Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 559
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Development ; 150(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38059590

RESUMO

Most vertebrate species undergo tooth replacement throughout adult life. This process is marked by the shedding of existing teeth and the regeneration of tooth organs. However, little is known about the genetic circuitry regulating tooth replacement. Here, we tested whether fish orthologs of genes known to regulate mammalian hair regeneration have effects on tooth replacement. Using two fish species that demonstrate distinct modes of tooth regeneration, threespine stickleback (Gasterosteus aculeatus) and zebrafish (Danio rerio), we found that transgenic overexpression of four different genes changed tooth replacement rates in the direction predicted by a hair regeneration model: Wnt10a and Grem2a increased tooth replacement rate, whereas Bmp6 and Dkk2 strongly inhibited tooth formation. Thus, similar to known roles in hair regeneration, Wnt and BMP signals promote and inhibit regeneration, respectively. Regulation of total tooth number was separable from regulation of replacement rates. RNA sequencing of stickleback dental tissue showed that Bmp6 overexpression resulted in an upregulation of Wnt inhibitors. Together, these data support a model in which different epithelial organs, such as teeth and hair, share genetic circuitry driving organ regeneration.


Assuntos
Smegmamorpha , Dente , Animais , Peixe-Zebra/genética , Odontogênese/genética , Animais Geneticamente Modificados , Smegmamorpha/genética , Mamíferos
2.
Development ; 150(5)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36825984

RESUMO

Craniofacial morphogenesis requires complex interactions involving different tissues, signaling pathways, secreted factors and organelles. The details of these interactions remain elusive. In this study, we have analyzed the molecular mechanisms and homeostatic cellular activities governing soft palate development to improve regenerative strategies for individuals with cleft palate. We have identified canonical Wnt signaling as a key signaling pathway primarily active in cranial neural crest (CNC)-derived mesenchymal cells surrounding soft palatal myogenic cells. Using Osr2-Cre;ß-cateninfl/fl mice, we show that Wnt signaling is indispensable for mesenchymal cell proliferation and subsequently for myogenesis through mediating ciliogenesis. Specifically, we have identified that Wnt signaling directly regulates expression of the ciliary gene Ttll3. Impaired ciliary disassembly leads to differentiation defects in mesenchymal cells and indirectly disrupts myogenesis through decreased expression of Dlk1, a mesenchymal cell-derived pro-myogenesis factor. Moreover, we show that siRNA-mediated reduction of Ttll3 expression partly rescues mesenchymal cell proliferation and myogenesis in the palatal explant cultures from Osr2-Cre;ß-cateninfl/fl embryos. This study highlights the role of Wnt signaling in palatogenesis through the control of ciliary homeostasis, which establishes a new mechanism for Wnt-regulated craniofacial morphogenesis.


Assuntos
Fissura Palatina , Via de Sinalização Wnt , Camundongos , Animais , Via de Sinalização Wnt/fisiologia , Palato , Fissura Palatina/genética , Diferenciação Celular , Palato Mole , Homeostase , Regulação da Expressão Gênica no Desenvolvimento
3.
Development ; 149(22)2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36325991

RESUMO

In the developing hindbrain, facial branchiomotor (FBM) neurons migrate caudally from rhombomere 4 (r4) to r6 to establish the circuit that drives jaw movements. Although the mechanisms regulating initiation of FBM neuron migration are well defined, those regulating directionality are not. In mutants lacking the Wnt/planar cell polarity (PCP) component Celsr1, many FBM neurons inappropriately migrate rostrally into r3. We hypothesized that Celsr1 normally blocks inappropriate rostral migration of FBM neurons by suppressing chemoattraction towards Wnt5a in r3 and successfully tested this model. First, FBM neurons in Celsr1; Wnt5a double mutant embryos never migrated rostrally, indicating that inappropriate rostral migration in Celsr1 mutants results from Wnt5a-mediated chemoattraction, which is suppressed in wild-type embryos. Second, FBM neurons migrated rostrally toward Wnt5a-coated beads placed in r3 of wild-type hindbrain explants, suggesting that excess Wnt5a chemoattractant can overcome endogenous Celsr1-mediated suppression. Third, rostral migration of FBM neurons was greatly enhanced in Celsr1 mutants overexpressing Wnt5a in r3. These results reveal a novel role for a Wnt/PCP component in regulating neuronal migration through suppression of chemoattraction.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Neurônios Motores , Neurônios Motores/fisiologia , Rombencéfalo , Polaridade Celular , Movimento Celular/genética
4.
Mol Ther ; 32(9): 3080-3100, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-38937970

RESUMO

Alveolar bone loss in elderly populations is highly prevalent and increases the risk of tooth loss, gum disease susceptibility, and facial deformity. Unfortunately, there are very limited treatment options available. Here, we developed a bone-targeted gene therapy that reverses alveolar bone loss in patients with osteoporosis by targeting the adaptor protein Schnurri-3 (SHN3). SHN3 is a promising therapeutic target for alveolar bone regeneration, because SHN3 expression is elevated in the mandible tissues of humans and mice with osteoporosis while deletion of SHN3 in mice greatly increases alveolar bone and tooth dentin mass. We used a bone-targeted recombinant adeno-associated virus (rAAV) carrying an artificial microRNA (miRNA) that silences SHN3 expression to restore alveolar bone loss in mouse models of both postmenopausal and senile osteoporosis by enhancing WNT signaling and osteoblast function. In addition, rAAV-mediated silencing of SHN3 enhanced bone formation and collagen production of human skeletal organoids in xenograft mice. Finally, rAAV expression in the mandible was tightly controlled via liver- and heart-specific miRNA-mediated repression or via a vibration-inducible mechanism. Collectively, our results demonstrate that AAV-based bone anabolic gene therapy is a promising strategy to treat alveolar bone loss in osteoporosis.


Assuntos
Perda do Osso Alveolar , Dependovirus , Modelos Animais de Doenças , Terapia Genética , Osteoporose , Animais , Camundongos , Humanos , Terapia Genética/métodos , Osteoporose/terapia , Osteoporose/genética , Osteoporose/metabolismo , Osteoporose/etiologia , Dependovirus/genética , Perda do Osso Alveolar/terapia , Perda do Osso Alveolar/etiologia , Perda do Osso Alveolar/genética , Perda do Osso Alveolar/metabolismo , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , MicroRNAs/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Feminino , Osteoblastos/metabolismo , Via de Sinalização Wnt
5.
Genesis ; 62(1): e23532, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37435631

RESUMO

Ectodermal appendages in mammals, such as teeth, mammary glands, sweat glands and hair follicles, are generated during embryogenesis through a series of mesenchymal-epithelial interactions. Canonical Wnt signaling and its inhibitors are implicated in the early steps of ectodermal appendage development and patterning. To study the activation dynamics of the Wnt target and inhibitor Dickkopf4 (Dkk4) in ectodermal appendages, we used CRSIPR/Cas9 to generate a Dkk4-Cre knock-in mouse (Mus musculus) line, where the Cre recombinase cDNA replaces the expression of endogenous Dkk4. Using Cre reporters, the Dkk4-Cre activity was evident at the prospective sites of ectodermal appendages, overlapping with the Dkk4 mRNA expression. Unexpectedly, a predominantly mesenchymal cell population in the embryo posterior also showed Dkk4-Cre activity. Lineage-tracing suggested that these cells are likely derived from a few Dkk4-Cre-expressing cells in the epiblast at early gastrulation. Finally, our analyses of Dkk4-Cre-expressing cells in developing hair follicle epithelial placodes revealed intra- and inter-placodal cellular heterogeneity, supporting emerging data on the positional and transcriptional cellular variability in placodes. Collectively, we propose the new Dkk4-Cre knock-in mouse line as a suitable model to study Wnt and DKK4 inhibitor dynamics in early mouse development and ectodermal appendage morphogenesis.


Assuntos
Folículo Piloso , Via de Sinalização Wnt , Camundongos , Animais , Estudos Prospectivos , Folículo Piloso/metabolismo , Ectoderma/metabolismo , Morfogênese , Mamíferos
6.
Kidney Int ; 105(4): 844-864, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38154558

RESUMO

Congenital anomalies of the kidney and urinary tract (CAKUT) are the predominant cause for chronic kidney disease below age 30 years. Many monogenic forms have been discovered due to comprehensive genetic testing like exome sequencing. However, disease-causing variants in known disease-associated genes only explain a proportion of cases. Here, we aim to unravel underlying molecular mechanisms of syndromic CAKUT in three unrelated multiplex families with presumed autosomal recessive inheritance. Exome sequencing in the index individuals revealed three different rare homozygous variants in FOXD2, encoding a transcription factor not previously implicated in CAKUT in humans: a frameshift in the Arabic and a missense variant each in the Turkish and the Israeli family with segregation patterns consistent with autosomal recessive inheritance. CRISPR/Cas9-derived Foxd2 knockout mice presented with a bilateral dilated kidney pelvis accompanied by atrophy of the kidney papilla and mandibular, ophthalmologic, and behavioral anomalies, recapitulating the human phenotype. In a complementary approach to study pathomechanisms of FOXD2-dysfunction-mediated developmental kidney defects, we generated CRISPR/Cas9-mediated knockout of Foxd2 in ureteric bud-induced mouse metanephric mesenchyme cells. Transcriptomic analyses revealed enrichment of numerous differentially expressed genes important for kidney/urogenital development, including Pax2 and Wnt4 as well as gene expression changes indicating a shift toward a stromal cell identity. Histology of Foxd2 knockout mouse kidneys confirmed increased fibrosis. Further, genome-wide association studies suggest that FOXD2 could play a role for maintenance of podocyte integrity during adulthood. Thus, our studies help in genetic diagnostics of monogenic CAKUT and in understanding of monogenic and multifactorial kidney diseases.


Assuntos
Estruturas Embrionárias , Fatores de Transcrição Forkhead , Nefropatias , Rim , Néfrons , Sistema Urinário , Anormalidades Urogenitais , Refluxo Vesicoureteral , Adulto , Animais , Humanos , Camundongos , Estudo de Associação Genômica Ampla , Rim/anormalidades , Rim/embriologia , Nefropatias/genética , Camundongos Knockout , Néfrons/embriologia , Fatores de Transcrição/genética , Anormalidades Urogenitais/genética , Refluxo Vesicoureteral/genética , Fatores de Transcrição Forkhead/deficiência , Fatores de Transcrição Forkhead/metabolismo
7.
EMBO J ; 39(3): e102374, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31830314

RESUMO

Renewal of integumentary organs occurs cyclically throughout an organism's lifetime, but the mechanism that initiates each cycle remains largely unknown. In a miniature pig model of tooth development that resembles tooth development in humans, the permanent tooth did not begin transitioning from the resting to the initiation stage until the deciduous tooth began to erupt. This eruption released the accumulated mechanical stress inside the mandible. Mechanical stress prevented permanent tooth development by regulating expression and activity of the integrin ß1-ERK1-RUNX2 axis in the surrounding mesenchyme. We observed similar molecular expression patterns in human tooth germs. Importantly, the release of biomechanical stress induced downregulation of RUNX2-wingless/integrated (Wnt) signaling in the mesenchyme between the deciduous and permanent tooth and upregulation of Wnt signaling in the epithelium of the permanent tooth, triggering initiation of its development. Consequently, our findings identified biomechanical stress-associated Wnt modulation as a critical initiator of organ renewal, possibly shedding light on the mechanisms of integumentary organ regeneration.


Assuntos
Regulação para Baixo , Odontogênese , Via de Sinalização Wnt , Animais , Fenômenos Biomecânicos , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Saco Dentário/citologia , Saco Dentário/metabolismo , Humanos , Integrina beta1/metabolismo , Modelos Biológicos , Cultura Primária de Células , Suínos , Porco Miniatura
8.
Development ; 148(14)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34195802

RESUMO

Tooth formation requires complex signaling interactions both within the oral epithelium and between the epithelium and the underlying mesenchyme. Previous studies of the Wnt/ß-catenin pathway have shown that tooth formation is partly inhibited in loss-of-function mutants, and gain-of-function mutants have perturbed tooth morphology. However, the stage at which Wnt signaling is first important in tooth formation remains unclear. Here, using an Fgf8-promoter-driven, and therefore early, deletion of ß-catenin in mouse molar epithelium, we found that loss of Wnt/ß-catenin signaling completely deletes the molar tooth, demonstrating that this pathway is central to the earliest stages of tooth formation. Early expression of a dominant-active ß-catenin protein also perturbs tooth formation, producing a large domed evagination at early stages and supernumerary teeth later on. The early evaginations are associated with premature mesenchymal condensation marker, and are reduced by inhibition of condensation-associated collagen synthesis. We propose that invagination versus evagination morphogenesis is regulated by the relative timing of epithelial versus mesenchymal cell convergence regulated by canonical Wnt signaling. Together, these studies reveal new aspects of Wnt/ß-catenin signaling in tooth formation and in epithelial morphogenesis more broadly.


Assuntos
Dente Molar/crescimento & desenvolvimento , Dente Molar/metabolismo , Odontogênese/fisiologia , Via de Sinalização Wnt/fisiologia , Animais , Proliferação de Células , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Epitélio/metabolismo , Mesoderma/metabolismo , Camundongos , Dente Molar/citologia , Morfogênese/fisiologia , Odontogênese/genética , beta Catenina/metabolismo
9.
Development ; 148(9)2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33914869

RESUMO

Signaling centers, or organizers, regulate many aspects of embryonic morphogenesis. In the mammalian molar tooth, reiterative signaling in specialized centers called enamel knots (EKs) determines tooth patterning. Preceding the primary EK, transient epithelial thickening appears, the significance of which remains debated. Using tissue confocal fluorescence imaging with laser ablation experiments, we show that this transient thickening is an earlier signaling center, the molar initiation knot (IK), that is required for the progression of tooth development. IK cell dynamics demonstrate the hallmarks of a signaling center: cell cycle exit, condensation and eventual silencing through apoptosis. IK initiation and maturation are defined by the juxtaposition of cells with high Wnt activity to Shh-expressing non-proliferating cells, the combination of which drives the growth of the tooth bud, leading to the formation of the primary EK as an independent cell cluster. Overall, the whole development of the tooth, from initiation to patterning, is driven by the iterative use of signaling centers.


Assuntos
Dente Molar/embriologia , Dente Molar/crescimento & desenvolvimento , Odontogênese/fisiologia , Transdução de Sinais , Animais , Apoptose/fisiologia , Proteínas de Ciclo Celular/genética , Divisão Celular , Movimento Celular , Proliferação de Células , Proteínas de Ligação a DNA/genética , Desenvolvimento Embrionário , Células Epiteliais , Camundongos , Dente Molar/citologia , Germe de Dente/citologia , Germe de Dente/embriologia
10.
Mod Pathol ; 37(6): 100484, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38574817

RESUMO

Calcifying odontogenic cyst (COC), once called calcifying cystic odontogenic tumor, is classified under the category of odontogenic cysts. However, the proliferative capacity of the lesional epithelium and consistent nuclear ß-catenin expression raise questions about its current classification. This study aimed to determine whether COC would be better classified as a neoplasm in the histologic and molecular context. Eleven odontogenic lesions diagnosed as COC or calcifying cystic odontogenic tumor were included in this study. The growth patterns of the lesional epithelium were analyzed histologically in all cases. ß-catenin immunohistochemistry and molecular profiling using Sanger sequencing and whole-exome sequencing were performed in 10 cases. Of the 11 cases studied, histologic features reminiscent of so-called adenoid ameloblastoma were observed in 72.7% (8/11), and small islands of clear cells extended into the wall in 36.4% (4/11). Intraluminal and/or mural epithelial proliferation was found in 72.7% of the cases (8/11). Nuclear ß-catenin expression was observed focally in all 10 cases studied, mainly highlighting epithelial cells forming morules and adjacent to dentinoid. CTNNB1 hotspot mutations were detected in 60.0% of the cases (6/10). All the remaining cases had frameshift mutations in tumor-suppressor genes involved in the WNT pathway, including APC and NEDD4L. Recurrent WNT pathway mutations leading to nuclear translocation of ß-catenin and distinct epithelial growth patterns found in COC are the neoplastic features shared by its solid counterpart, dentinogenic ghost cell tumor, supporting its classification as a tumor rather than a cyst.


Assuntos
Mutação , Cisto Odontogênico Calcificante , Via de Sinalização Wnt , Humanos , Feminino , Masculino , Cisto Odontogênico Calcificante/patologia , Cisto Odontogênico Calcificante/genética , Adulto , Via de Sinalização Wnt/genética , Pessoa de Meia-Idade , beta Catenina/genética , beta Catenina/metabolismo , Ameloblastoma/genética , Ameloblastoma/patologia , Ameloblastoma/metabolismo , Adolescente , Adulto Jovem , Neoplasias Maxilomandibulares/genética , Neoplasias Maxilomandibulares/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/análise , Tumores Odontogênicos/genética , Tumores Odontogênicos/patologia , Idoso , Criança
11.
Clin Genet ; 105(6): 666-670, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38385987

RESUMO

Low-density lipoprotein receptor-related protein 6 (LRP6) is a co-receptor of the Wnt signaling pathway, which plays an essential role in various biological activities during embryonic and postnatal development. LRP6 is exceptionally associated with rare diseases and always with autosomal dominant inheritance. Here we report a familial phenotype of high bone mass associated with skeletal anomalies and oligodontia but also persistent left superior vena cava, inguinal hernia, hepatic cysts, abnormal posterior fossa and genital malformations. Molecular analysis revealed a novel heterozygous variant, NM_002336.2: c.724T>C, p.(Trp242Arg), in affected individuals. This variant is located in the first ß-propellant motif of LRP6, to which sclerostin (SOST) and dickkopf1 (DKK1), two LRP6 co-receptor inhibitors and various Wnt ligands bind. According to the literature and integrating data from structural analysis, this variant distorts the binding of SOST and DKK1, thus leading to overactivation of Wnt signaling pathways involved in osteoblast differentiation. This novel heterozygous variant in LRP6 underlies the role of LRP6 in skeletal and dental disorders as well as, probably, cardiac, cerebral and genital developments.


Assuntos
Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Humanos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Masculino , Feminino , Fenótipo , Mutação/genética , Via de Sinalização Wnt/genética , Linhagem , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas Adaptadoras de Transdução de Sinal/genética
12.
Wound Repair Regen ; 32(3): 279-291, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38353052

RESUMO

Pressure ulcer (PU) is a worldwide problem that is difficult to address because of the related inflammatory response, local hypoxia, and repeated ischaemia/reperfusion, causing great suffering and financial burden to patients. Traditional Chinese medicine turtle plate powder can treat skin trauma, but its composition is complex and inconvenient to use. Here, we combined cholesterol myristate (S8) with berberine (BBR), with anti-inflammatory and antibacterial effects, as a drug and used hydroxypropyl methylcellulose and polyvinylpyrrolidone K30 as carriers to construct a novel film-forming polymeric solution (S8 + BBR FFPS), comprehensively study its reparative effect on PU and explore the potential mechanism in rat PU models. The results showed that S8 + BBR FFPS inhibits excessive inflammatory response, promotes re-epithelialization, and promotes hair follicle growth during the healing process of PU, which may be related to the activation of the Wnt/ß-catenin signalling pathway by S8 + BBR FFPS to mediate hair follicle stem cell proliferation and maintain skin homeostasis. Therefore, S8 + BBR FFPS may be a potential candidate for the treatment of chronic skin injury, and its association with the Wnt/ß-catenin signalling pathway may provide new ideas to guide the design of biomaterial-based wound dressings for chronic wound repair.


Assuntos
Berberina , Modelos Animais de Doenças , Úlcera por Pressão , Via de Sinalização Wnt , Cicatrização , Animais , Masculino , Ratos , Berberina/farmacologia , Berberina/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Polímeros/farmacologia , Úlcera por Pressão/tratamento farmacológico , Ratos Sprague-Dawley , Via de Sinalização Wnt/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
13.
J Nanobiotechnology ; 22(1): 329, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858736

RESUMO

BACKGROUND: Cancer stem cells (CSCs) play a vital role in the occurrence, maintenance, and recurrence of solid tumors. Although, miR-145-5p can inhibit CSCs survival, poor understanding of the underlying mechanisms hamperes further therapeutic optimization for patients. Lentivirus with remarkable transduction efficiency is the most commonly used RNA carrier in research, but has shown limited tumor-targeting capability. METHODS: We have applied liposome to decorate lentivirus surface thereby yielding liposome-lentivirus hybrid-based carriers, termed miR-145-5p-lentivirus nanoliposome (MRL145), and systematically analyzed their potential therapeutic effects on liver CSCs (LCSCs). RESULTS: MRL145 exhibited high delivery efficiency and potent anti-tumor efficacy under in vitro and in vivo. Mechanistically, the overexpressed miR-145-5p can significantly suppress the self-renewal, migration, and invasion abilities of LCSCs by targeting Collagen Type IV Alpha 3 Chain (COL4A3). Importantly, COL4A3 can promote phosphorylating GSK-3ß at ser 9 (p-GSK-3ß S9) to inactivate GSK3ß, and facilitate translocation of ß-catenin into the nucleus to activate the Wnt/ß-catenin pathway, thereby promoting self-renewal, migration, and invasion of LCSCs. Interestingly, COL4A3 could attenuate the cellular autophagy through modulating GSK3ß/Gli3/VMP1 axis to promote self-renewal, migration, and invasion of LCSCs. CONCLUSIONS: These findings provide new insights in mode of action of miR-145-5p in LCSCs therapy and indicates that liposome-virus hybrid carriers hold great promise in miRNA delivery.


Assuntos
Lentivirus , Lipossomos , MicroRNAs , Células-Tronco Neoplásicas , MicroRNAs/genética , MicroRNAs/metabolismo , Lipossomos/química , Humanos , Animais , Camundongos , Lentivirus/genética , Linhagem Celular Tumoral , Células-Tronco Neoplásicas/metabolismo , Camundongos Nus , Neoplasias Hepáticas/terapia , Camundongos Endogâmicos BALB C , Movimento Celular , Glicogênio Sintase Quinase 3 beta/metabolismo , beta Catenina/metabolismo , Via de Sinalização Wnt
14.
Oral Dis ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38852166

RESUMO

OBJECTIVES: To explore the influence of a novel WNT10A variant on bone mineral density, proliferation, and osteogenic differentiation capacities of alveolar bone mesenchymal stem cells in humans. SUBJECTS AND METHODS: Whole-exome sequencing and Sanger sequencing were utilized to detect gene variants in a family with non-syndromic tooth agenesis (NSTA). The panoramic mandibular index was calculated on the proband with WNT10A variant and normal controls to evaluate bone mineral density. Alveolar bone mesenchymal stem cells from the proband with a novel WNT10A variant and normal controls were isolated and cultured, then proliferation and osteogenic differentiation capacities were evaluated and compared. RESULTS: We identified a novel WNT10A pathogenic missense variant (c.353A > G/p. Tyr118Cys) in a family with NSTA. The panoramic mandibular index of the proband implied a reduction in bone mineral density. Moreover, the proliferation and osteogenic differentiation capacities of alveolar bone mesenchymal stem cells from the proband with WNT10A Tyr118Cys variant were significantly decreased. CONCLUSIONS: Our findings broaden the spectrum of WNT10A variants in patients with non-syndromic oligodontia, suggest an association between WNT10A and the proliferation and osteogenic differentiation of alveolar bone mesenchymal stem cells, and demonstrate that WNT10A is involved in maintaining jaw bone homeostasis.

15.
Int Endod J ; 57(2): 219-236, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37971040

RESUMO

AIM: To investigate the effect of IWP-2, Wnt inhibitor, on human dental pulp stem cells (hDPSCs) responses. METHODOLOGY: hDPSCs were isolated from human dental pulp tissues. Cells were treated with 25 µM IWP-2 for 24 h, and subsequently, the gene expression profile was examined using high-throughput RNA sequencing. The mRNA expression was analysed using qPCR. The effect of IWP-2 was investigated in both normal and LPS-induced hDPSCs (inflamed hDPSCs). CD4+ T cells and CD14+ monocyte-derived macrophages were cultured with conditioned media of IWP-2 treated hDPSCs to observe the immunosuppressive property. RESULTS: RNA sequencing indicated that IWP-2 significantly downregulated several KEGG pathways, including cytokine-cytokine receptor interaction, IL-17 signalling pathway, and TNF signalling pathway. In both normal and inflamed conditions, IWP-2 markedly upregulated TGFB1 mRNA expression while the mRNA expression of pro-inflammatory cytokines, TNFA, IL1B, IFNG, and IL6, was inhibited. In the inhibition experiment, the pretreatment with p38, MAPK, or PI3K inhibitors abolished the effects of IWP-2 in LPS-induced inflammation. In terms of immune cells, IWP-2-treated-inflamed hDPSCs conditioned media attenuated T cell proliferation and regulated regulatory T cell differentiation. In addition, the migratory property of macrophage was decreased after being exposed to IWP-2-treated inflamed hDPSCs conditioned media. CONCLUSION: IWP-2 suppressed inflammatory cytokine expression in both normal and inflamed hDPSCs. Moreover, hDPSCs exerted the immunosuppressive property after IWP-2 treatment. These results suggest the role of Wnt in inflammatory responses and immunomodulation in dental pulp tissues.


Assuntos
Polpa Dentária , Fosfatidilinositol 3-Quinases , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Meios de Cultivo Condicionados/farmacologia , Meios de Cultivo Condicionados/metabolismo , Células-Tronco , Proliferação de Células , Citocinas/metabolismo , RNA Mensageiro/metabolismo , Diferenciação Celular , Células Cultivadas
16.
Clin Oral Investig ; 28(2): 135, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319382

RESUMO

OBJECTIVE: Studies of Wnt variants-related to bone resorption in periodontitis are limited. The aim of this study was to establish the genotype and allele frequency of gene variants associated with the Wnt pathway in systemically healthy individuals with and without periodontitis (PD). MATERIALS AND METHODS: One hundred fifty-seven systemically healthy individuals were evaluated, 90 with PD and 67 without PD. Periodontal clinical indexes, serological and clinical indices of inflammation, and the following variants associated with the Wnt pathway: DKK, SOST, LRP5, and KREMEN were analyzed by high resolution melting and confirmed by Sanger sequencing. RESULTS: In the PD-free group, 67.2% of the individuals presented the variant for DKKrs1896367 (p = 0.008) and 82.6% had the variant for KREMEN rs132274 (p = 0.016). The heterozygous variant for the DKK rs1896367 polymorphism was associated with the absence of PD and lower severity OR: 0.33 (CI95% 0.15-0.70) and OR: 0.24 (CI95% 0.11-0.53), respectively. Similarly, KREMEN rs132274 was the homozygous variant associated with the absence of PD (OR: 0.33 (CI95% 0.13-0.88)). On the contrary, 85.6% of individuals with PD presented a variant for DKK rs1896368 (p = 0.042), all suffering severe forms of periodontitis. CONCLUSION: The presence of DKKrs1896367 and KREMENrs132274 variants in individuals without PD suggests that these single nucleotide polymorphisms could be protective factors for bone loss in PD. A very interesting finding is that the DKKrs1896368 variant was found in a high percentage of severe cases, suggesting that the presence of this variant may be related to the severe bone loss observed in PD.


Assuntos
Doenças Periodontais , Periodontite , Humanos , Via de Sinalização Wnt/genética , Inflamação , Polimorfismo de Nucleotídeo Único , Periodontite/genética
17.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39125758

RESUMO

APC is a tumor suppressor gene that exerts its effect through the regulation of the Wnt signaling pathway. Loss of function mutations of the gene are associated with familial adenomatous polyposis (FAP). Early diagnosis in FAP patients is essential to prevent the development of colorectal cancer. Extraintestinal manifestations often precede the formation of the polyposis; therefore, these manifestations may serve as a clinical indicator for the condition. The aim of this study was to assess genotype-phenotype associations between the location of APC mutations and various extraintestinal features, mainly focusing on osseous and dental anomalies. Analyses of our cases and the mutations available in the literature with these manifestations revealed that mutations in the N-terminal region (amino acids 1-~1000) of the protein are more frequently associated with only osseous anomalies, whereas dental manifestations are more prevalent in mutations in the middle region (amino acids 1000-~2100). In addition, supernumerary teeth were found to be the most common dental feature. Since dental abnormalities often precede intestinal polyposis, dentists have a crucial role in the early identification of patients at risk.


Assuntos
Proteína da Polipose Adenomatosa do Colo , Polipose Adenomatosa do Colo , Mutação em Linhagem Germinativa , Humanos , Proteína da Polipose Adenomatosa do Colo/genética , Polipose Adenomatosa do Colo/genética , Anormalidades Dentárias/genética , Estudos de Associação Genética , Dente Supranumerário/genética , Predisposição Genética para Doença , Masculino , Feminino
18.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38255806

RESUMO

Microtia-atresia is a rare type of congenital craniofacial malformation causing severe damage to the appearance and hearing ability of affected individuals. The genetic factors associated with microtia-atresia have not yet been determined. The AMER1 gene has been identified as potentially pathogenic for microtia-atresia in two twin families. An amer1 mosaic knockdown zebrafish model was constructed using CRISPR/Cas9. The phenotype and the development process of cranial neural crest cells of the knockdown zebrafish were examined. Components of the Wnt/ß-catenin pathway were examined by qPCR, Western blotting, and immunofluorescence assay. IWR-1-endo, a reversible inhibitor of the Wnt/ß-catenin pathway, was applied to rescue the abnormal phenotype. The present study showed that the development of mandibular cartilage in zebrafish was severely compromised by amer1 knockdown using CRISPR/Cas9. Specifically, amer1 knockdown was found to affect the proliferation and apoptosis of cranial neural crest cells, as well as their differentiation to chondrocytes. Mechanistically, amer1 exerted an antagonistic effect on the Wnt/ß-catenin pathway. The application of IWR-1-endo could partially rescue the abnormal phenotype. We demonstrated that amer1 was essential for the craniofacial development of zebrafish by interacting with the Wnt/ß-catenin pathway. These findings provide important insight into the role of amer1 in zebrafish mandibular development and the pathology of microtia-atresia caused by AMER1 gene mutations in humans.


Assuntos
Microtia Congênita , Imidas , Quinolinas , Peixe-Zebra , Animais , Apoptose/genética , beta Catenina/genética , Peixe-Zebra/genética
19.
Dev Dyn ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37870737

RESUMO

BACKGROUND: Mutations of human WNT10A are associated with odonto-ectodermal dysplasia syndromes. Here, we present analyses of wnt10a loss-of-function mutants in the zebrafish. RESULTS: wnt10a mutant zebrafish embryos display impaired tooth development and a collapsing median fin fold (MFF). Rescue experiments show that wnt10a is essential for MFF maintenance both during embryogenesis and later metamorphosis. The MFF collapse could not be attributed to increased cell death or altered proliferation rates of MFF cell types. Rather, wnt10a mutants show reduced expression levels of dlx2a in distal-most MFF cells, followed by compromised expression of col1a1a and other extracellular matrix proteins encoding genes. Transmission electron microscopy analysis shows that although dermal MFF compartments of wnt10a mutants initially are of normal morphology, with regular collagenous actinotrichia, positioning of actinotrichia within the cleft of distal MFF cells becomes compromised, coinciding with actinotrichia shrinkage and MFF collapse. CONCLUSIONS: MFF collapse of wnt10a mutant zebrafish is likely caused by the loss of distal properties in the developing MFF, strikingly similar to the proposed molecular pathomechanisms underlying the teeth defects caused by the loss of Wnt10 in fish and mammals. In addition, it points to thus fur unknown mechanisms controlling the linear growth and stability of actinotrichia and their collagen fibrils.

20.
Med Mol Morphol ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38987402

RESUMO

Primary cultured odontoblasts rapidly lose their tissue-specific phenotype. To identify transcription factors (TF) that are important for the maintenance of the odontoblast phenotype, primary cultures of C57BL/6 J mouse dental mesenchymal cells (DMC) were isolated, and expression of TF and odontoblast marker genes in cells immediately after isolation and 2 days after culture were comprehensively evaluated and compared using RNA-sequencing (RNA-seq). The expression of odontoblast markers in mouse dental mesenchymal cells decreased rapidly after isolation. In addition, the expression of Hedgehog-related, Notch-related, and immediate- early gene (IEG)-related transcription factors significantly decreased. Forced expression of these genes in lentiviral vectors, together with fibroblast growth factor 4 (FGF4), fibroblast growth factor 9 (FGF9), and the Wnt pathway activator CHIR99021, significantly induced the expression of odontogenic marker genes. These results indicate, for the first time, that Notch signaling and early genes may be important for maintaining odontoblast cultures. Furthermore, simultaneous stimulation of FGF, Wnt, Hedgehog, Notch pathways, and IEG transcription factors cooperatively promoted the maintenance of the odontoblast phenotype. These results suggest that the Hedgehog and Notch signaling pathways may play an important role in maintaining odontoblast phenotypes, in addition to FGF and Wnt signaling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA