Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34301850

RESUMO

Pannexin1 (Panx1) channels are ubiquitously expressed in vertebrate cells and are widely accepted as adenosine triphosphate (ATP)-releasing membrane channels. Activation of Panx1 has been associated with phosphorylation in a specific tyrosine residue or cleavage of its C-terminal domains. In the present work, we identified a residue (S394) as a putative phosphorylation site by Ca2+/calmodulin-dependent kinase II (CaMKII). In HeLa cells transfected with rat Panx1 (rPanx1), membrane stretch (MS)-induced activation-measured by changes in DAPI uptake rate-was drastically reduced by either knockdown of Piezo1 or pharmacological inhibition of calmodulin or CaMKII. By site-directed mutagenesis we generated rPanx1S394A-EGFP (enhanced green fluorescent protein), which lost its sensitivity to MS, and rPanx1S394D-EGFP, mimicking phosphorylation, which shows high DAPI uptake rate without MS stimulation or cleavage of the C terminus. Using whole-cell patch-clamp and outside-out excised patch configurations, we found that rPanx1-EGFP and rPanx1S394D-EGFP channels showed current at all voltages between ±100 mV, similar single channel currents with outward rectification, and unitary conductance (∼30 to 70 pS). However, using cell-attached configuration we found that rPanx1S394D-EGFP channels show increased spontaneous unitary events independent of MS stimulation. In silico studies revealed that phosphorylation of S394 caused conformational changes in the selectivity filter and increased the average volume of lateral tunnels, allowing ATP to be released via these conduits and DAPI uptake directly from the channel mouth to the cytoplasmic space. These results could explain one possible mechanism for activation of rPanx1 upon increase in cytoplasmic Ca2+ signal elicited by diverse physiological conditions in which the C-terminal domain is not cleaved.


Assuntos
Sinalização do Cálcio , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Conexinas/química , Conexinas/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Cálcio/metabolismo , Calmodulina/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Conexinas/genética , Citoplasma/metabolismo , Proteínas de Fluorescência Verde/genética , Células HeLa , Humanos , Indóis/farmacocinética , Canais Iônicos/genética , Canais Iônicos/metabolismo , Simulação de Dinâmica Molecular , Proteínas do Tecido Nervoso/genética , Técnicas de Patch-Clamp , Fosforilação , Serina/genética , Serina/metabolismo
2.
Biotechnol Bioeng ; 120(3): 674-686, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36514261

RESUMO

Thermobifida fusca cutinase (TfCut2) is a carboxylesterase (CE) which degrades polyethylene terephthalate (PET) as well as its degradation intermediates [such as oligoethylene terephthalate (OET), or bis-/mono-hydroxyethyl terephthalate (BHET/MHET)] into terephthalic acid (TPA). Comparisons of the surfaces of certain CEs (including TfCut2) were combined with docking and molecular dynamics simulations involving 2HE-(MHET)3, a three-terephthalate OET, to support the rational design of 22 variants with potential for improved generation of TPA from PET, comprising 15 single mutants (D12L, E47F, G62A, L90A, L90F, H129W, W155F, ΔV164, A173C, H184A, H184S, F209S, F209I, F249A, and F249R), 6 double mutants [H129W/T136S, A173C/A206C, A173C/A210C, G62A/L90F, G62A/F209I, and G62A/F249R], and 1 triple mutant [G62A/F209I/F249R]. Of these, nine displayed no activity, three displayed decreased activity, three displayed comparable activity, and seven displayed increased (~1.3- to ~7.2-fold) activity against solid PET, while all variants displayed activity against BHET. Of the variants that displayed increased activity against PET, four displayed more activity than G62A, the most-active mutant of TfCut2 known till date. Of these four, three displayed even more activity than LCC (G62A/F209I, G62A/F249R, and G62A/F209I/F249R), a CE known to be ~5-fold more active than wild-type TfCut2. These improvements derived from changes in PET binding and not changes in catalytic efficiency.


Assuntos
Hidrolases , Polietilenotereftalatos , Polietilenotereftalatos/metabolismo , Hidrolases/química , Hidrólise , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Mutagênese
3.
Appl Microbiol Biotechnol ; 107(1): 273-286, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36477928

RESUMO

Thermoalkaliphilic laccase (CtLac) from the Caldalkalibacillus thermarum strain TA2.A1 has advantageous properties with potential industrial applications, such as high enzyme activity and stability at 70 °C and pH 8.0. In the present study, a directed evolution approach using a combination of random and site-directed mutagenesis was adopted to enhance the laccase activity of CtLac. Spectrophotometric assay and real-time oxygen measurement techniques were employed to compare and evaluate the enzyme activity among mutants. V243 was targeted for site-directed mutagenesis based on library screening. V243D showed a 25-35% higher laccase activity than wild-type CtLac in the spectrophotometric assay and oxygen consumption measurement results. V243D also showed higher catalytic efficiency than wild-type CtLac with decreased Km and increased kcat values. In addition, V243D enhanced oxidative degradation of the lignin model compound, guaiacylglycerol-ß-guaiacyl ether (GGGE), by 10% and produced a 5-30% increase in high-value aldehydes than wild-type CtLac under optimal enzymatic conditions (i.e., 70 °C and pH 8.0). Considering the lack of protein structural information, we used the directed evolution approach to predict Val at the 243 position of CtLac as one of the critical amino acids contributing to the catalytic efficiency of the enzyme. Moreover, it found that the real-time oxygen measurement technique could overcome the limitations of the spectrophotometric assay, and apply to evaluate oxidase activity in mutagenesis research. KEY POINTS: • CtLac was engineered for enhanced laccase activity through directed evolution approach • V243D showed higher catalytic efficiency (kcat/Km) than wild-type CtLac • V243D produced higher amounts of high-value aldehydes from rice straw than wild-type CtLac.


Assuntos
Lacase , Lignina , Lacase/metabolismo , Lignina/metabolismo , Mutagênese Sítio-Dirigida , Aldeídos , Oxigênio
4.
Bioprocess Biosyst Eng ; 46(2): 297-306, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36571607

RESUMO

Poly-hydroxy-butyrate (PHB) bioplastic resin can be made directly from atmospheric CO2 using cyanobacteria. However, higher PHB productivities are required before large-scale production is economically viable. Random mutagenesis offers a way to create new production strains with increased PHB yields and increased biomass densities without complex technical manipulation associated with genetically modified organisms. This study used staining with lipid fluorescent dye (BODIPY 493/593) and fluorescence-activated cell sorting (FACS) to select high lipid content mutants and followed this with a well plate growth screen. Thirteen mutants were selected for flask cultivation and two strains produced significantly higher PHB yields (29% and 26% higher than wild type), biomass accumulation (36% and 33% higher than wild type) and volumetric PHB density (75% and 67% higher than wild type). The maximum PHB yielding strain (% dcw) was 12.0%, which was 43% higher than the wild type (8.3% in this study). The highest volumetric PHB density was 18.8 mg PHB/L compared to 10.7 mg PHB/L by the wild type. To develop cyanobacterial strain with higher PHB productivities, the combination of random chemical mutagenesis and FACS holds great potential to promote cyanobacteria bioplastic production becoming economically viable.


Assuntos
Cianobactérias , Poliésteres , Citometria de Fluxo , Poliésteres/metabolismo , Hidroxibutiratos/metabolismo , Cianobactérias/genética , Cianobactérias/metabolismo , Mutagênese
5.
Int J Mol Sci ; 25(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38203568

RESUMO

Glutathione transferases (GSTs) are a superfamily of dimeric proteins associated with the detoxification of various reactive electrophiles and responsive to a multitude of stressors. We individually substituted Lys64 and Glu78 with Ala using site-directed mutagenesis to understand the role of subunit interactions in the structure and enzymatic properties of a rice GST (OsGSTU17). The wild-type OsGSTU17 lost the conserved hydrogen bond between subunits in tau class GSTs due to conserved Tyr92 replaced with Phe92, but still exhibited high substrate activities, and thermal stability remained in its dimeric structure. The significant decrease in thermal stability and obvious changes in the structure of mutant K64A implied that conserved Lys64 might play an essential role in the structural stability of tau class GSTs. The mutant E78A, supposed to be deprived of hydrogen and salt bonds between subunits, appeared in the soluble form of dimers, even though its tertiary structure altered and stability declined dramatically. These results suggest that the hydrogen and ionic bonds provided by conserved residues are not as important for OsGSTU17 dimerization and enzymatic properties. These results further supplement our understanding of the relationship between the structure and function of GSTs and provide a theoretical basis for improving crop resistance through targeted modification of GSTs.


Assuntos
Glutationa Transferase , Oryza , Glutationa Transferase/genética , Oryza/genética , Suplementos Nutricionais , Dimerização , Hidrogênio , Polímeros
6.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38003326

RESUMO

Presently, targeted gene mutagenesis attracts increasing attention both in plant research and crop improvement. In these approaches, successes are largely dependent on the efficiency of the delivery of gene editing components into plant cells. Here, we report the optimization of the cationic polymer poly(2-hydroxypropylene imine) (PHPI)-mediated delivery of plasmid DNAs, or single-stranded oligonucleotides labelled with Cyanine3 (Cy3) or 6-Carboxyfluorescein (6-FAM)-fluorescent dyes into maize protoplasts. Co-delivery of the GFP-expressing plasmid and the Cy3-conjugated oligonucleotides has resulted in the cytoplasmic and nuclear accumulation of the green fluorescent protein and a preferential nuclear localization of oligonucleotides. We show the application of nanoparticle complexes, i.e., "polyplexes" that comprise cationic polymers and nucleic acids, for CRISPR/Cas9 editing of maize cells. Knocking out the functional EGFP gene in transgenic maize protoplasts was achieved through the co-delivery of plasmids encoding components of the editing factors Cas9 (pFGC-pcoCas9) and gRNA (pZmU3-gRNA) after complexing with a cationic polymer (PHPI). Several edited microcalli were identified based on the lack of a GFP fluorescence signal. Multi-base and single-base deletions in the EGFP gene were confirmed using Sanger sequencing. The presented results support the use of the PHPI cationic polymer in plant protoplast-mediated genome editing approaches.


Assuntos
Nanopartículas , Ácidos Nucleicos , Sistemas CRISPR-Cas/genética , Protoplastos , Zea mays/genética , Polímeros , RNA Guia de Sistemas CRISPR-Cas , Mutagênese , Edição de Genes/métodos , Proteínas de Fluorescência Verde/genética , Oligonucleotídeos
7.
World J Microbiol Biotechnol ; 39(8): 214, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37256388

RESUMO

Studying the straw lignocellulose strengthening mechanism during simultaneous degradation has important practical significance for improving resource utilization and reducing environmental pollution. In this paper, the degradation ability of four straw lignocellulose-degrading enzymes was evaluated by molecular docking and molecular dynamics. Using the significantly binds to straw lignocellulose-degrading enzyme as a template, a multifunctional lignocellulose-degrading enzyme 3CBH-1KS5-4XQD-1B85 was constructed based on amino acid recombination and homologous modeling. Five efficient degrading enzymes (3CBH-1, 3CBH-2, 3CBH-3, 3CBH-4, and 3CBH-5) were designed by site-directed mutagenesis of 3CBH-1KS5-4XQD-1B85 amino acid at position 346. Molecular dynamics showed that the degradation ability of 3CBH-1 was significant and it was 1.45 times higher than 3CBH-1KS5-4XQD-1B85. Moreover, the mechanism of enhanced degradability and the stability of the enzymes were explored. With the aid of Taguchi experiments, the suitable external environment for degrading straw was determined. In the presence of inhibitors (organic acids and phenolic compounds), the binding energy of 3CBH-1 (238.46 ± 30.96 kJ/mol) is 36.42% higher than that of 3CBH-1KS5-4XQD-1B85 (174.79 ± 20.35 kJ/mol) without external environmental stimulation. Based on homology modeling, this paper constructed a site-directed mutagenesis scheme of multifunctional enzymes, and the aim was to obtain multifunctional and efficient straw lignocellulose-degrading enzymes through protein engineering, which provided a feasible scheme for straw biodegradation.


Assuntos
Simulação de Dinâmica Molecular , Enzimas Multifuncionais , Enzimas Multifuncionais/metabolismo , Simulação de Acoplamento Molecular , Lignina/metabolismo , Aminoácidos
8.
J Bacteriol ; 204(9): e0022822, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-35913147

RESUMO

Treponema denticola, a keystone pathogen in periodontitis, is a model organism for studying Treponema physiology and host-microbe interactions. Its major surface protein Msp forms an oligomeric outer membrane complex that binds fibronectin, has cytotoxic pore-forming activity, and disrupts several intracellular processes in host cells. T. denticola msp is an ortholog of the Treponema pallidum tprA to -K gene family that includes tprK, whose remarkable in vivo hypervariability is proposed to contribute to T. pallidum immune evasion. We recently identified the primary Msp surface-exposed epitope and proposed a model of the Msp protein as a ß-barrel protein similar to Gram-negative bacterial porins. Here, we report fine-scale Msp mutagenesis demonstrating that both the N and C termini as well as the centrally located Msp surface epitope are required for native Msp oligomer expression. Removal of as few as three C-terminal amino acids abrogated Msp detection on the T. denticola cell surface, and deletion of four residues resulted in complete loss of detectable Msp. Substitution of a FLAG tag for either residues 6 to 13 of mature Msp or an 8-residue portion of the central Msp surface epitope resulted in expression of full-length Msp but absence of the oligomer, suggesting roles for both domains in oligomer formation. Consistent with previously reported Msp N-glycosylation, proteinase K treatment of intact cells released a 25 kDa polypeptide containing the Msp surface epitope into culture supernatants. Molecular modeling of Msp using novel metagenome-derived multiple sequence alignment (MSA) algorithms supports the hypothesis that Msp is a large-diameter, trimeric outer membrane porin-like protein whose potential transport substrate remains to be identified. IMPORTANCE The Treponema denticola gene encoding its major surface protein (Msp) is an ortholog of the T. pallidum tprA to -K gene family that includes tprK, whose remarkable in vivo hypervariability is proposed to contribute to T. pallidum immune evasion. Using a combined strategy of fine-scale mutagenesis and advanced predictive molecular modeling, we characterized the Msp protein and present a high-confidence model of its structure as an oligomer embedded in the outer membrane. This work adds to knowledge of Msp-like proteins in oral treponemes and may contribute to understanding the evolutionary and potential functional relationships between T. denticola Msp and the orthologous T. pallidum Tpr proteins.


Assuntos
Fibronectinas , Treponema denticola , Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Endopeptidase K/metabolismo , Epitopos , Fibronectinas/metabolismo , Peptídeos/metabolismo , Porinas/metabolismo , Treponema/química , Treponema/genética , Treponema/metabolismo , Treponema denticola/genética
9.
Dev Biol ; 472: 1-17, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33358912

RESUMO

The zebrafish is an excellent model animal that is amenable to forward genetics approaches. To uncover unknown developmental regulatory mechanisms in vertebrates, we conducted chemical mutagenesis screening and identified a novel mutation, kanazutsi (kzt). This mutation is recessive, and its homozygotes are embryonic lethal. Mutant embryos suffered from a variety of morphological defects, such as head flattening, pericardial edema, circulation defects, disrupted patterns of melanophore distribution, dwarf eyes, a defective jaw, and extensive apoptosis in the head, which indicates that the main affected tissues are derived from neural crest cells (NCCs). The expression of tissue-specific markers in kzt mutants showed that the early specification of NCCs was normal, but their later differentiation was severely affected. The mutation was mapped to chromosome 3 by linkage analyses, near cytoglobin 1 (cygb1), the product of which is a globin-family respiratory protein. cygb1 expression was activated during somitogenesis in somites and cranial NCCs in wild-type embryos but was significantly downregulated in mutant embryos, despite the normal primary structure of the gene product. The kzt mutation was phenocopied by cygb1 knockdown with low-dose morpholino oligos and was partially rescued by cygb1 overexpression. Both severe knockdown and null mutation of cygb1, established by the CRISPR/Cas9 technique, resulted in far more severe defects at early stages. Thus, it is highly likely that the downregulation of cygb1 is responsible for many, if not all, of the phenotypes of the kzt mutation. These results reveal a requirement for globin family proteins in vertebrate embryos, particularly in the differentiation and subsequent development of NCCs.


Assuntos
Citoglobina/genética , Regulação da Expressão Gênica no Desenvolvimento , Crista Neural/citologia , Crista Neural/embriologia , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Apoptose/genética , Sistemas CRISPR-Cas , Diferenciação Celular/genética , Cromossomos/genética , Citoglobina/metabolismo , Desenvolvimento Embrionário/genética , Expressão Gênica , Técnicas de Silenciamento de Genes , Mutação , Crista Neural/metabolismo , Fenótipo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
10.
Biochem Biophys Res Commun ; 626: 100-106, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-35981419

RESUMO

Polyethylene terephthalate (PET) is one of the most abundantly produced synthetic polyesters. The vast number of waste plastics including PET has challenged the waste management sector while also posing a serious threat to the environment due to improper littering. Recently, enzymatic PET degradation has been shown to be a viable option for a circular plastic economy, which can mitigate the plastic pollution. While protein engineering studies on specific PET degradation enzymes such as leaf-branch compost cutinase (LCC), Thermobifida sp. cutinases and Ideonella sakaiensis PETase (IsPETase) have been extensively published, other homologous PET degrading enzymes have received less attention. Ple629 is a polyester hydrolase identified from marine microbial consortium having activity on PET and the bioplastic polybutylene adipate terephthalate (PBAT). In order to explore its catalytic mechanism and improve its potential for PET hydrolysis, we solved its crystal structure in complex with a PET monomer analogue, and validated its structural and mechanistic similarity to known PET hydrolases. By structural comparisons, we identified some hot spot positions described in previous research on protein engineering of PET hydrolases. We substitute these amino acid residues in Ple629, and obtained variants with improved activity and thermo-stability. The most promising variant D226A/S279A exhibited a more than 5.5-fold improved activity on PET nanoparticles than the wild-type enzyme, suggesting its potential applicability in the biotechnological plastic recycling.


Assuntos
Hidrolases , Plásticos , Hidrolases/metabolismo , Hidrólise , Plásticos/química , Polietilenotereftalatos/metabolismo , Engenharia de Proteínas
11.
Biotechnol Bioeng ; 119(8): 2105-2114, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35438195

RESUMO

EG5C-1, processive endoglucanase from Bacillus subtilis, is a typical bifunctional cellulase with endoglucanase and exoglucanase activities. The engineering of processive endoglucanase focuses on the catalytic pocket or carbohydrate-binding module tailoring based on sequence/structure information. Herein, a computational strategy was applied to identify the desired mutants in the enzyme molecule by evolutionary-coupling analysis; subsequently, four residue pairs were selected as evolutionary mutational hotspots. Based on iterative-saturation mutagenesis and subsequent enzymatic activity analysis, a superior mutant K51T/L93T has been identified away from the active center. This variant had increased specific activity from 4170 U/µmol of wild-type (WT) to 5678 U/µmol towards carboxymethyl cellulose-Na and an increase towards the substrate Avicel from 320 U/µmol in WT to 521 U/µmol. In addition, kinetic measurements suggested that superior mutant K51T/L93T had a high substrate affinity (Km ) and a remarkable improvement in catalytic efficiency (kcat /Km ). Furthermore, molecular dynamics simulations revealed that the K51T/L93T mutation altered the spatial conformation at the active site cleft, enhancing the interaction frequency between active site residues and substrate, and improving catalytic efficiency and substrate affinity. The current studies provided some perspectives on the effects of distal residue substitution, which might assist in the engineering of processive endoglucanase or other glycoside hydrolases.


Assuntos
Celulase , Aminoácidos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Domínio Catalítico , Celulase/química , Celulose/metabolismo
12.
Int J Mol Sci ; 23(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35563346

RESUMO

Under the need for new functional and biocompatible materials for biomedical applications, protein engineering allows the design of assemblable polypeptides, which, as convenient building blocks of supramolecular complexes, can be produced in recombinant cells by simple and scalable methodologies. However, the stability of such materials is often overlooked or disregarded, becoming a potential bottleneck in the development and viability of novel products. In this context, we propose a design strategy based on in silico tools to detect instability areas in protein materials and to facilitate the decision making in the rational mutagenesis aimed to increase their stability and solubility. As a case study, we demonstrate the potential of this methodology to improve the stability of a humanized scaffold protein (a domain of the human nidogen), with the ability to oligomerize into regular nanoparticles usable to deliver payload drugs to tumor cells. Several nidogen mutants suggested by the method showed important and measurable improvements in their structural stability while retaining the functionalities and production yields of the original protein. Then, we propose the procedure developed here as a cost-effective routine tool in the design and optimization of multimeric protein materials prior to any experimental testing.


Assuntos
Nanopartículas , Proteínas , Materiais Biocompatíveis , Tomada de Decisões , Humanos , Nanopartículas/química , Peptídeos , Engenharia de Proteínas/métodos , Proteínas/genética
13.
Int J Mol Sci ; 23(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35216338

RESUMO

The cardiac sodium ion channel (NaV1.5) is a protein with four domains (DI-DIV), each with six transmembrane segments. Its opening and subsequent inactivation results in the brief rapid influx of Na+ ions resulting in the depolarization of cardiomyocytes. The neurotoxin veratridine (VTD) inhibits NaV1.5 inactivation resulting in longer channel opening times, and potentially fatal action potential prolongation. VTD is predicted to bind at the channel pore, but alternative binding sites have not been ruled out. To determine the binding site of VTD on NaV1.5, we perform docking calculations and high-throughput electrophysiology experiments in the present study. The docking calculations identified two distinct binding regions. The first site was in the pore, close to the binding site of NaV1.4 and NaV1.5 blocking drugs in experimental structures. The second site was at the "mouth" of the pore at the cytosolic side, partly solvent-exposed. Mutations at this site (L409, E417, and I1466) had large effects on VTD binding, while residues deeper in the pore had no effect, consistent with VTD binding at the mouth site. Overall, our results suggest a VTD binding site close to the cytoplasmic mouth of the channel pore. Binding at this alternative site might indicate an allosteric inactivation mechanism for VTD at NaV1.5.


Assuntos
Boca/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Sódio/metabolismo , Veratridina/farmacologia , Sítios de Ligação/fisiologia , Linhagem Celular , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Neurotoxinas/farmacologia
14.
Molecules ; 27(10)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35630830

RESUMO

The accumulation of polyethylene terephthalate (PET) seriously harms the environment because of its high resistance to degradation. The recent discovery of the bacteria-secreted biodegradation enzyme, PETase, sheds light on PET recycling; however, the degradation efficiency is far from practical use. Here, in silico alanine scanning mutagenesis (ASM) and site-saturation mutagenesis (SSM) were employed to construct the protein sequence space from binding energy of the PETase-PET interaction to identify the number and position of mutation sites and their appropriate side-chain properties that could improve the PETase-PET interaction. The binding mechanisms of the potential PETase variant were investigated through atomistic molecular dynamics simulations. The results show that up to two mutation sites of PETase are preferable for use in protein engineering to enhance the PETase activity, and the proper side chain property depends on the mutation sites. The predicted variants agree well with prior experimental studies. Particularly, the PETase variants with S238C or Q119F could be a potential candidate for improving PETase. Our combination of in silico ASM and SSM could serve as an alternative protocol for protein engineering because of its simplicity and reliability. In addition, our findings could lead to PETase improvement, offering an important contribution towards a sustainable future.


Assuntos
Hidrolases , Simulação de Dinâmica Molecular , Proteínas de Bactérias/metabolismo , Hidrolases/química , Plásticos , Polietilenotereftalatos/química , Reprodutibilidade dos Testes
15.
Int J Mol Sci ; 22(19)2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34639081

RESUMO

The aim of this work was to show an efficient, recombinant DNA-free, multiplex gene-editing method using gRNA:Cas9 ribonucleoprotein (RNP) complexes delivered directly to plant protoplasts. For this purpose, three RNPs were formed in the tube, their activity was confirmed by DNA cleavage in vitro, and then they were delivered to carrot protoplasts incubated with polyethylene glycol (PEG). After 48 h of incubation, single nucleotide deletions and insertions and small deletions at target DNA sites were identified by using fluorescent-PCR capillary electrophoresis and sequencing. When two or three RNPs were delivered simultaneously, long deletions of 33-152 nt between the gRNA target sites were generated. Such mutations occurred with an efficiency of up to 12%, while the overall editing effectiveness was very high, reaching 71%. This highly efficient multiplex gene-editing method, without the need for recombinant DNA technology, can be adapted to other plants for which protoplast culture methods have been established.


Assuntos
Sistemas CRISPR-Cas , Daucus carota/genética , Edição de Genes , Engenharia Genética/métodos , Polietilenoglicóis/química , RNA Guia de Cinetoplastídeos , Ribonucleoproteínas/metabolismo , Daucus carota/crescimento & desenvolvimento , Daucus carota/metabolismo , Genoma de Planta , Protoplastos , Ribonucleoproteínas/genética
16.
J Biol Chem ; 294(7): 2353-2364, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30563843

RESUMO

The renin-angiotensin cascade is a hormone system that regulates blood pressure and fluid balance. Renin-mediated cleavage of the angiotensin I peptide from the N terminus of angiotensinogen (AGT) is the rate-limiting step of this cascade; however, the detailed molecular mechanism underlying this step is unclear. Here, we solved the crystal structures of glycosylated human AGT (2.30 Å resolution), its encounter complex with renin (2.55 Å), AGT cleaved in its reactive center loop (RCL; 2.97 Å), and spent AGT from which the N-terminal angiotensin peptide was removed (2.63 Å). These structures revealed that AGT undergoes profound conformational changes and binds renin through a tail-into-mouth allosteric mechanism that inserts the N terminus into a pocket equivalent to a hormone-binding site on other serpins. These changes fully extended the N-terminal tail, with the scissile bond for angiotensin release docked in renin's active site. Insertion of the N terminus into this pocket accompanied a complete unwinding of helix H of AGT, which, in turn, formed key interactions with renin in the complementary binding interface. Mutagenesis and kinetic analyses confirmed that renin-mediated production of angiotensin I is controlled by interactions of amino acid residues and glycan components outside renin's active-site cleft. Our findings indicate that AGT adapts unique serpin features for hormone delivery and binds renin through concerted movements in the N-terminal tail and in its main body to modulate angiotensin release. These insights provide a structural basis for the development of agents that attenuate angiotensin release by targeting AGT's hormone binding pocket.


Assuntos
Angiotensinogênio/química , Renina/química , Regulação Alostérica , Angiotensina I , Angiotensinogênio/genética , Angiotensinogênio/metabolismo , Cristalografia por Raios X , Humanos , Domínios Proteicos , Renina/genética , Renina/metabolismo
17.
Appl Microbiol Biotechnol ; 104(16): 7051-7066, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32577801

RESUMO

Cytophaga hutchinsonii is an aerobic cellulolytic soil bacterium that rapidly digests crystalline cellulose. The predicted mechanism by which C. hutchinsonii digests cellulose differs from that of other known cellulolytic bacteria and fungi. The genome of C. hutchinsonii contains 22 glycoside hydrolase (GH) genes, which may be involved in cellulose degradation. One predicted GH with uncertain specificity, CHU_0961, is a modular enzyme with several modules. In this study, phylogenetic tree of the catalytic modules of the GH9 enzymes showed that CHU_0961 and its homologues formed a new group (group C) of GH9 enzymes. The catalytic module of CHU_0961 (CHU_0961B) was identified as a 1,4-ß-D-glucan glucohydrolase (EC 3.2.1.74) that has unique properties compared with known GH9 cellulases. CHU_0961B showed highest activity against barley glucan, but low activity against other polysaccharides. Interestingly, CHU_0961B showed similar activity against ρ-nitrophenyl ß-D-cellobioside (ρ-NPC) and ρ-nitrophenyl ß-D-glucopyranoside. CHU_0961B released glucose from the nonreducing end of cello-oligosaccharides, ρ-NPC, and barley glucan in a nonprocessive exo-type mode. CHU_0961B also showed same hydrolysis mode against deacetyl-chitooligosaccharides as against cello-oligosaccharides. The kcat/Km values for CHU_0961B against cello-oligosaccharides increased as the degree of polymerization increased, and its kcat/Km for cellohexose was 750 times higher than that for cellobiose. Site-directed mutagenesis showed that threonine 321 in CHU_0961 played a role in hydrolyzing cellobiose to glucose. CHU_0961 may act synergistically with other cellulases to convert cellulose to glucose on the bacterial cell surface. The end product, glucose, may initiate cellulose degradation to provide nutrients for bacterial proliferation in the early stage of C. hutchinsonii growth. KEY POINTS: • CHU_0961 and its homologues formed a novel group (group C) of GH9 enzymes. • CHU_0961 was identified as a 1,4-ß-d-glucan glucohydrolase with unique properties. • CHU_0961 may play an important role in the early stage of C. hutchinsonii growth.


Assuntos
Proteínas de Bactérias/metabolismo , Cytophaga/enzimologia , Glucana 1,4-beta-Glucosidase/metabolismo , Filogenia , Proteínas de Bactérias/genética , Celulose/metabolismo , Cytophaga/genética , Genoma Bacteriano , Glucana 1,4-beta-Glucosidase/genética , Cinética , Alinhamento de Sequência
18.
J Gen Virol ; 100(3): 446-456, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30702422

RESUMO

The production of experimental molecular vaccines against foot-and-mouth disease virus utilizes the viral encoded 3C protease for processing of the P1 polyprotein. Expression of wild type 3C protease is detrimental to host cells. The molecular vaccine constructs containing the 3C protease L127P mutant significantly reduce adverse effects associated with protease expression while retaining the ability to process and assemble virus-like particles. In published 3C protease crystal structures, the L127 residue is contained within the B2 ß-strand as part of the A2-B2 ß-sheet. To provide insight into the mechanism by which the L127P mutant alters the properties of the 3C protease, we performed scanning proline mutagenesis of residues 123-128 of the B2 ß-strand and monitored expression and P1 processing. Simultaneously, we utilized random mutagenesis of the full 3C sequence to identify additional mutations presenting a phenotype similar to the L127P mutation. Six of the tested mutants enhanced expression over wild type, and the I22P, T100P and V124P mutations surpassed the L127P mutation in certain cell lines. These data areinterpreted in conjunction with published 3C protease crystal structures to provide insight into the mechanism by which these mutations enhance expression.


Assuntos
Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Vírus da Febre Aftosa/enzimologia , Febre Aftosa/virologia , Peptídeos/genética , Proteínas Virais/química , Proteínas Virais/genética , Proteases Virais 3C , Animais , Cisteína Endopeptidases/metabolismo , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/metabolismo , Regulação Viral da Expressão Gênica , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Mutagênese , Peptídeos/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Prolina/genética , Prolina/metabolismo , Conformação Proteica em Folha beta , Processamento Pós-Transcricional do RNA , Proteínas Virais/metabolismo
19.
Chembiochem ; 20(10): 1266-1272, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30624001

RESUMO

Despite a successful application of solvent-free liquid protein (biofluids) concept to a number of commercial enzymes, the technical advantages of enzyme biofluids as hyperthermal stable biocatalysts cannot be fully utilized as up to 90-99% of native activities are lost when enzymes were made into biofluids. With a two-step strategy (site-directed mutagenesis and synthesis of variant biofluids) on Bacillus subtilis lipase A (BsLA), we elucidated a strong dependency of structure and activity on the number and distribution of polymer surfactant binding sites on BsLA surface. Here, it is demonstrated that improved BsLA variants can be engineered via site-mutagenesis by a rational design, either with enhanced activity in aqueous solution in native form, or with improved physical property and increased activity in solvent-free system in the form of a protein liquid. This work answered some fundamental questions about the surface characteristics for construction of biofluids, useful for identifying new strategies for developing advantageous biocatalysts.


Assuntos
Lipase/química , Polímeros/química , Tensoativos/química , Bacillus subtilis/enzimologia , Sítios de Ligação , Lipase/genética , Lipase/metabolismo , Mutagênese Sítio-Dirigida , Mutação , Polímeros/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Tensoativos/metabolismo
20.
J Biol Chem ; 292(47): 19315-19327, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-28974575

RESUMO

Bifunctional glycoside hydrolases have potential for cost-savings in enzymatic decomposition of plant cell wall polysaccharides for biofuels and bio-based chemicals. The N-terminal GH10 domain of a bifunctional multimodular enzyme CbXyn10C/Cel48B from Caldicellulosiruptor bescii is an enzyme able to degrade xylan and cellulose simultaneously. However, the molecular mechanism underlying its substrate promiscuity has not been elucidated. Herein, we discovered that the binding cleft of CbXyn10C would have at least six sugar-binding subsites by using isothermal titration calorimetry analysis of the inactive E140Q/E248Q mutant with xylo- and cello-oligosaccharides. This was confirmed by determining the catalytic efficiency of the wild-type enzyme on these oligosaccharides. The free form and complex structures of CbXyn10C with xylose- or glucose-configured oligosaccharide ligands were further obtained by crystallographic analysis and molecular modeling and docking. CbXyn10C was found to have a typical (ß/α)8-TIM barrel fold and "salad-bowl" shape of GH10 enzymes. In complex structures with xylo-oligosaccharides, seven sugar-binding subsites were found, and many residues responsible for substrate interactions were identified. Site-directed mutagenesis indicated that 6 and 10 amino acid residues were key residues for xylan and cellulose hydrolysis, respectively. The most important residues are centered on subsites -2 and -1 near the cleavage site, whereas residues playing moderate roles could be located at more distal regions of the binding cleft. Manipulating the residues interacting with substrates in the distal regions directly or indirectly improved the activity of CbXyn10C on xylan and cellulose. Most of the key residues for cellulase activity are conserved across GH10 xylanases. Revisiting randomly selected GH10 enzymes revealed unreported cellulase activity, indicating that the dual function may be a more common phenomenon than has been expected.


Assuntos
Celulose/metabolismo , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/metabolismo , Firmicutes/enzimologia , Sequência de Aminoácidos , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Endo-1,4-beta-Xilanases/genética , Hidrólise , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Ligação Proteica , Conformação Proteica , Homologia de Sequência , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA