.


Assuntos
Gastrópodes , Dente , Masculino , Feminino , Animais , Gastrópodes/anatomia & histologia , Caramujos/anatomia & histologia , Microscopia Eletrônica de Varredura , Brasil
11.
Zool Stud ; 62: e26, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37533558

RESUMO

Neolepetopsidae is a little-studied true limpet family only known from deep-sea chemosynthetic ecosystems, containing just over a dozen species in three genera: Neolepetopsis, Paralepetopsis, and Eulepetopsis. Although considered monophyletic by a recent phylogenetic analysis, a lack of Paralepetopsis sequence linked to morphology casts some uncertainty. Here, we discovered a new species of Paralepetopsis from the Haima methane seep in the South China Sea, described as Paralepetopsis polita sp. nov. The new species is distinct from all other described Paralepetopsis by its smooth and semi-transparent shell, combined with a radula exhibiting pluricuspid teeth with two cusps. We tested its relationship with other neolepetopsids using a molecular phylogeny reconstructed from the mitochondrial COI gene, revealing a surprising position nested within Lepetidae, a family with a very different radula morphology. The clade containing lepetids and our new species was recovered sister to other neolepetopsids with sequence data available. This hints at a paraphyletic Neolepetopsidae, and suggests the neolepetopsid-type radula might not be exclusive to one monophyletic group of limpets.

12.
Ecol Evol ; 13(8): e10332, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37589038

RESUMO

The molluscan feeding structure is the radula, a chitinous membrane with teeth, which are highly adapted to the food and the substrate to which the food is attached. In Polyplacophora and Patellogastropoda, the handling of hard ingesta can be facilitated by high content of chemical compounds containing Fe or Si in the tooth cusps. Other taxa, however, possess teeth that are less mineralized, even though animals have to avoid structural failure or high wear during feeding as well. Here, we investigated the gastropod Gastropteron rubrum, feeding on hard Foraminifera, diatoms and Porifera. Tooth morphologies and wear were documented by scanning electron microscopy and their mechanical properties were tested by nanoindentation. We determined that gradients of hard- and stiffness run along each tooth, decreasing from cusp to basis. We also found that inner lateral teeth were harder and stiffer than the outer ones. These findings allowed us to propose hypotheses about the radula-ingesta interaction. In search for the origins of the gradients, teeth were visualized using confocal laser scanning microscopy, to determine the degree of tanning, and analyzed with energy-dispersive X-ray spectroscopy, to test the elemental composition. We found that the mechanical gradients did not have their origins in the elemental content, as the teeth did not contain high proportions of metals or other minerals. This indicates that their origin might be the degree of tanning. However, in the tooth surfaces that interact with the ingesta high Si and Ca contents were determined, which is likely an adaptation to reduce wear.

13.
J R Soc Interface ; 20(202): 20220927, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37221862

RESUMO

Molluscs forage with their radula, a chitinous membrane with teeth. Adaptations to hard or abrasive ingesta were well studied in Polyplacophora and Patellogastropoda, but for other taxa there are large gaps in knowledge. Here, we investigated the nudibranch gastropods Felimare picta and Doris pseudoargus, both of which feed on Porifera. Tooth morphologies were documented by scanning electron microscopy, and mechanical properties were tested by nanoindentation. We found that these parameters are rather similar in both species, indicating that teeth are similar in their function. To study the composition, teeth were visualized using confocal laser scanning microscopy (CLSM), to determine the degree of tanning, and analysed with energy-dispersive X-ray spectroscopy, to test the elemental composition. The emitted autofluorescence signal and the inorganic content differed between the species. This was especially prominent when studying the inner and outer tooth surfaces (leading and trailing edges). In F. picta, we detected high proportions of Si, whereas teeth of D. pseudoargus contained high amounts of Ca, which influenced the autofluorescence signal in CLSM. Employing nanoindentation, we determined high Young's modulus and hardness values for the leading edges of teeth, which relate to the Si and Ca content. This highlights that teeth with a similar morphology and mechanical properties can be mechanically enhanced via different chemical pathways in Nudibranchia.


Assuntos
Gastrópodes , Hepatófitas , Poríferos , Animais , Moluscos , Adaptação Psicológica , Aclimatação
14.
Front Immunol ; 13: 971883, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275759

RESUMO

The Apextrin C-terminal (ApeC) domain is a new protein domain largely specific to aquatic invertebrates. In amphioxus, a short-form ApeC-containing protein (ACP) family is capable of binding peptidoglycan (PGN) and agglutinating bacteria via its ApeC domain. However, the functions of ApeC in other phyla remain unknown. Here we examined 130 ACPs from gastropods and bivalves, the first and second biggest mollusk classes. They were classified into nine groups based on their phylogenetics and architectures, including three groups of short-form ACPs, one group of apextrins and two groups of ACPs of complex architectures. No groups have orthologs in other phyla and only four groups have members in both gastropods and bivalves, suggesting that mollusk ACPs are highly diversified. We selected one bivalve ACP (CgACP1; from the oyster Crossostrea gigas) and one gastropod ACP (BgACP1; from the snail Biomphalaria glabrata) for functional experiments. Both are highly-expressed, secreted short-form ACPs and hence comparable to the amphioxus ACPs previously reported. We found that recombinant CgACP1 and BgACP1 bound with yeasts and several bacteria with different affinities. They also agglutinated these microbes, but showed no inhibiting or killing effects. Further analyses show that both ACPs had high affinities to the Lys-type PGN from S. aureus but weak or no affinities to the DAP-type PGN from Bacillus subtilis. Both recombinant ACPs displayed weak or no affinities to other microbial cell wall components, including lipopolysaccharide (LPS), lipoteichoic acid (LTA), zymosan A, chitin, chitosan and cellulose, as well as to several PGN moieties, including muramyl dipeptide (MDP), N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc). Besides, CgACP1 had the highest expression in the gill and could be greatly up-regulated quickly after bacterial challenge. This is reminiscent of the amphioxus ACP1/2 which serve as essential mucus lectins in the gill. Taken together, the current findings from mollusk and amphioxus ACPs suggest several basic common traits for the ApeC domains, including the high affinity to Lys-type PGN, the bacterial binding and agglutinating capacity, and the role as mucus proteins to protect the mucosal surface.


Assuntos
Quitosana , Anfioxos , Animais , Peptidoglicano/farmacologia , Lipopolissacarídeos , Acetilmuramil-Alanil-Isoglutamina/farmacologia , Staphylococcus aureus/metabolismo , Acetilglucosamina/química , Zimosan , Anfioxos/metabolismo , Bactérias/metabolismo , Parede Celular/metabolismo , Lectinas , Moluscos , Celulose
15.
Acta Biomater ; 134: 513-530, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34329785

RESUMO

Biological tissues may exhibit graded heterogeneities in structure and mechanical properties that are crucial to their function. One biological structure that shows variation in both structure and function is the molluscan radula: the organ comprises a chitinous membrane with embedded teeth and serves to process and gather food. The tooth morphologies had been well studied in the last decades, but the mechanical properties of the teeth are not known for the vast majority of molluscs. This knowledge gap restricts our understanding of how the radula is able to act effectively on a target surface whilst simultaneously resisting structural failure. Here we employed nanoindentation technique to measure mechanical properties (hardness and Young's modulus) on distinct localities of individual radular teeth from 24 species of African paludomid gastropods. These species have distinct ecological niches as they forage on algae on different feeding substrates. A gradual distribution of measured properties along the teeth was found in species foraging on solid or mixed feeding substrates, but soft substrate feeders exhibit teeth almost homogeneous in their biomechanical properties. The presence or absence of large-scale gradients in these taenioglossan teeth could directly be linked with their specific function and in general with the species ecology, whereas the radular tooth morphologies do not always and fully reflect ecology. STATEMENT OF SIGNIFICANCE: African Lake Tanganyika is well known for harbouring endemic and morphologically distinct genera. Its paludomid gastropods form a flock of high interest because of its diversity. As they show distinct radular tooth morphologies hypotheses about potential trophic specializations had always been at hand. Here we evaluated the mechanical properties Young's modulus and hardness of 9027 individual teeth from 24 species along the tooth by nanoindentation and related them with the gastropods' specific feeding substrate. We find that hard substrate feeders have teeth that are hard at the tips but much less stiff at the base and thus heterogeneous with respect to material properties, whereas soft substrate feeders have teeth that are flexible and homogenous with respect to material properties.


Assuntos
Estruturas Animais/anatomia & histologia , Gastrópodes , Animais , Ecossistema , Módulo de Elasticidade , Gastrópodes/anatomia & histologia
16.
Zootaxa ; 4950(1): zootaxa.4950.1.4, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33903320

RESUMO

The species composition of the genus Connexochiton is revised. So far, six Recent species of the genus Connexochiton have been known: C. platynomenus, C. kaasi, C. crassus, C. bromleyi, C. moreirai and C. discernibilis After the present revision, the genus consists of Connexochiton platynomenus, C. kaasi, C. crassus, as well as three new species, C. costatus n. sp. from the Philippines, C. kermadeci n. sp. from New Zealand and C. solomonicus n. sp. from the Solomon Islands. Connexochiton discernibilis was assigned to the ischnochitonid genus Stenosemus (now Stenosemus discernibilis). Connexochiton bromleyi and C. moreirai are transferred back to the genus Ischnochiton. Principle features of the genus Connexochiton include: a distinctive shape of the valves with the hind edge of the intermediate valves noticeably turned down, which makes the lateral areas narrow and appearing strongly raised; tegmentum delicately sculptured by quincuncially arranged triangular granules that form an alveolate pattern; each granule has 9 to 11 aesthete pores; apophyses are connected medially by a short jugal plate, dorsal scales of the girdle are strongly bent, with short longitudinal ribs or spherules or both; head of the major lateral teeth of radula is unicuspid and sickle-shaped. An identification key for the species of the genus Connexochiton is provided.


Assuntos
Poliplacóforos , Animais , Moluscos , Poliplacóforos/classificação , Poliplacóforos/fisiologia
17.
Biol Open ; 9(10)2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32917764

RESUMO

The radula is the organ for mechanical food processing and an important autapomorphy of Mollusca. Its chitinous membrane, embedding small radular teeth, is moved by the set of muscles resulting in an interaction with the ingesta, tearing it and collecting loosened particles. Radulae and their teeth can be quite distinct in their morphology and had been of high research interest, but only a few studies have examined the basic functional principles of this organ, the movement and motion during feeding action. Here, the radular motion of 20 representative species, belonging to four major gastropod lineages (Vetigastropoda, Neritimorpha, Caenogastropoda and Heterobranchia) and Polyplacophora, were recorded and classified. Comparisons of the video footage with the scanning electron microscope (SEM) images of the radula resulted in the recognition of functional tooth rows and the correct position of the teeth during feeding. We identified six different types of radular movements, including rotations and bending of the radula itself. In each movement type, different structures act as counter bearings enabling the animals to grab and tear food.


Assuntos
Moluscos/anatomia & histologia , Moluscos/fisiologia , Movimento (Física) , Frutos do Mar , Dente , Animais , Microscopia/métodos
18.
Zool Stud ; 59: e62, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34140979

RESUMO

Members of the nudibranch genus Phestilla are common predators of scleractinian corals, but currently this genus has 10 described species only. Here we describe Phestilla goniophaga sp. nov., the first formally named predatory nudibranch species of the stony corals from the genus Goniopora. The new species can be distinguished from its congeneric species by the large number of long cerata (up to 16 rows and 23 cerata per row), and white rounded hump on the notum. The hump resembles the mouth of the coral poly, while the cerata resemble the coral tentacles. The egg masses of P. goniophaga sp. nov. are unique among Phestilla spp. egg masses in being bright orange in color, and forming a coiled ribbon. Analysis of the COI, 16S rRNA and H3 genes of P. goniophaga sp. nov. also showed that this species is distinct from other congeneric species.

19.
Zootaxa ; 4728(2): zootaxa.4728.2.3, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-32230573

RESUMO

We report the diversity, distribution and taxonomy of patellogastropod species from the entire mainland Indian coastline. A total of 77 coastal areas with rocky outcrops in the sandy shoreline, covering the entire mainland Indian coastline, were surveyed seasonally (four times a year) during December 2014 to December 2016. Coastal habitat characteristics and the diversity of all groups of limpets from the intertidal areas were recorded. Specimens were identified by external morphological shell and gill characteristics, by the colour of the foot, mantle fringe and radular characteristics. Ecological aspects like habitat preference were also used to distinguish species. Existing diagnostic characters were amended with newer characteristics emerged in our study. Seven species from two families, Nacellidae and Lottiidae, were found along the mainland Indian coastline. Each species is present with several polymorphic forms with different colour banding patterns. Our study revealed distinct variations in the radular teeth at the genus level, but less differences within genera. Patellogastropod diversity was greater along the west coast of India and only Cellana rota was available throughout the mainland Indian coastline.


Assuntos
Gastrópodes , Animais , Ecossistema
20.
Zootaxa ; 4758(3): zootaxa.4758.3.5, 2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32230131

RESUMO

Peronia J. Fleming, 1822 is an eupulmonate slug genus with a wide distribution in the Indo-Pacific Ocean. Currently, nine species are considered as valid. However, molecular data indicate cryptic speciation and more species involved. Here, we present results on a new species found in the Persian Gulf, a subtropical region with harsh conditions such as elevated salinity and high temperature compared to the Indian Ocean. Peronia persiae sp. nov. is described based on molecular, histological, anatomical, micro-computer tomography and scanning electron microscopy data. ABGD, GMYC and bPTP analyses based on 16S rDNA and cytochrome oxidase I (COI) sequences of Peronia confirm the delimitation of the new species. Moreover, our 14 specimens were carefully compared with available information of other described Peronia species. Peronia persiae sp. nov. is distinct in a combination of characters, including differences in the genital (ampulla, prostate, penial hooks, penial needle) and digestive systems (lack of pharyngeal wall teeth, tooth shape in radula, intestine of type II).


Assuntos
Gastrópodes , Animais , Oceano Índico , Irã (Geográfico) , Masculino , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA