Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Mol Sci ; 23(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35562923

RESUMO

A great promise for tissue engineering is represented by scaffolds that host stem cells during proliferation and differentiation and simultaneously replace damaged tissue while maintaining the main vital functions. In this paper, a novel process was adopted to develop composite scaffolds with a core-shell structure for bone tissue regeneration, in which the core has the main function of temporary mechanical support, and the shell enhances biocompatibility and provides bioactive properties. An interconnected porous core was safely obtained, avoiding solvents or other chemical issues, by blending poly(lactic acid), poly(ε-caprolactone) and leachable superabsorbent polymer particles. After particle leaching in water, the core was grafted with a gelatin/chitosan hydrogel shell to create a cell-friendly bioactive environment within its pores. The physicochemical, morphological, and mechanical characterization of the hybrid structure and of its component materials was carried out by means of infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, and mechanical testing under different loading conditions. These hybrid polymer devices were found to closely mimic both the morphology and the stiffness of bones. In addition, in vitro studies showed that the core-shell scaffolds are efficiently seeded by human mesenchymal stromal cells, which remain viable, proliferate, and are capable of differentiating towards the osteogenic phenotype if adequately stimulated.


Assuntos
Polímeros , Alicerces Teciduais , Regeneração Óssea , Osso e Ossos , Poliésteres/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química
2.
Cell Tissue Res ; 383(2): 735-750, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32924069

RESUMO

Osteoconductive biomaterials were used to find the most reliable materials in bone healing. Our focus was on the bone healing capacity of the stem cell-loaded and unloaded PLA/PCL/HA scaffolds. The 3D scaffold of PLA/PCL/HA was characterized by scanning electron microscopy (SEM), rheology, X-ray diffraction (XRD), and Fourier transform-infrared (FT-IR) spectroscopy. Bone marrow stem cells (BMSCs) have multipotential differentiation into osteoblasts. Forty Wistar male rats were used to organize four experimental groups: control, autograft, scaffold, and BMSCs-loaded scaffold groups. qRT-PCR showed that the BMSCs-loaded scaffold had a higher expression level of CD31 and osteogenic markers compared with the control group (P < 0.05). Radiology and computed tomography (CT) scan evaluations showed significant improvement in the BMSCs-loaded scaffold compared with the control group (P < 0.001). Biomechanical estimation demonstrated significantly higher stress (P < 0.01), stiffness (P < 0.001), and ultimate load (P < 0.01) in the autograft and BMSCs-loaded scaffold groups compared with the untreated group and higher strain was seen in the control group than the other groups (P < 0.01). Histomorphometric and immunohistochemical (IHC) investigations showed significantly improved regeneration scores in the autograft and BMSCs-loaded scaffold groups compared with the control group (P < 0.05). Also, there was a significant difference between the scaffold and control groups in all tests (P < 0.05). The results depicted that our novel approach will allow to develop PLA/PCL/HA 3D scaffold in bone healing via BMSC loading.


Assuntos
Durapatita/química , Poliésteres/química , Rádio (Anatomia)/patologia , Células-Tronco/citologia , Alicerces Teciduais/química , Animais , Fenômenos Biomecânicos , Células da Medula Óssea/citologia , Regeneração Óssea , Adesão Celular , Forma Celular , Regulação da Expressão Gênica , Concentração de Íons de Hidrogênio , Masculino , Neovascularização Fisiológica , Osteogênese/genética , Rádio (Anatomia)/diagnóstico por imagem , Ratos Wistar , Espectroscopia de Infravermelho com Transformada de Fourier , Tomografia Computadorizada por Raios X , Cicatrização
3.
J Surg Res ; 242: 62-69, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31071606

RESUMO

BACKGROUND: Current therapeutic materials for spina bifida repair showed a limited number of options in the market, and none of them have all the requirements as the ideal patch. In fact, sometimes the surgical procedures pose substantial challenges using different patches to fully cover the spina bifida lesion. For this purpose, a tailored patch made of poly (L-lactic acid) and poly (ε-caprolactone) blend was designed and validated in vitro to accomplish all these requirements but was never tested in vivo. MATERIAL AND METHODS: In our present study, the designed patch was analyzed in terms of rejection from the animal when implanted subcutaneously and as a dural substitute in the spinal cord. Inflammatory reaction (Iba1), astrogliosis (GFAP), was analyzed and functional interaction with spinal cord tissue assessing the (%motor-evoked potentials /compound motor action potential) by electrophysiology. RESULTS: No evidence of adverse or inflammatory reactions was observed in both models of subcutaneous implantation, neither in the neural tissue as a dural substitute. No signs of astrogliosis in the neural tissue were observed, and no functional alteration with improvement of the motor-evoked potential's amplitude was detected after 4 wk of implantation as a dural substitute in the rat spinal cord. CONCLUSIONS: Designed patch used as a dural substitute will apparently not produce inflammation, scar formation, or tethering cord and not induce any adverse effect on regular functions of the spinal cord. Further studies are needed to evaluate potential improvements of this novel polymeric patch in the spinal cord regeneration using spina bifida models.


Assuntos
Procedimentos Neurocirúrgicos/efeitos adversos , Poliésteres/efeitos adversos , Próteses e Implantes/efeitos adversos , Disrafismo Espinal/cirurgia , Animais , Astrócitos/patologia , Modelos Animais de Doenças , Dura-Máter/citologia , Dura-Máter/patologia , Dura-Máter/cirurgia , Gliose/diagnóstico , Gliose/etiologia , Gliose/patologia , Humanos , Laminectomia , Teste de Materiais , Procedimentos Neurocirúrgicos/instrumentação , Complicações Pós-Operatórias/diagnóstico , Complicações Pós-Operatórias/etiologia , Ratos
4.
J Mech Behav Biomed Mater ; 150: 106340, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38147762

RESUMO

The mechanical, thermal, and biological performance of fabrics manufactured with hybrid PLA/PCL commingled yarns were studied. Commingled hybrid yarns take advantage of the higher elastic modulus of PLA and the higher ductility and toughness of PCL to produce yarns and fabrics with high strength and ductility that is transferred to the woven textiles. Furthermore, PLA and PCL exhibit different degradation rates and also allow to tailor this property. Degradation of the textiles was carried out in phosphate-buffered saline solution for up to 160 days at 37 °C and 50 °C (accelerated degradation). Neither the thermal nor the mechanical properties were altered by immersion at 37 °C during 80 days and a slight degradation was observed as a result of chain scission of the PLA fibres after 160 days. However, immersion at 50 °C led to a rapid reduction in strength after 40 days due to the hydrolysis of PLA, and the fabric was highly degraded after 160 days as a result of chain scission in PCL. Finally, while indirect tests did not predict optimal biocompatibility, the direct tests provided a different perspective of the cell interaction between the textile and pre-osteoblasts regarding cell attachment and cell morphology. These results show the potential of hybrid commingled yarns to manufacture textile scaffolds of biodegradable polymers with tailored mechanical properties and good ductility for connective tissue engineering (ligaments and tendons).


Assuntos
Polímeros , Engenharia Tecidual , Engenharia Tecidual/métodos , Hidrólise , Poliésteres , Têxteis
5.
Int J Biol Macromol ; 176: 226-232, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33548326

RESUMO

The present article presents the results of research on the susceptibility of polylactide, poly(ɛ-caprolactone) and mixtures to biodegradation in conditions imitating natural extracts of compost, activated sludge, sea and river water, determined by the biochemical oxygen consumption by microorganisms and susceptibility to enzymatic degradation with the use of enzyme solutions of fungal microbial origin. Analyzes of both types of degradation were carried out over a period of seven days and in four environments: compost, activated sludge, river and sea water, and four enzymatic solutions containing proteinase K, protease, esterase, and lipase. The amount of oxygen consumed by microorganisms in the presence of the tested films was determined, as well as the weight loss determined after the samples were incubated in enzymatic solutions. Images of the surface of individual samples, taken by fluorescence microscopy and scanning electron microscopy, confirm the formation of bacterial biofilm and the results of biochemical oxygen consumption by microorganisms, or weight loss. It was shown that the compost and activated sludge extract as well as the enzymes proteinase K from Engyodontium album (synonym Tritirachium album) and protease from Bacillus licheniformis had the greatest impact on the biodegradation of the tested materials.


Assuntos
Bacillus licheniformis/fisiologia , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Hidrolases/metabolismo , Hypocreales/fisiologia , Poliésteres/metabolismo , Biodegradação Ambiental
6.
J Tissue Eng Regen Med ; 15(2): 150-162, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33216449

RESUMO

The effects of a scaffold made of polylactic acid, poly (ɛ-caprolactone) and hydroxyapatite by indirect 3D printing method with and without differentiated bone cells was tested on the regeneration of a critical radial bone defect in rat. The scaffold characterization and mechanical performance were determined by the rheology, scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, and Fourier transform infrared spectrometry. The defects were created in forty Wistar rats which were randomly divided into the untreated, autograft, scaffold cell-free, and differentiated bone cell-seeded scaffold groups (n = 10 in each group). The expression level of angiogenic and osteogenic markers, analyzed by quantitative real time-polymerase chain reaction (in vitro), significantly improved (p < 0.05) in the scaffold group compared to the untreated one. Radiology and computed tomography scan demonstrated a significant improvement in the cell-seeded scaffold group compared to the untreated one (p < 0.001). Biomechanical, histopathological, histomorphometric, and immunohistochemical investigations showed significantly better regeneration scores in the cell-seeded scaffold and autograft groups compared to the untreated group (p < 0.05). The cell-seeded scaffold and autograft groups did show comparable results on the 80th day post-treatment (p > 0.05), however, most results in the scaffold group were significantly higher than the untreated group (p < 0.05). Differentiated bone cells can enhance bone regeneration potential of the scaffold.


Assuntos
Regeneração Óssea , Células Imobilizadas , Osteogênese , Rádio (Anatomia) , Transplante de Células-Tronco , Células-Tronco , Alicerces Teciduais/química , Animais , Células Imobilizadas/metabolismo , Células Imobilizadas/patologia , Células Imobilizadas/transplante , Durapatita/química , Durapatita/farmacologia , Masculino , Poliésteres/química , Poliésteres/farmacologia , Impressão Tridimensional , Rádio (Anatomia)/lesões , Rádio (Anatomia)/metabolismo , Rádio (Anatomia)/cirurgia , Ratos , Ratos Wistar , Células-Tronco/metabolismo , Células-Tronco/patologia
7.
Life Sci ; 257: 118038, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32622947

RESUMO

PURPOSE: The importance of regeneration in large bone defects forces the orthopedic surgeons to search for a proper methodology. The present experiment evaluated the capability of polylactic acid/polycaprolactone/hydroxyapatite (PLA/PCL/HA) scaffold loaded with and without mesenchymal stem cells (MSCs) on bone regeneration. METHODS: Fourier transform infrared spectrometry, X-ray diffraction, scanning electron microscopy, and rheology methodologies were used to characterize the scaffold. Forty Wistar rats were randomly divided into the four groups including the untreated defects as the control group and three other groups in which the bone defects were treated with autologous bones (autograft group), the PLA/PCL/HA scaffolds (PLA/PCL/HA group), and the MSCs-seeded scaffolds (MSCs-seeded PLA/PCL/HA group). RESULTS: Based on the qRT-PCR results, significantly higher expression levels of osteocalcin, osteopontin, and CD31 were seen in the cell-seeded scaffold group compared to the control group (P < 0.05). The CT scanning and radiographic images depicted significantly more newly formed bonny tissue in the MSCs-loaded scaffold and autograft groups than the untreated group (P < 0.001). The immunohistochemistry, biomechanical, histopathologic, and histomorphometric evaluations demonstrated significantly improved regeneration in the autograft and MSCs-loaded scaffold groups compared to the non-treated group (P < 0.05). There were significant differences between the scaffold and untreated groups in all in vivo evaluations (P < 0.05). CONCLUSION: The MSCs enhanced bone healing potential of the PLA/PCL/HA scaffold and the MSCs-seeded scaffold was comparable to the autograft as the golden treatment regimen (P > 0.05).


Assuntos
Regeneração Óssea/fisiologia , Transplante de Células-Tronco Mesenquimais/métodos , Engenharia Tecidual/métodos , Animais , Regeneração Óssea/efeitos dos fármacos , Osso e Ossos/metabolismo , Durapatita/química , Masculino , Células-Tronco Mesenquimais/fisiologia , Poliésteres/química , Rádio (Anatomia)/metabolismo , Ratos , Ratos Wistar , Alicerces Teciduais/química
8.
J Mech Behav Biomed Mater ; 68: 155-162, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28171812

RESUMO

This manuscript focuses on the effect of the addition of a low molecular weight triblock copolymer derived from ε-caprolactone and tetrahydrofuran (CT) on the compatibility and cytotoxicity of immiscible poly(lactic acid) (PLA) and poly(ε-caprolactone) (PCL) blends. Binary and tertiary PLA/PCL blends were prepared by melt mixing in a twin-screw extruder and their morphological, mechanical and thermal behaviors were investigated by scanning electron microscopy (SEM), tensile and Izod impact test, dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC). SEM micrographs showed the CT copolymer suppressed the coalescence phenomena and maintained the size of dispersed PCL domains at approximately 0.35µm. Bioresorbable PLA/PCL blends containing 5wt% of CT copolymer exhibited a remarkable increase in ductility and improved toughness at room temperature. Although the CT copolymer increased the interfacial adhesion, the DMA results suggest it also acts as a plasticizer exclusively for the PCL phase. The cell viability evaluated by the XTT assay confirmed PLA/PCL blends compatibilized by CT copolymer exerted no cytotoxic effect.


Assuntos
Materiais Biocompatíveis/química , Poliésteres/química , Próteses e Implantes , Animais , Células CHO , Varredura Diferencial de Calorimetria , Cricetulus , Teste de Materiais , Microscopia Eletrônica de Varredura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA