Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(24): 8933-8942, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37285165

RESUMO

Vanadium is an element that is little known except to those who manufacture high-performance iron alloys and other widely used metal products that are indispensable for creating improved product performance across a variety of final-use sectors. We report here on deriving a detailed material flow cycle for vanadium in the United States for 1992-2021, the most recent year for which detailed data are available. The steels [tool steel, alloy steels, and high-strength low-alloy (HSLA) steels] are responsible for about half of the cumulative vanadium demand (167 Gg), with significantly smaller fractions being used to create catalysts, titanium-vanadium alloys, and several smaller product groups. These products flow to five end-use sectors, transport (61 Gg) and industrial machinery (62 Gg) being the largest. At end of product life, the vanadium-containing tool steels and catalysts are largely recycled, while most of the vanadium in carbon steels, alloy steels, HSLA steels, and other vanadium use sectors is functionally lost.


Assuntos
Ligas , Vanádio , Estados Unidos , Aço , Titânio , Carbono
2.
Small ; 18(50): e2206284, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36319463

RESUMO

Polybenzimidazole (PBI) membranes show excellent chemical stability and low vanadium crossover in vanadium redox flow batteries (VRFBs), but their high resistance is challenging. This work introduces a concept, membrane assemblies of a highly selective 2 µm thin PBI membrane between two 60 µm thick highly conductive PBI gel membranes, which act as soft protective layers against external mechanical forces and astray carbon fibers from the electrode. The soft layers are produced by casting phosphoric acid solutions of commercial PBI powder into membranes and exchanging the absorbed acid into sulfuric acid. A conductivity of 565 mS cm-1 is achieved. A stability test indicates that gel mPBI and dense PBI-OO have higher stability than dense mPBI and dense py-PBI, and gel/PBI-OO/gel is successfully tested for 1070 cycles (ca. 1000 h) at 100 mA cm-2 in the VRFB. The initial energy efficiency (EE) for the first 50 cycles is 90.5 ± 0.2%, and after a power outage stabilized at 86.3 ± 0.5% for the following 500 cycles. The initial EE is one of the highest published so far, and the materials cost for a membrane assembly is 12.35 U.S. dollars at a production volume of 5000 m2 , which makes these membranes very attractive for commercialization.


Assuntos
Fontes de Energia Elétrica , Vanádio , Oxirredução , Condutividade Elétrica , Membranas Artificiais
3.
Int J Mol Sci ; 20(17)2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31484450

RESUMO

In this study, nanoparticle-incorporated nanofiber-covered yarns were prepared using a custom-made needle-free electrospinning system. The ultimate goal of this work was to prepare functional nanofibrous surfaces with antibacterial properties and realize high-speed production. As antibacterial agents, we used various amounts of copper oxide (CuO) and vanadium (V) oxide (V2O5) nanoparticles (NPs). Three yarn preparation speeds (100 m/min, 150 m/min, and 200 m/min) were used for the nanofiber-covered yarn. The results indicate a relationship between the yarn speed, quantity of NPs, and antibacterial efficiency of the material. We found a higher yarn speed to be associated with a lower reduction in bacteria. NP-loaded nanofiber yarns were proven to have excellent antibacterial properties against Gram-negative Escherichia coli (E. coli). CuO exhibited a greater inhibition and bactericidal effect against E. coli than V2O5. In brief, the studied samples are good candidates for use in antibacterial textile surface applications, such as wastewater filtration. As greater attention is being drawn to this field, this work provides new insights regarding the antibacterial textile surfaces of nanofiber-covered yarns.


Assuntos
Antibacterianos/química , Nanofibras/química , Polivinil/química , Cobre/química , Vanádio/química
4.
Appl Environ Microbiol ; 84(16)2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29915110

RESUMO

Azotobacter vinelandii selectively utilizes three types of nitrogenase (molybdenum, vanadium, and iron only) to fix N2, with their expression regulated by the presence or absence of different metal cofactors in its environment. Each alternative nitrogenase isoenzyme is predicted to have different electron flux requirements based on in vitro measurements, with the molybdenum nitrogenase requiring the lowest flux and the iron-only nitrogenase requiring the highest. Here, prior characterized strains, derepressed in nitrogenase synthesis and also deficient in uptake hydrogenase, were further modified to generate new mutants lacking the ability to produce poly-ß-hydroxybutyrate (PHB). PHB is a storage polymer generated under oxygen-limiting conditions and can represent up to 70% of the cells' dry weight. The absence of such granules facilitated the study of relationships between catalytic biomass and product molar yields across different adaptive respiration conditions. The released hydrogen gas observed during growth, due to the inability of the mutants to recapture hydrogen, allowed for direct monitoring of in vivo nitrogenase activity for each isoenzyme. The data presented here show that increasing oxygen exposure limits equally the in vivo activities of all nitrogenase isoenzymes, while under comparative conditions, the Mo nitrogenase enzyme evolves more hydrogen per unit of biomass than the alternative isoenzymes.IMPORTANCEA. vinelandii has been a focus of intense research for over 100 years. It has been investigated for a variety of functions, including agricultural fertilization and hydrogen production. All of these endeavors are centered around A. vinelandii's ability to fix nitrogen aerobically using three nitrogenase isoenzymes. The majority of research up to this point has targeted in vitro measurements of the molybdenum nitrogenase, and robust data contrasting how oxygen impacts the in vivo activity of each nitrogenase isoenzyme are lacking. This article aims to provide in vivo nitrogenase activity data using a real-time evaluation of hydrogen gas released by derepressed nitrogenase mutants lacking an uptake hydrogenase and PHB accumulation.


Assuntos
Azotobacter vinelandii/enzimologia , Hidrogênio/metabolismo , Nitrogenase/metabolismo , Oxigênio/metabolismo , Azotobacter vinelandii/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Hidroxibutiratos/metabolismo , Ferro/metabolismo , Molibdênio/metabolismo , Nitrogênio/metabolismo , Fixação de Nitrogênio , Nitrogenase/genética , Oxirredução , Poliésteres/metabolismo , Vanádio/metabolismo
5.
Waste Manag Res ; 36(11): 1083-1091, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30198425

RESUMO

The recycling of metallic iron is commonly the first step to fully use the converter slag, which is the biggest waste discharge in the steelmaking process. This study presents a proposed improved process of separating metallic iron from vanadium-bearing converter slag more efficiently. The mineralogical and morphological characteristics of the converter slag were first investigated, and the results showed that most of the iron was incorporated in the spinel and olivine. Grinding, sieving and magnetic separation were combined to recover metallic iron from the converter slag, and yielded approximately 41.5% of iron in which the iron content was as high as 85%, and the non-magnetic concentrate contains 8.56% vanadium with a yield of 95.3% and 8.63% titanium with a yield of 85.3%. The magnetic part can be used as the raw materials in the steel making process, whereas the non-magnetic part can be used as the raw materials for the further extraction of vanadium.


Assuntos
Resíduos Industriais , Vanádio , Ferro , Reciclagem , Aço
6.
Macromol Rapid Commun ; 38(8)2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28195670

RESUMO

Novel polysulfone membranes with bunch-like tertiary amine groups are synthesized with high ion selectivity and outstanding chemical stability for vanadium redox flow batteries (VRFBs). The bunch-like tertiary amine groups simultaneously act as an ionic conductor for proton hopping and vanadium ion transport obstacles. The performance of the membrane is tuned via controlling the grafting degree of the chloromethylated polysulfone. The results show that membranes show increasing proton over vanadium ion (σ/p) selectivity with increasing functional tertiary groups. VRFBs assembled with the prepared membranes demonstrate an impressive Coulombic efficiency of 98.9% and energy efficiency of 90.9% at a current density of 50 mA cm-2 . Furthermore, the prepared membrane reported in this work shows excellent stability in 1 m VO2+ solution at 35 °C over 240 h. Overall, the synthesized polymers provide a new insight into the design of high-performance membranes toward VRFB applications.


Assuntos
Aminas/química , Fontes de Energia Elétrica , Membranas Artificiais , Polímeros/química , Prótons , Sulfonas/química , Vanádio/química , Aminas/síntese química , Condutividade Elétrica , Íons/química , Modelos Químicos , Estrutura Molecular , Oxirredução , Permeabilidade , Espectroscopia de Prótons por Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria
7.
J Environ Manage ; 203(Pt 3): 896-906, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28501334

RESUMO

The Basic Oxygen Furnace Slag results from the conversion of hot metal into steel. Some properties of this slag, such as the high pH or calcium and magnesium content, makes it suitable for agricultural use as a soil amendment. Slag application to agricultural soils is allowed in some European countries, but to date there is no common regulation in the European Union. In Italy soils in coastal areas are often affected by excess sodium, which has several detrimental effects on the soil structure and crop production. In this study, carried out within an European project, the ability of the Basic Oxygen Furnace Slag to decrease the soil Exchangeable Sodium Percentage of a sodic soil was evaluated. A three-year lysimeter trial with wheat and tomato crops was carried out to assess the effects of two slag doses (D1, 3.5 g kg-1year-1 and D, 2, 7 g kg-1year-1) on exchangeable cations in comparison with unamended soil. In addition, the accumulation in the topsoil of vanadium and chromium, the two main trace metals present in the Basic Oxygen Furnace Slag, was assessed. After two years, the soil Exchangeable Sodium Percentage was reduced by 40% in D1 and 45% in D2 compared to the control. A concomitant increase in exchangeable bivalent cations (Ca++ and Mg++) was observed. We concluded that bivalent cations supplied with the slag competed with sodium for the sorption sites in the soil. The slag treatments also had a positive effect on tomato yields, which were higher than the control. Conversely the wheat yield was lower in the slag-amended soil, possibly because of the toxicity of vanadium added with the slag. This study showed that Basic Oxygen Furnace Slag decreased the Exchangeable Sodium Percentage, but precautions are needed to avoid the build up of toxic concentrations of trace metals in the soil, especially vanadium.


Assuntos
Salinidade , Sódio/química , Poluentes do Solo/química , Agricultura , Cromo/química , Europa (Continente) , Itália , Oxigênio/química , Poluentes do Solo/análise , Aço/química , Vanádio/química
8.
J Sep Sci ; 39(8): 1509-17, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26891590

RESUMO

A vanadium ion-imprinted polymer was synthesized in the presence of V(V) and N-benzoyl-N-phenyl hydroxyl amine using 4-vinyl pyridine as the monomer, ethylene glycol dimethacrylate as the cross linker and 2,2'-azobis(isobutyronitrile) as the initiator. The imprinted V(V) ions were completely removed by leaching the polymer with 5 mol/L nitric acid, and the polymer structure was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The ion-imprinted polymer was used as the sorbent in the development of the solid-phase extraction method for V(V) prior to its determination by electrothermal atomic absorption spectrometry. The maximum sorption capacity for V(V) ions was 26.7 mg/g at pH 4.0. Under the optimum conditions, for a sample volume of 150.0 mL, an enrichment factor of 289.0 and a detection limit of 6.4 ng/L were obtained. The developed method was successfully applied to the determination of vanadium in parsley, zucchini, black tea, rice, and water samples.


Assuntos
Contaminação de Alimentos/análise , Impressão Molecular , Nanopartículas/química , Polímeros/química , Temperatura , Vanádio/análise , Concentração de Íons de Hidrogênio , Íons/química , Tamanho da Partícula , Polímeros/síntese química , Porosidade , Espectrofotometria Atômica , Propriedades de Superfície
9.
Chemistry ; 20(17): 5149-59, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24615733

RESUMO

We explore the interactions of V(III) -, V(IV) -, and V(V) -2,6-pyridinedicarboxylic acid (dipic) complexes with model membrane systems and whether these interactions correlate with the blood-glucose-lowering effects of these compounds on STZ-induced diabetic rats. Two model systems, dipalmitoylphosphatidylcholine (DPPC) Langmuir monolayers and AOT (sodium bis(2-ethylhexyl)sulfosuccinate) reverse micelles present controlled environments for the systematic study of these vanadium complexes interacting with self-assembled lipids. Results from the Langmuir monolayer studies show that vanadium complexes in all three oxidation states interact with the DPPC monolayer; the V(III) -phospholipid interactions result in a slight decrease in DPPC molecular area, whereas V(IV) and V(V) -phospholipid interactions appear to increase the DPPC molecular area, an observation consistent with penetration into the interface of this complex. Investigations also examined the interactions of V(III) - and V(IV) -dipic complexes with polar interfaces in AOT reverse micelles. Electron paramagnetic resonance spectroscopic studies of V(IV) complexes in reverse micelles indicate that the neutral and smaller 1:1 V(IV) -dipic complex penetrates the interface, whereas the larger 1:2 V(IV) complex does not. UV/Vis spectroscopy studies of the anionic V(III) -dipic complex show only minor interactions. These results are in contrast to behavior of the V(V) -dipic complex, [VO2 (dipic)](-) , which penetrates the AOT/isooctane reverse micellar interface. These model membrane studies indicate that V(III) -, V(IV) -, and V(V) -dipic complexes interact with and penetrate the lipid interfaces differently, an effect that agrees with the compounds' efficacy at lowering elevated blood glucose levels in diabetic rats.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/metabolismo , Complexos de Coordenação/farmacocinética , Ácido Dioctil Sulfossuccínico/metabolismo , Hipoglicemiantes/farmacocinética , Micelas , Piridinas/farmacocinética , Vanádio/farmacocinética , Animais , Complexos de Coordenação/química , Diabetes Mellitus Experimental/tratamento farmacológico , Espectroscopia de Ressonância de Spin Eletrônica , Hipoglicemiantes/química , Insulina/metabolismo , Membranas Artificiais , Ácidos Picolínicos , Piridinas/química , Ratos , Vanádio/química
10.
Environ Pollut ; 343: 123126, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38092336

RESUMO

The metal vanadium has superior physical and chemical properties and has a wide range of applications in many fields of modern industry. The increasing demand for vanadium worldwide has led to the need to guarantee sustainable vanadium production. The smelting process of vanadium and titanium magnetite produces vanadium-bearing steel slag, a key material for vanadium extraction. Herein, vanadium production, consumption, and steel slag properties are discussed. A detailed review of methods for extracting vanadium from vanadium-bearing steel slag is presented, including the most commonly used roasting and leaching method, and direct leaching, bioleaching and enhanced leaching methods are also described. Finally, the rules and regulations of steel slag management are introduced. In general, it is necessary to further develop environmentally friendly vanadium extraction methods and technologies from vanadium containing solid wastes. This study provides research directions for the technology of vanadium extraction from steel slag.


Assuntos
Resíduos Industriais , Vanádio , Vanádio/análise , Resíduos Industriais/análise , Aço , Reciclagem , Titânio
11.
Int J Pharm ; 659: 124266, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38788971

RESUMO

Scientific research targeted at enhancing scaffold qualities has increased significantly during the last few decades. This emphasis frequently centres on adding different functions to scaffolds in order to increase their usefulness as instruments in the field of regenerative medicine. This study aims to investigate the efficacy of a multifunctional sustainable polymer scaffold, specifically Polycaprolactone (PCL) embedded with hydroxyapatite co-doped with vanadium and strontium (HVS), for bone tissue engineering applications. Polycaprolactone was used to fabricate the scaffold, while hydroxyapatite co-doped with vanadium and strontium (HVS) served as the nanofiller. A thorough investigation of the physicochemical and biological characteristics of the HVS nanofiller was carried out using cutting-edge techniques including Dynamic Light Scattering (DLS), and X-ray Photoelectron Spectroscopy (XPS) and in vitro cell studies. A cell viability rate of more than 70 % demonstrated that the synthesised nanofiller was cytotoxic, but in an acceptable range. The mechanical, biological, and physicochemical properties of the scaffold were extensively evaluated after the nanofiller was integrated. The water absorption characteristics of scaffold were enhanced by the addition of HVS nanofillers, leading to increased swelling, porosity, and hydrophilicity. These improvements speed up the flow of nutrients and the infiltration of cells into the scaffold. The scaffold has been shown to have important properties that stimulate bone cell activity, including better biodegradability and improved mechanical strength, which increased from 5.30 ± 0.37 to 10.58 ± 0.42 MPa. Further, its considerable antimicrobial qualities, blood-compatible nature, and capacity to promote biomineralization strengthen its appropriateness for usage in biomedical applications. Mainly, enhanced Alkaline phosphatase (ALP) activity, Alizarin Red Staining (ARS) activity, and excellent cell adhesive properties, indicating the outstanding osteogenic potential observed in rat bone marrow-derived stromal cells (rBMSC). These combined attributes highlight the pivotal role of these nanocomposite scaffolds in the field of bone tissue engineering.


Assuntos
Sobrevivência Celular , Durapatita , Poliésteres , Estrôncio , Engenharia Tecidual , Alicerces Teciduais , Vanádio , Estrôncio/química , Engenharia Tecidual/métodos , Durapatita/química , Poliésteres/química , Alicerces Teciduais/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Vanádio/química , Osso e Ossos/efeitos dos fármacos , Ratos , Porosidade , Osteogênese/efeitos dos fármacos , Humanos , Materiais Biocompatíveis/química
12.
Environ Sci Pollut Res Int ; 31(35): 48576-48589, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39033473

RESUMO

Emulsion liquid membrane (ELM) stands out as an extraction process that has drawn much attention due to its promising prospects in industrial wastewater treatment technology. Nevertheless, the pivotal challenge is to reach high membrane stability to overcome the obstacle of applying ELM at the industrial scale. In this study, ELM was boosted by using nanoparticles (superparamagnetic iron oxide (Fe2O3)) in the stripping phase (W1) and ionic liquid (1-methyl-3-octyl-imidazolium-hexafluorophosphate [OMIM][PF6) in the oil phase (O) for recovering/extracting vanadium from synthetic wastewater to near completion and at the same time enhancing emulsion stability to be appropriate for industrial application. The vanadium recovery/extraction percentage has been raised significantly in 3 min to 99.6% when adding 0.01% (w/w) Fe2O3 NPs (20 to 50 nm in size) in the internal phase (W1) and 5% (v/v) [OMIM]PF6 ionic liquid in the oil phase (O). Also, the emulsion stability was considerably improved, and the leakage percentage was reduced to 16% after 3 days. The results of this study could be used in the future to remove additional heavy metal ions from industrial effluents.


Assuntos
Emulsões , Líquidos Iônicos , Nanopartículas , Vanádio , Águas Residuárias , Líquidos Iônicos/química , Águas Residuárias/química , Vanádio/química , Nanopartículas/química , Poluentes Químicos da Água , Membranas Artificiais
13.
Artif Organs ; 37(12): E191-201, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24147953

RESUMO

Interbody fusion cages made of poly-ether-ether-ketone (PEEK) have been widely used in clinics for spinal disorders treatment; however, they do not integrate well with surrounding bone tissue. Ti-6Al-4V (Ti) has demonstrated greater osteoconductivity than PEEK, but the traditional Ti cage is generally limited by its much greater elastic modulus (110 GPa) than natural bone (0.05-30 GPa). In this study, we developed a porous Ti cage using electron beam melting (EBM) technique to reduce its elastic modulus and compared its spinal fusion efficacy with a PEEK cage in a preclinical sheep anterior cervical fusion model. A porous Ti cage possesses a fully interconnected porous structure (porosity: 68 ± 5.3%; pore size: 710 ± 42 µm) and a similar Young's modulus as natural bone (2.5 ± 0.2 GPa). When implanted in vivo, the porous Ti cage promoted fast bone ingrowth, achieving similar bone volume fraction at 6 months as the PEEK cage without autograft transplantation. Moreover, it promoted better osteointegration with higher degree (2-10x) of bone-material binding, demonstrated by histomorphometrical analysis, and significantly higher mechanical stability (P < 0.01), shown by biomechanical testing. The porous Ti cage fabricated by EBM could achieve fast bone ingrowth. In addition, it had better osseointegration and superior mechanical stability than the conventional PEEK cage, demonstrating great potential for clinical application.


Assuntos
Transplante Ósseo/instrumentação , Vértebras Cervicais/cirurgia , Cetonas/química , Osseointegração , Polietilenoglicóis/química , Fusão Vertebral/instrumentação , Titânio/química , Ligas , Animais , Benzofenonas , Materiais Biocompatíveis , Fenômenos Biomecânicos , Vértebras Cervicais/diagnóstico por imagem , Módulo de Elasticidade , Desenho de Equipamento , Feminino , Polímeros , Porosidade , Amplitude de Movimento Articular , Ovinos , Fatores de Tempo , Microtomografia por Raio-X
14.
Bioresour Technol ; 369: 128411, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36460177

RESUMO

Environmental concerns have taken a center stage in our lives driving the society towards biorefinery. Bioprocess development to produce valuable products utilizing waste has its own significance in circular bioeconomy and environmental sustainability. In the present study, production of bacterial cellulose using pineapple waste as carbon source by Komagataeibacter europaeus was undertaken and it was applied for removal of vanadium, a heavy metal which is generated as waste by semiconductors industry in Taiwan. Highest yield of bacterial cellulose (BC) e.i. 5.04 g/L was obtained with pineapple core hydrolysate (HS-PC) replacing glucose in HS medium. The vanadium adsorption capacity by BC produced by HS medium was 5.24 mg/g BC at pH 4 and 2.85 mg/g BC was observed on PCH medium. BC was characterised via SEM, FTIR and XRD.


Assuntos
Ananas , Metais Pesados , Vanádio , Carbono , Celulose
15.
Chemosphere ; 299: 134459, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35367226

RESUMO

The poly (methyl methacrylate) (PMMA)-based nanoparticle was synthesized by surfactant-free emulsion polymerization method and then post modified with Calixarene using (3-Aminopropyl)triethoxysilane organo-silane as a linker after OH-treatment. The prepared structure was applied for efficient adsorption of Vanadium ions in the aqueous solution after characterization by FT-IR, SEM, TEM, DLS, and EDX. Additional investigations discovered that the prepared adsorbent has a good capacity to adsorb vanadium ions. The effect of key experimental factors was studied to find the optimal point of adsorbent efficiency including the initial concentration of analyte, sorbent dosage, pH of the solution, contact time, and type/quantity of the eluents. It was specified, the maximum adsorption capacity for the synthesized nanoparticles was obtained about 322 mg g-1. The adsorption mechanism was revealed that the model of Langmuir isotherm well-matched compared to the others due to the calculated equilibrium data. Besides, the kinetics of the adsorption process was fitted with pseudo-second-order. Eventually, the prepared adsorbent was successfully applied in vanadium adsorption from real water media.


Assuntos
Calixarenos , Nanopartículas , Poluentes Químicos da Água , Adsorção , Alcanossulfonatos , Concentração de Íons de Hidrogênio , Íons , Cinética , Nanopartículas/química , Polimetil Metacrilato , Espectroscopia de Infravermelho com Transformada de Fourier , Vanádio , Água , Poluentes Químicos da Água/análise
16.
J Hazard Mater ; 440: 129700, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35969955

RESUMO

Vanadium (V) and microplastics in soils draw increasing attention considering their significant threats to ecosystems. However, little is known about the vertical co-distribution of V and microplastics in soil profile and their combined effects on microbial community dynamics and assembly. This study investigated the spatial distribution of V and microplastics in the soils at a V smelting site and the associated microbial community characteristics along the vertical gradient. Both V and microplastics were found in the 50 cm soil profile with average concentrations of 203.5 ± 314.4 mg/kg and 165.1 ± 124.8 item/kg, respectively. Topsoil (0-20 cm) and subsoil (20-50 cm) displayed distinct microbial community compositions. Metal-tolerant (e.g., Spirochaeta, Rubellimicrobium) and organic-degrading (e.g., Bradyrhizobium, Pseudolabrys) taxa as biomarkers were more abundant in the topsoil layer. V and microplastics directly affected the microbial structure in the topsoil and had indirect influences in the subsoil, with direct impacts from organic matter. In topsoil, deterministic processes were more prevalent for community assembly, whereas stochastic processes governed the subsoil. The interspecific relationship was closer in topsoil with greater network complexity and higher modularity. These findings promote the understanding of distinct heterogeneity of microbial communities jointly driven by V and microplastics in soil environment.


Assuntos
Microbiota , Solo , Microplásticos , Plásticos , Solo/química , Microbiologia do Solo , Vanádio
17.
J Hazard Mater ; 424(Pt D): 127646, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34750000

RESUMO

Vanadium (V) and microplastics have been respectively detected in environmental media, posing threats to ecosystem and human health. However, their co-existence situations in environment with microbial adaptation have been poorly understood. In this study, water and sediments collected from potential V polluted marine and riverine ecosystems were analyzed to reveal the distribution of V and microplastics with microbial responses. High concentrations of V (1.65-6.92 µg/L in water and 6.16-347.92 mg/kg in sediment) and microplastics (800-15600 item/m3 in water and 20-700 item/kg in sediment) co-occurred in aquatic environment. Less rich and diverse bacterial communities were colonized on microplastics compared to surrounding environment. Plastic-degrading taxa (e.g., Ralstonia, Rhodococcus) and V(V) reducers (e.g., Bacillus, Pseudomonas) were enriched in microplastic biofilms. Redundancy analysis showed that V, together with nutrients, ambient conditions and Cr, contributed significantly to the compositions of microbial community on microplastics. Besides directly acting on microbial community, V could also alter it by influencing environmental factors (e.g., pH), as indicated through structural equation model. This study advances understanding the previously ignored interactions of biogeochemical processes of V and microplastics in aquatic environment.


Assuntos
Microbiota , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental , Humanos , Microplásticos , Plásticos , Vanádio , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
18.
Sci Total Environ ; 838(Pt 3): 156465, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35660623

RESUMO

The release of vanadium (V) from drinking water distribution systems (DWDS) can endanger water quality and human health. Therefore, in this study, the physicochemical characteristics of old steel pipe scales were analyzed, and dynamic pipeline devices were constructed. Subsequently, static release experiments were conducted to find an optimum scale-water ratio and investigate the release behaviors of V in lumpy pipe scales. Besides, the release behaviors of V from layered pipe scales to bulk, steady, and occluded water under the combined effect of multiple water quality conditions were studied for the first time. Computational fluid dynamics (CFD) was adopted to explain the release behaviors of V in the dynamic pipeline. Results revealed that the adsorption performance of the layered scales decreased in the order of surface layer > porous core layer > hard shell-like layer. The release behaviors of V in the lumpy pipe scales were mainly divided into rapid desorption and colloidal agglomeration stages. The Double constant and Weber-Morris models can suitably describe release stage I (R2 > 0.919) and release stage II (R2 > 0.948), respectively. Notably, the release of V was aggravated by low pH, high temperature, and high SO42- concentration, and the release amount of V in the pipeline was more significant than the layered pipe scales. Steady water in the gaps of scales contained more V than bulk water, and the malignant occluded water encased in scales contained relatively low V concentrations. In short, the main mechanism of V release was competitive adsorption in the early stage, and pH was the main influencing factor in the later stage. The above results are of great significance for revealing the release behaviors of V and reducing its release in DWDS.


Assuntos
Água Potável , Poluentes Químicos da Água , Corrosão , Humanos , Ferro , Aço , Vanádio , Poluentes Químicos da Água/análise , Abastecimento de Água
19.
J Hazard Mater ; 436: 129315, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35739806

RESUMO

Industrial applications and environmental awareness recently prompted vanadium recovery spell from secondary resources. In this work, a polymer inclusion membrane containing trioctylmethylammonium chloride as carrier was successfully employed in electrodialysis for vanadium recovery from acidic sulfate solutions. The permeability coefficient of V(V) increased from 0.29 µm·s-1 (without electric field) to 4.10 µm·s-1 (with the 20 mA·cm-2 current density). The transport performance of VO2SO4-, which was the predominant species containing V(V) in the acidic region (pH <3), was influenced by the aqueous pH value and sulfate concentration. Under an electric field, a low concentrated H2SO4 solution (0.2 M) effectively stripped V(V) from the membranes, avoiding the requirement of a highly concentrated H2SO4 without electric field. Under the optimum conditions, the permeability coefficient and flux reached 6.80 µm·s-1 and 13.34 µmol·m-2·s-1, respectively. High selectivity was observed for the separation of V(V) and Mo(VI) from mixed solutions of Co (II), Ni (II), Mn (II), and Al (III). Additionally, the separation between Mo(VI) and V(V) was further improved by adjusting the acidity of the stripping solution. The V(V) selectivity for the resulting membrane was higher than that of commercial anion exchange membranes.


Assuntos
Polímeros , Vanádio , Ácidos , Membranas Artificiais , Sulfatos , Água
20.
J Colloid Interface Sci ; 625: 435-445, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35724466

RESUMO

Mesoporous vanadium oxide nanospheres are a very promising nanozyme for antibacterial and chemical sensing. However, controllable synthesis of mesoporous vanadium oxide nanospheres with uniform structure and small diameter (<200 nm) remains challenging. Herein, mesoporous vanadium oxide nanospheres (MVONs) with a small, uniform and adjustable particle size (52-105 nm), large mesopore size (5.1-5.8 nm), and high specific surface area (up to 63.7 m2 g-1) are constructed via a self-template strategy using tannic acid, formaldehyde and vanadium compounds as a polymerizable ligand, cross-linking agent and metal source, respectively. The relationships between synthesis conditions and material nanostructure are systematically investigated. The particle size and peroxidase-like activity of MVONs can be easily changed by adding different amounts of Pluronic block copolymer F127. Owing to the mesoporous structure, high specific surface area and small particle size, MVONs can effectively convert H2O2 into extremely toxic reactive oxygen species, and further kill Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). This research establishes a universal, reliable method for synthesizing mesoporous vanadium oxide nanospheres, which might be used in catalysis, biosensors, and antibacterial treatment.


Assuntos
Nanosferas , Antibacterianos/química , Antibacterianos/farmacologia , Escherichia coli , Peróxido de Hidrogênio/química , Nanosferas/química , Óxidos/farmacologia , Peroxidases , Poloxâmero , Porosidade , Staphylococcus aureus , Vanádio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA