Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 699
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Surg Res ; 300: 141-149, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38810527

RESUMO

INTRODUCTION: Transversus abdominis release (TAR) is increasingly being performed for reconstruction of complex incisional and recurrent ventral hernias, with complication rates ranging from 17.4% to 33.3% after open TAR (oTAR) or robotic TAR (rTAR). The purpose of this study was to describe the outcomes of patients undergoing TAR with macroporous polypropylene mesh (MPM) and to compare outcomes between oTAR and rTAR. METHODS: A retrospective review of 183 consecutive patients undergoing TAR with MPM performed by a single surgeon at a single institution from 2015 to 2021 was performed. Patients with less than one year of follow-up were excluded. Univariate analysis was performed to compare outcomes between oTAR and rTAR patients. RESULTS: Average patient age was 59.4 y, median body mass index was 33.2 kg/m2, and median hernia width was 12.0 cm. Forty 2 (23%) patients underwent oTAR, 127 (69%) underwent rTAR, and 14 (8%) underwent laparoscopic TAR. Patients experienced 16.4%, 10.4%, 3.8%, and 6.0% rates of overall complications, surgical site occurrences, surgical site infections, and other complications, respectively. At average follow-up of 2.3 y, a 2.7% hernia recurrence rate was observed. In comparison to patients undergoing oTAR, rTAR patients required shorter operative times and length of stay, and were less likely to experience postoperative complications overall, and other complications. Recurrence rates were similar between oTAR and rTAR. CONCLUSIONS: Patients undergoing TAR with MPM experienced complication and recurrence rates in alignment with previously published results. In comparison to oTAR, rTAR was associated with more favorable perioperative outcomes and complication rates, but similar recurrence rates.


Assuntos
Músculos Abdominais , Hérnia Ventral , Herniorrafia , Polipropilenos , Complicações Pós-Operatórias , Telas Cirúrgicas , Humanos , Telas Cirúrgicas/efeitos adversos , Pessoa de Meia-Idade , Estudos Retrospectivos , Masculino , Feminino , Idoso , Hérnia Ventral/cirurgia , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Herniorrafia/instrumentação , Herniorrafia/métodos , Herniorrafia/efeitos adversos , Resultado do Tratamento , Procedimentos Cirúrgicos Robóticos/efeitos adversos , Procedimentos Cirúrgicos Robóticos/métodos , Recidiva , Adulto , Seguimentos , Laparoscopia/efeitos adversos , Laparoscopia/métodos
2.
Environ Sci Technol ; 58(17): 7609-7616, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38624261

RESUMO

The carbonyl index aims to measure the degradation level and is used in plastic degradation research as a proxy for the general degradation level of collected plastic pieces. According to the choices for carbonyl index calculation, comparison using this index is prevented and must be unveiled by the authors, which does not always happen. In order to study the proper usage of the carbonyl index, regarding the choice of the reference band and the usage of the band intensity or the absorption area, we systematically reviewed the methodologies used for polypropylene as a case study. Based on 95 studies gathered from 2000 to 2024, two main methods were used to determine the carbonyl index: the ratio between the carbonyl band area and the reference band area (33.68%) and the ratio between the highest intensity of the carbonyl band and the reference band (66.31%). The reference band of choice and the type of calculation method produce different carbonyl index values for the same spectra and mean different information, preventing comparison among works with different calculations.


Assuntos
Polímeros , Plásticos , Polipropilenos/química
3.
Environ Sci Technol ; 58(15): 6647-6658, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38563431

RESUMO

The biodegradation of polypropylene (PP), a highly persistent nonhydrolyzable polymer, by Tenebrio molitor has been confirmed using commercial PP microplastics (MPs) (Mn 26.59 and Mw 187.12 kDa). This confirmation was based on the reduction of the PP mass, change in molecular weight (MW), and a positive Δδ13C in the residual PP. A MW-dependent biodegradation mechanism was investigated using five high-purity PP MPs, classified into low (0.83 and 6.20 kDa), medium (50.40 and 108.0 kDa), and high (575.0 kDa) MW categories to access the impact of MW on the depolymerization pattern and associated gene expression of gut bacteria and the larval host. The larvae can depolymerize/biodegrade PP polymers with high MW although the consumption rate and weight losses increased, and survival rates declined with increasing PP MW. This pattern is similar to observations with polystyrene (PS) and polyethylene (PE), i.e., both Mn and Mw decreased after being fed low MW PP, while Mn and/or Mw increased after high MW PP was fed. The gut microbiota exhibited specific bacteria associations, such as Kluyvera sp. and Pediococcus sp. for high MW PP degradation, Acinetobacter sp. for medium MW PP, and Bacillus sp. alongside three other bacteria for low MW PP metabolism. In the host transcriptome, digestive enzymes and plastic degradation-related bacterial enzymes were up-regulated after feeding on PP depending on different MWs. The T. molitor host exhibited both defensive function and degradation capability during the biodegradation of plastics, with high MW PP showing a relatively negative impact on the larvae.


Assuntos
Microbiota , Tenebrio , Animais , Tenebrio/metabolismo , Tenebrio/microbiologia , Plásticos , Polipropilenos/metabolismo , Microplásticos , Peso Molecular , Poliestirenos , Larva/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental
4.
Environ Sci Technol ; 58(12): 5461-5471, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38489752

RESUMO

Floating microplastics are susceptible to sunlight-driven photodegradation, which can convert plastic carbon to dissolved organic carbon (DOC) and can facilitate microplastic fragmentation by mechanical forces. To understand the photochemical fate of sub-millimeter buoyant plastics, ∼0.6 mm polypropylene microplastics were photodegraded while tracking plastic mass, carbon, and particle size distributions. Plastic mass loss and carbon loss followed linear kinetics. At most time points DOC accumulation accounted for under 50% of the total plastic carbon lost. DOC accumulation followed sigmoidal kinetics, not the exponential kinetics previously reported for shorter irradiations. Thus, we suggest that estimates of plastic lifespan based on exponential DOC accumulation are inaccurate. Instead, linear plastic-C mass and plastic mass loss kinetics should be used, and these methods result in longer estimates of photochemical lifetimes for plastics in surface waters. Scanning electron microscopy revealed that photoirradiation produced two distinct patterns of cracking on the particles. However, size distribution analyses indicated that fragmentation was minimal. Instead, the initial population of microplastics shrank in size during irradiations, indicating photoirradiation in tranquil waters (i.e., without mechanical forcing) dissolved sub-millimeter plastics without fragmentation.


Assuntos
Microplásticos , Poluentes Químicos da Água , Polipropilenos/análise , Plásticos/análise , Poluentes Químicos da Água/análise , Luz Solar , Carbono , Monitoramento Ambiental
5.
Macromol Rapid Commun ; 45(16): e2400233, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38777345

RESUMO

The memory of crystalline phase in the melt of isotactic polypropylene (iPP) in regiodefective samples of iPP characterized by different concentrations regiodefects, constituted by secondary 2,1 propene units, is studied. The self-nucleation (SN) experiments have demonstrated that the presence of 2,1 regiodefects produces a strong memory of the crystalline phase in the melt that persists up to temperatures much higher than the melting temperature. The extension of the heterogeneous melt (domain II) containing self-nuclei increases with increasing the concentration of regiodefects. The higher the concentration of regiodefects the higher the temperature at which the self-nuclei are dissolved and the homogeneous melt is achieved. This demonstrates that a strong memory of the crystalline phase of iPP in the melt exists not only in copolymers with noncrystallizable bulky comonomeric units rejected from the crystals but even when small defects are largely included in the crystals.


Assuntos
Polipropilenos , Polipropilenos/química , Estrutura Molecular , Cristalização , Temperatura , Alcenos/química , Temperatura de Transição
6.
Environ Res ; 248: 118307, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38307187

RESUMO

Microplastic pollution is a global issue of great public concern. Africa is flagged to host some of the most polluted water bodies globally, but there is no enough information on the extent of microplastic contamination and the potential risks of microplastic pollution in African aquatic ecosystems. This meta-analysis has integrated data from published articles about microplastic pollution in African aquatic ecosystems. The data on the microplastic distribution and morphological characteristics in water, sediments and biota from African rivers, lakes, oceans and seas were extracted from 75 selected studies. Multivariate statistics were used to critically analyze the effects of sampling and detection methods, ecological risks, spatial distribution and similarity of microplastics in relation to the geographical distance between sampling sites. This study found that sampling methods have significant effect on abundance and morphological characteristics of microplastics and that African aquatic ecosystems are highly contaminated with microplastics compared to global data. The most prevalent colors were white, transparent and black, the most prevalent shapes were fibres and fragments, and the most available polymers were polypropylene (PP), polystyrene (PS) and polyethene terephthalate (PET). Microplastic polymers similarity decreased with an increase in geographical distance between sites. Risk levels of microplastics in African aquatic ecosystems were comparatively high, and more than 40 % of water and sediments showed highest level of ecological risk. This review provides recent information on the prevalence, distribution and risks of microplastics in African aquatic ecosystems.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos/análise , Ecossistema , Monitoramento Ambiental , Poluentes Químicos da Água/análise , África , Poluição da Água/análise , Água , Sedimentos Geológicos
7.
Part Fibre Toxicol ; 21(1): 29, 2024 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107780

RESUMO

BACKGROUND: Microplastics have been detected in the atmosphere as well as in the ocean, and there is concern about their biological effects in the lungs. We conducted a short-term inhalation exposure and intratracheal instillation using rats to evaluate lung disorders related to microplastics. We conducted an inhalation exposure of polypropylene fine powder at a low concentration of 2 mg/m3 and a high concentration of 10 mg/m3 on 8-week-old male Fischer 344 rats for 6 h a day, 5 days a week for 4 weeks. We also conducted an intratracheal instillation of polypropylene at a low dose of 0.2 mg/rat and a high dose of 1.0 mg/rat on 12-week-old male Fischer 344 rats. Rats were dissected from 3 days to 6 months after both exposures, and bronchoalveolar lavage fluid (BALF) and lung tissue were collected to analyze lung inflammation and lung injury. RESULTS: Both exposures to polypropylene induced a persistent influx of inflammatory cells and expression of CINC-1, CINC-2, and MPO in BALF from 1 month after exposure. Genetic analysis showed a significant increase in inflammation-related factors for up to 6 months. The low concentration in the inhalation exposure of polypropylene also induced mild lung inflammation. CONCLUSION: These findings suggest that inhaled polypropylene, which is a microplastic, induces persistent lung inflammation and has the potential for lung disorder. Exposure to 2 mg/m3 induced inflammatory changes and was thought to be the Lowest Observed Adverse Effect Level (LOAEL) for acute effects of polypropylene. However, considering the concentration of microplastics in a real general environment, the risk of environmental hazards to humans may be low.


Assuntos
Líquido da Lavagem Broncoalveolar , Exposição por Inalação , Pulmão , Microplásticos , Pneumonia , Polipropilenos , Ratos Endogâmicos F344 , Animais , Masculino , Polipropilenos/toxicidade , Microplásticos/toxicidade , Exposição por Inalação/efeitos adversos , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Líquido da Lavagem Broncoalveolar/química , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Pneumonia/induzido quimicamente , Ratos
8.
Int Urogynecol J ; 35(3): 553-559, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38206335

RESUMO

INTRODUCTION AND HYPOTHESIS: Polypropylene meshes (PM) used in pelvic organ prolapse surgery are being withdrawn from the market. Although concerns about the usage of PMs in stress incontinence surgery have been raised, it is still one of the best methods of curing stress urinary incontinence. With advancements in stem cell-based therapies, especially mesenchymal stem cells (MSCs), it is believed that coating the synthetic meshes with MSCs may minimize excessive tissue reactions ultimately leading to clinical problems such as pain, erosion or extrusion of the implanted material. In our study we tried to show the possibility of coating the PM with placenta-derived MSCs. METHODS: Mesenchymal stem cells obtained from six placentas were isolated, cultured, and identified. MSCs were then soaked in either fibronectin or collagen prior to co-culturing with strips of PMs. One group is used as a control, and hence was not pretreated before co-culturing. Specimens were fixed and stained with both Gram and hematoxylin and eosin and marked with Vybran Dil and DAPI. All preparations were examined under a light microscope. The IMAGEJ program was utilized to determine the surface area of meshes coated with MSCs. RESULTS: We clearly showed that PMs can be coated successfully with placenta-derived MSCs. The percentage of the coated area is significantly increased when meshes were pretreated with fibronectin or collagen (p<0.0001). CONCLUSIONS: Placenta-derived MSCs can successfully coat PMs. The immunomodulatory properties of MSCs, which may be of great advantage in preventing the side effects of meshes, should be tested by in vivo and hopefully human studies before clinical applications.


Assuntos
Células-Tronco Mesenquimais , Incontinência Urinária por Estresse , Humanos , Polipropilenos , Projetos Piloto , Fibronectinas , Telas Cirúrgicas/efeitos adversos , Colágeno , Incontinência Urinária por Estresse/cirurgia
9.
J Toxicol Environ Health A ; 87(9): 371-380, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38440899

RESUMO

Exposure to microplastics may be associated with damage of immune system. Polypropylene microplastics (PP-MPs) with a wide range of beneficial applications have not been extensively studied with respect to the immune system. The aim of this investigation is to examine the influence of two different sizes of PP-MPs (5.2 and 23.9 µm diameter) on immune system components in ICR mice. PP-MPs were administered orally to female and male mice at 0 (corn oil vehicle), 500, 1000, or 2000 mg/kg/d for single and daily for 4-week repeated toxicity test, respectively. No significant differences were observed in number of thymic CD4+, CD8+, CD4+CD8+ T lymphocytes, splenic helper T cells, cytotoxic T cells, and B cells. The ratio of interferon-γ to interleukin-4 in culture supernatants from activated splenocytes ex vivo (48 hr) was lower in females which were repeatedly administered with PP-MPs compared to vehicle irrespective of PP-MPs size and dose. In contrast, the opposite trend was observed in males. Production of tumor necrosis factor-α was upregulated in females that were repeatedly exposed to PP-MPs. The serum IgG2a/IgG1 ratio was lowered in female receiving large-size PP-MPs. Data suggest that immune disturbances resulting in predominant type-2 helper T cell reactivity may occur in mice, especially in females, when repeatedly exposed to PP-MPs. Further investigations with longer exposure periods are necessary to determine the immunotoxicities attributed to PP-MPs.


Assuntos
Microplásticos , Poluentes Químicos da Água , Camundongos , Masculino , Feminino , Animais , Camundongos Endogâmicos ICR , Plásticos , Polipropilenos/toxicidade , Baço
10.
BMC Pulm Med ; 24(1): 41, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243231

RESUMO

BACKGROUND: The SARS-CoV-2 pandemic resulted in shortages of supplies, which limited the use of extracorporeal membrane oxygenation (ECMO) support. As a contingency strategy, polypropylene (PP) oxygenation membranes were used. This study describes the clinical outcomes in patients on ECMO with PP compared to poly-methylpentene (PMP) oxygenation membranes. METHODS: Retrospective cohort of patients in ECMO support admitted between 2020 and 2021. RESULTS: A total of 152 patients with ECMO support were included, 71.05% were men with an average age of 42 (SD 9.91) years. Veno-venous configuration was performed in 75.6% of cases. The PP oxygenation membranes required more changes 22 (63.1%), than the PMP Sorin® 24 (32,8%) and Euroset® 15 (31,9%) (p.0.022). The main indication for membrane change was low oxygen transfer for PP at 56.2%, Sorin® at 50%, and Euroset® at 14.8%. Renal replacement therapy was the most frequent complication with PP membrane in 22 patients (68.7%) Sorin® 25 patients (34.2%), and Euroset® 15 patients (31.9%) (p 0.001) without statistically significant differences in mortality. CONCLUSION: PP oxygenation membranes was a useful and feasible strategy. It allowed a greater disponibility of ECMO support for critically ill in a situation of great adversity during the SARS-CoV-2 pandemic.


Assuntos
Oxigenação por Membrana Extracorpórea , Polienos , Masculino , Humanos , Adulto , Feminino , Oxigenação por Membrana Extracorpórea/efeitos adversos , Polipropilenos , Estudos Retrospectivos , Pandemias , SARS-CoV-2
11.
Ecotoxicol Environ Saf ; 280: 116542, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38850698

RESUMO

The use of disposable face masks (DFMs) increased during the COVID-19 pandemic and has become a threat to the environment due to the release of microplastics (MPs). Although many reports have characterized and explored the release of MPs from DFMs and their effects in aquatic ecosystems, there is a lack of investigation into the effects in terrestrial plants. This report aims to fill this research gap by characterizing whole mask leachates (WMLs) collected at different time points and examining their toxicity on Allium cepa, a terrestrial model plant. Various analytical techniques including FE-SEM, FT-IR, and Raman spectroscopy were used to identify MPs in WMLs. The MPs are composed of polypropylene mostly and the concentration of smaller-sized MPs increased with leachate release time. The WMLs showed a MP concentration-dependent cytogenotoxic effect (72 %, 50 %, and 31 %, on 1, 5, and 11-day WMLs, respectively) on A. cepa root cells due to elevated oxidative stress (19 %, 45 %, and 70 %, on 1, 5, and 11-day WMLs, respectively). Heavy metal content of the WMLs was negligible and, thus, not a significant contributor to toxicity in the plant. Overall, this report highlights the fate of DFMs in the environment and their biological impacts in a model plant.


Assuntos
Máscaras , Microplásticos , Cebolas , Cebolas/efeitos dos fármacos , Microplásticos/toxicidade , COVID-19 , Estresse Oxidativo/efeitos dos fármacos , Fatores de Tempo , Metais Pesados/análise , Metais Pesados/toxicidade , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Raízes de Plantas
12.
Ecotoxicol Environ Saf ; 271: 115981, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38242046

RESUMO

To better understand the fate and assess the ingestible fraction of microplastics (by aquatic organisms), it is essential to quantify and characterize of their released from larger items under environmental realistic conditions. However, the current information on the fragmentation and size-based characteristics of released microplastics, for example from bio-based thermoplastics, is largely unknown. The goal of our work was to assess the fragmentation and release of microplastics, under ultraviolet (UV) radiation and in seawater, from polylactic acid (PLA) items, a bio-based polymer, and from polypropylene (PP) items, a petroleum-based polymer. To do so, we exposed pristine items of PLA and PP, immersed in filtered natural seawater, to accelerated UV radiation for 57 and 76 days, simulating 18 and 24 months of mean natural solar irradiance in Europe. Our results indicated that 76-day UV radiation induced the fragmentation of parent plastic items and the microplastics (50 - 5000 µm) formation from both PP and PLA items. The PP samples (48 ± 26 microplastics / cm2) released up to nine times more microplastics than PLA samples (5 ± 2 microplastics / cm2) after a 76-day UV exposure, implying that the PLA tested items had a lower fragmentation rate than PP. The particles' length of released microplastics was parameterized using a power law exponent (α), to assess their size distribution. The obtained α values were 3.04 ± 0.11 and 2.54 ± 0.06 (-) for 76-day UV weathered PP and PLA, respectively, meaning that PLA microplastics had a larger sized microplastics fraction than PP particles. With respect to their two-dimensional shape, PLA microplastics also had lower width-to-length ratio (0.51 ± 0.17) and greater fiber-shaped fractions (16%) than PP microplastics (0.57 ± 0.17% and 11%, respectively). Overall, the bio-based PLA items under study were more resistant to fragmentation and release of microplastics than the petroleum-based PP tested items, and the parameterized characteristics of released microplastics were polymer-dependent. Our work indicates that even though bio-based plastics may have a slower release of fragmented particles under UV radiation compared to conventional polymer types, they still have the potential to act as a source of microplastics in the marine environment, with particles being available to biota within ingestible size fractions, if not removed before major fragmentation processes.


Assuntos
Petróleo , Poluentes Químicos da Água , Polipropilenos , Microplásticos , Plásticos , Raios Ultravioleta , Imersão , Poliésteres , Água do Mar , Polímeros , Poluentes Químicos da Água/análise
13.
Ecotoxicol Environ Saf ; 280: 116537, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38852469

RESUMO

Microplastics (MPs), emerging as significant pollutants, have been consistently detected in aquatic environments, with the Yangtze River experiencing a particularly severe level of microplastic pollution, exceeding all other watersheds in China. Polypropylene (PP), the plastic most abundantly found in the middle and lower reaches of the Yangtze River Basin, has less comprehensive research results into its toxic effects. Consequently, the present investigation employed zebrafish as a model organism to delve into the toxicological impacts of polypropylene microplastics (PP-MPs) with a diameter of 5 µm across varying concentrations (300 mg/L and 600 mg/L). Using histopathological, microbiota profiling, and transcriptomic approaches, we systematically evaluated the impact of PP-MPs exposure on the intestine and liver of zebrafish. Histopathological analysis revealed that exposure to PP-MPs resulted in thinner intestinal walls, damaged intestinal mucosa, and hepatic cellular damage. Intestinal microbiota profiling demonstrated that, the richness, uniformity, diversity, and homogeneity of gut microbes significantly increased after the PP-MPs exposure at high concentration. These alterations were accompanied by shifts in the relative abundance of microbiota associated with intestinal pathologies, suggesting a profound impact on the intestinal microbial community structure. Concurrently, hepatic transcriptome analysis and RT-qPCR indicated that the downregulation of pathways and genes associated with cell proliferation regulation and DNA damage repair mechanisms contributed to hepatic cellular damage, ultimately exerting adverse effects on the liver. Correlation analysis between the intestinal microbiota and liver transcriptome profiles further highlighted significant associations between intestinal microbiota and the downregulated hepatic pathways. Collectively, these results provide novel insights into the subacute toxicological mechanisms of PP-MPs in aquatic organisms and highlight the need for further research on the ecological and health risks associated with PP-MPs pollution.


Assuntos
Microbioma Gastrointestinal , Fígado , Microplásticos , Polipropilenos , Poluentes Químicos da Água , Peixe-Zebra , Animais , Microplásticos/toxicidade , Polipropilenos/toxicidade , Poluentes Químicos da Água/toxicidade , Fígado/efeitos dos fármacos , Fígado/patologia , Microbioma Gastrointestinal/efeitos dos fármacos , China , Intestinos/efeitos dos fármacos , Intestinos/patologia , Transcriptoma/efeitos dos fármacos , Rios/química , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia
14.
J Arthroplasty ; 39(8S1): S294-S299, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38723699

RESUMO

BACKGROUND: Polypropylene (PPE) mesh is commonly utilized to reconstruct catastrophic extensor mechanism disruptions in revision total knee arthroplasty. Unfortunately, these procedures are associated with a high rate of periprosthetic joint infection. The purpose of the current study was to: 1) visualize and quantify the progression of bacterial biofilm growth on PPE-mesh; and 2) determine which antiseptic solutions effectively remove viable bacteria. METHODS: Knitted PPE mesh samples were cultured with either methicillin-sensitive Staphylococcus aureus (MSSA) or Escherichia coli (E. coli) for 7 days, with regular quantification of colony forming units (CFUs) and visualization using scanning electron microscopy to identify maturity. Immature (24 hour) and mature (72 hour) biofilm was treated with one of 5 commercial antiseptics for 3 minutes. A 0.05% chlorhexidine gluconate, a surfactant-based formulation of ethanol, acetic acid, sodium acetate, benzalkonium chloride, diluted povidone-iodine (0.35%), undiluted (10%) povidone-iodine, and 1:1 combination of 10% povidone-iodine and 3% hydrogen peroxide. A 3-log reduction in CFUs compared to saline was considered clinically meaningful. RESULTS: The CFU counts plateaued, indicating maturity, at 72 hours for both MSSA and E. coli. The scanning electron microscopy confirmed confluent biofilm formation after 72 hours. The 10% povidone-iodine was clinically effective against all MSSA biofilms and immature E. coli biofilms. The 10% povidone-iodine with hydrogen peroxide was effective in all conditions. Only 10% povidone iodine formulations produced significantly (P < .0083) reduced CFU counts against mature biofilms. CONCLUSIONS: Bacteria rapidly form biofilm on PPE mesh. Mesh contamination can be catastrophic, and clinicians should consider utilizing an antiseptic solution at the conclusion of mesh implantation. Undiluted povidone-iodine with hydrogen peroxide should be considered when attempting to salvage infected PPE mesh.


Assuntos
Anti-Infecciosos Locais , Biofilmes , Escherichia coli , Polipropilenos , Staphylococcus aureus , Telas Cirúrgicas , Biofilmes/efeitos dos fármacos , Telas Cirúrgicas/microbiologia , Escherichia coli/efeitos dos fármacos , Humanos , Staphylococcus aureus/efeitos dos fármacos , Infecções Relacionadas à Prótese/microbiologia , Infecções Relacionadas à Prótese/prevenção & controle , Povidona-Iodo/farmacologia , Clorexidina/análogos & derivados , Clorexidina/farmacologia , Microscopia Eletrônica de Varredura
15.
Aesthetic Plast Surg ; 48(5): 925-935, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37464216

RESUMO

BACKGROUND: Implant-based breast reconstruction (IBBR) can be performed using a variety of biological and synthetic meshes. However, there has yet to be a consensus on the optimal mesh. This study investigates the safety and patient satisfaction of using TiLOOP® Bra in IBBR and compares its postoperative complication risk with that of porcine acellular dermal matrix (ADM) and SERAGYN® BR. METHODS: The literature review was performed via PRISMA criteria, 23 studies met the inclusion criteria for the TiLOOP® Bra review, and 5 studies met the inclusion criteria for the meta-analysis. Patient characteristics and per-breast complications were collected. Data were analyzed using Cochrane RevMan and IBM SPSS. RESULTS: In 3175 breasts of 2685 patients that underwent IBBR using TiLOOP® Bra, rippling was observed as the most common complication, followed by seroma and capsular contracture. No significant difference in the overall complication rate between pre- and sub-pectoral IBBR using TiLOOP® Bra. However, the meta-analysis showed that the TiLOOP® Bra group had significantly lower odds of implant loss, seroma, wound dehiscence, and the need for reoperation or hospitalization than the ADM group. Additionally, the TiLOOP® Bra group had a significantly lower seroma rate compared to the SERAGYN® BR group, while the other outcome indicators were similar between the two groups. CONCLUSION: TiLOOP® Bra has become increasingly popular in IBBR in recent years. This review and meta-analysis support the favorable safety profile of TiLOOP® Bra reported in the current literature. The meta-analysis revealed that TiLOOP® Bra has better safety than ADM and a comparable risk of complications compared to SERAGYN® BR. However, as most studies had low levels of evidence, further investigations are necessary. LEVEL OF EVIDENCE III: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Assuntos
Derme Acelular , Implante Mamário , Implantes de Mama , Neoplasias da Mama , Mamoplastia , Animais , Feminino , Humanos , Neoplasias da Mama/cirurgia , Polipropilenos , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/prevenção & controle , Estudos Retrospectivos , Seroma , Telas Cirúrgicas , Suínos , Titânio , Resultado do Tratamento
16.
Int J Mol Sci ; 25(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38203826

RESUMO

Blends of poly(lactic acid) (PLA) with poly(propylene carbonate) (PPC) are currently in the phase of intensive study due to their promising properties and environmentally friendly features. Intensive study and further commercialization of PPC-based polymers or their blends, as usual, will soon face the problem of their waste occurring in the environment, including soil. For this reason, it is worth comprehensively studying the degradation rate of these polymers over a long period of time in soil and, for comparison, in phosphate buffer to understand the difference in this process and evaluate the potential application of such materials toward agrochemical and agricultural purposes. The degradation rate of the samples was generally accompanied by weight loss and a decrease in molecular weight, which was facilitated by the presence of PPC. The incubation of the samples in the aqueous media yielded greater surface erosions compared to the degradation in soil, which was attributed to the leaching of the low molecular degradation species out of the foils. The phytotoxicity study confirmed the no toxic impact of the PPC on tested plants, indicating it as a "green" material, which is crucial information for further, more comprehensive study of this polymer toward any type of sustainable application.


Assuntos
Agricultura , Polipropilenos , Solo , Poliésteres , Polímeros , Fosfatos
17.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38474185

RESUMO

Poly(propylene carbonate) (PPC) is an emerging "carbon fixation" polymer that holds the potential to become a "biomaterial of choice" in healthcare owing to its good biocompatibility, tunable biodegradability and safe degradation products. However, the commercialization and wide application of PPC as a biomedical material are still hindered by its narrow processing temperature range, poor mechanical properties and hydrophobic nature. Over recent decades, several physical, chemical and biological modifications of PPC have been achieved by introducing biocompatible polymers, inorganic ions or small molecules, which can endow PPC with better cytocompatibility and desirable biodegradability, and thus enable various applications. Indeed, a variety of PPC-based degradable materials have been used in medical applications including medical masks, surgical gowns, drug carriers, wound dressings, implants and scaffolds. In this review, the molecular structure, catalysts for synthesis, properties and modifications of PPC are discussed. Recent biomedical applications of PPC-based biomaterials are highlighted and summarized.


Assuntos
Materiais Biocompatíveis , Polímeros , Propano/análogos & derivados , Materiais Biocompatíveis/química , Polímeros/química , Próteses e Implantes
18.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731949

RESUMO

To enrich the properties of polylactic acid (PLA)-based composite films and improve the base degradability, in this study, a certain amount of poly(propylene carbonate) (PPC) was added to PLA-based composite films, and PLA/PPC-based composite films were prepared by melt blending and hot-press molding. The effects of the introduction of PPC on the composite films were analyzed through in-depth studies on mechanical properties, water vapor and oxygen transmission rates, thermal analysis, compost degradability, and bacterial inhibition properties of the composite films. When the introduction ratio coefficient of PPC was 30%, the tensile strength of the composite film increased by 19.68%, the water vapor transmission coefficient decreased by 14.43%, and the oxygen transmission coefficient decreased by 18.31% compared to that of the composite film without PPC, the cold crystallization temperature of the composite film increased gradually from 96.9 °C to 104.8 °C, and PPC improved the crystallization ability of composite film. The degradation rate of the composite film with PPC increased significantly compared to the previous one, and the degradation rate increased with the increase in the PPC content. The degradation rate was 49.85% and 46.22% faster on average than that of the composite film without PPC when the degradation was carried out over 40 and 80 days; the composite film had certain inhibition, and the maximum diameter of the inhibition circle was 2.42 cm. This study provides a strategy for the development of PLA-based biodegradable laminates, which can promote the application of PLA-based laminates in food packaging.


Assuntos
Poliésteres , Propano/análogos & derivados , Resistência à Tração , Poliésteres/química , Polipropilenos/química , Embalagem de Alimentos/métodos , Vapor , Polímeros/química , Antibacterianos/química , Antibacterianos/farmacologia , Temperatura
19.
Int J Mol Sci ; 25(3)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38338873

RESUMO

State-of-the-art Li batteries suffer from serious safety hazards caused by the reactivity of lithium and the flammable nature of liquid electrolytes. This work develops highly efficient solid-state electrolytes consisting of imidazolium-containing polyionic liquids (PILs) and lithium bis(trifluoromethane sulfonyl)imide (LiTFSI). By employing PIL/LiTFSI electrolyte membranes blended with poly(propylene carbonate) (PPC), we addressed the problem of combining ionic conductivity and mechanical properties in one material. It was found that PPC acts as a mechanically reinforcing component that does not reduce but even enhances the ionic conductivity. While pure PILs are liquids, the tricomponent PPC/PIL/LiTFSI blends are rubber-like materials with a Young's modulus in the range of 100 MPa. The high mechanical strength of the material enables fabrication of mechanically robust free-standing membranes. The tricomponent PPC/PIL/LiTFSI membranes have an ionic conductivity of 10-6 S·cm-1 at room temperature, exhibiting conductivity that is two orders of magnitude greater than bicomponent PPC/LiTFSI membranes. At 60 °C, the conductivity of PPC/PIL/LiTFSI membranes increases to 10-5 S·cm-1 and further increases to 10-3 S·cm-1 in the presence of plasticizers. Cyclic voltammetry measurements reveal good electrochemical stability of the tricomponent PIL/PPC/LiTFSI membrane that potentially ranges from 0 to 4.5 V vs. Li/Li+. The mechanically reinforced membranes developed in this work are promising electrolytes for potential applications in solid-state batteries.


Assuntos
Líquidos Iônicos , Propano/análogos & derivados , Lítio , Eletrólitos , Íons , Poli A , Polímeros
20.
J Environ Manage ; 353: 120176, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38295634

RESUMO

Conjugation with the increment of consumption of polypropylene (PP) masks and antidepressants during pandemic, PP microplastics (MPs) and Venlafaxine (VEN) widely co-existed in surface waters. However, their environmental fate and the combined toxicity were unclear. Hence, we investigated the adsorption behaviors, and associated mechanisms of PP MPs for VEN. The impact factors including pH, salinity, and MPs aging were estimated. The results indicated PP MPs could adsorb amount of VEN within 24 h. The pseudo second-order kinetic model (R2 = 0.97) and Dubinin-Radushkevich model (R2 = 0.89) fitted well with the adsorption capacity of PP MPs for VEN, implying that chemical adsorption accompanied by electrostatic interaction might be the predominant mode for the interactions between PP MPs and VEN. Meanwhile, the adsorption capacity of PP MPs declined from pH of 2.5-4.5 and then increased from 4.5 to 9.5. The increased salinity (5-35 ppt) significantly suppressed the adsorption capacity. Aging by sunlight and UV triggered the formation of new functional group (carbonyl) on MPs, and then enhanced the adsorption capacity for VEN. Gaussian Model analysis further evidenced the electrostatic adsorption occurring in PP MPs and VEN. The combined exposure to PP MPs and VEN showed significantly antagonistic toxicity on Daphnia magna. The adsorption of VEN by PP MPs mitigated the lethal effects and behavioral function impairment posed by VEN on animals, implying the potential protective effects on zooplankton by PP MPs. This study for the first time provides perspective for assessing the environmental fate of MPs and antidepressants in aquatic system.


Assuntos
Plásticos , Poluentes Químicos da Água , Animais , Cloridrato de Venlafaxina , Adsorção , Microplásticos , Polipropilenos , Antidepressivos , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA