Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.924
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(51): e2311396120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38079554

RESUMO

Cationic polymers have been identified as a promising type of antibacterial molecules, whose bioactivity can be tuned through structural modulation. Recent studies suggest that the placement of the cationic groups close to the core of the polymeric architecture rather than on appended side chains might improve both their bioactivity and selectivity for bacterial cells over mammalian cells. However, antibacterial main-chain cationic polymers are typically synthesized via polycondensations, which do not afford precise and uniform molecular design. Therefore, accessing main-chain cationic polymers with high degrees of molecular tunability hinges upon the development of controlled polymerizations tolerating cationic motifs (or cation progenitors) near the propagating species. Herein, we report the synthesis and ring-opening metathesis polymerization (ROMP) of N-methylpyridinium-fused norbornene monomers. The identification of reaction conditions leading to a well-controlled ROMP enabled structural diversification of the main-chain cationic polymers and a study of their bioactivity. This family of polyelectrolytes was found to be active against both Gram-negative (Escherichia coli) and Gram-positive (Methicillin-resistant Staphylococcus aureus) bacteria with minimal inhibitory concentrations as low as 25 µg/mL. Additionally, the molar mass of the polymers was found to impact their hemolytic activity with cationic polymers of smaller degrees of polymerization showing increased selectivity for bacteria over human red blood cells.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Polímeros , Animais , Humanos , Polímeros/química , Polimerização , Antibacterianos/farmacologia , Antibacterianos/química , Norbornanos/química , Cátions , Mamíferos
2.
Nano Lett ; 24(43): 13708-13717, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39417607

RESUMO

Reactive oxygen species (ROS)-responsive drug delivery systems possess immense potential for targeted delivery and controlled release of therapeutics. However, the rapid responsiveness to ROS and sustained release of antibacterial drugs are often limited by the challenging microenvironment of periodontitis. Integrating ROS-responsive drug delivery systems with photocatalytic technologies presents a strategic approach to overcome these limitations. Herein, a pillararene-embedded covalent organic framework (PCOF) incorporating the antibacterial prodrug thioacetal (TA) has been developed to treat periodontitis. This drug-loaded nanoplatform, namely TA-loaded PCOF, utilizes the self-amplifying ROS property to enhance therapeutic efficacy. PCOFs demonstrate exceptional photosensitivity and ROS generation capabilities when employed as drug carriers. When exposed to ROS, TA within the nanoplatform was activated and cleaved into cinnamaldehyde (CA), a highly potent antibacterial compound. By leveraging visible light to activate the site-specific infection targeting, TA-loaded PCOF effectively alleviated periodontitis, thereby advancing the field of antibacterial drug delivery systems.


Assuntos
Antibacterianos , Periodontite , Fotoquimioterapia , Espécies Reativas de Oxigênio , Periodontite/tratamento farmacológico , Periodontite/microbiologia , Fotoquimioterapia/métodos , Espécies Reativas de Oxigênio/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/uso terapêutico , Animais , Sistemas de Liberação de Medicamentos , Portadores de Fármacos/química , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Humanos , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Camundongos , Acroleína/análogos & derivados
3.
Nano Lett ; 24(23): 6906-6915, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38829311

RESUMO

Herein, a multifunctional nanohybrid (PL@HPFTM nanoparticles) was fabricated to perform the integration of chemodynamic therapy, photothermal therapy, and biological therapy over the long term at a designed location for continuous antibacterial applications. The PL@HPFTM nanoparticles consisted of a polydopamine/hemoglobin/Fe2+ nanocomplex with comodification of tetrazole/alkene groups on the surface as well as coloading of antimicrobial peptides and luminol in the core. During therapy, the PL@HPFTM nanoparticles would selectively cross-link to surrounding bacteria via tetrazole/alkene cycloaddition under chemiluminescence produced by the reaction between luminol and overexpressed H2O2 at the infected area. The resulting PL@HPFTM network not only significantly damaged bacteria by Fe2+-catalyzed ROS production, effective photothermal conversion, and sustained release of antimicrobial peptides but dramatically enhanced the retention time of these therapeutic agents for prolonged antibacterial therapy. Both in vitro and in vivo results have shown that our PL@HPFTM nanoparticles have much higher bactericidal efficiency and remarkably longer periods of validity than free antibacterial nanoparticles.


Assuntos
Antibacterianos , Nanopartículas , Antibacterianos/farmacologia , Antibacterianos/química , Animais , Nanopartículas/química , Camundongos , Escherichia coli/efeitos dos fármacos , Polímeros/química , Indóis/química , Indóis/farmacologia , Terapia Fototérmica , Humanos , Staphylococcus aureus/efeitos dos fármacos , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/farmacologia
4.
Small ; 20(38): e2311546, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38766975

RESUMO

Bacterial adhesion to stainless steel, an alloy commonly used in shared settings, numerous medical devices, and food and beverage sectors, can give rise to serious infections, ultimately leading to morbidity, mortality, and significant healthcare expenses. In this study, Cu-coated nanotextured stainless steel (nSS) fabrication have been demonstrated using electrochemical technique and its potential as an antibiotic-free biocidal surface against Gram-positive and negative bacteria. As nanotexture and Cu combine for dual methods of killing, this material should not contribute to drug-resistant bacteria as antibiotic use does. This approach involves applying a Cu coating on nanotextured stainless steel, resulting in an antibacterial activity within 30 min. Comprehensive characterization of the surface revealing that the Cu coating consists of metallic Cu and oxidized states (Cu2+ and Cu+), has been performed by this study. Cu-coated nSS induces a remarkable reduction of 97% in Gram-negative Escherichia coli and 99% Gram-positive Staphylococcus epidermidis bacteria. This material has potential to be used to create effective, scalable, and sustainable solutions to prevent bacterial infections caused by surface contamination without contributing to antibiotic resistance.


Assuntos
Antibacterianos , Cobre , Escherichia coli , Aço Inoxidável , Aço Inoxidável/química , Cobre/química , Cobre/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Staphylococcus epidermidis/efeitos dos fármacos , Propriedades de Superfície , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Aderência Bacteriana/efeitos dos fármacos
5.
Small ; : e2404351, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39161205

RESUMO

Titanium and titanium alloys remain the gold standard for dental and orthopedic implants. These materials are heavily used because of their bioinert nature, robust mechanical properties, and seamless integration with bone. However, implant-associated infections (IAIs) remain one of the leading causes of implant failure. Eradicating an IAI can be difficult since bacteria can form biofilms on the medical implant, protecting the bacterial cells against systemic antibiotics and the host's immune system. If the infection is not treated promptly and aggressively, device failure is inevitable, leading to costly multi-step revision surgeries. To circumvent this dire situation, scientists and engineers continue to develop novel strategies to protect the surface of medical implants from bacteria. In this review, details on emerging strategies to prevent infection in titanium implants are reported. These strategies include anti-adhesion properties provided by polymers, superhydrophobic, superhydrophilic, and liquid-infused surface coatings, as well as strategies and coatings employed to lyse the bacteria. Additionally, commercially available technologies and those under preclinical trials are examined while discussing current and future trends.

6.
Small ; 20(10): e2306508, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37919860

RESUMO

The design and fabrication of NO-evolving core-shell nanoparticles (denoted as NC@Fe), comprised of BNN6-laden COF@Fe3 O4 nanoparticles, are reported. This innovation extends to the modification of 3D printed polyetheretherketone scaffolds with NC@Fe, establishing a pioneering approach to multi-modal bone therapy tailored to address complications such as device-associated infections and osteomyelitis. This work stands out prominently from previous research, particularly those relying on the use of antibiotics, by introducing a bone implant capable of simultaneous NO gas therapy and photothermal therapy (PPT). Under NIR laser irradiation, the Fe3 O4 NP core (photothermal conversion agent) within NC@Fe absorbs photoenergy and initiates electron transfer to the loaded NO donor (BNN6), resulting in controlled NO release. The additional heat generated through photothermal conversion further propels the NC@Fe nanoparticles, amplifying the therapeutic reach. The combined effect of NO release and PPT enhances the efficacy in eradicating bacteria over a more extensive area around the implant, presenting a distinctive solution to conventional challenges. Thorough in vitro and in vivo investigations validate the robust potential of the scaffold in infection control, osteogenesis, and angiogenesis, emphasizing the timeliness of this unique solution in managing complicated bone related infectious diseases.


Assuntos
Estruturas Metalorgânicas , Polímeros , Benzofenonas , Polietilenoglicóis , Cetonas
7.
Small ; 20(31): e2310870, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38453669

RESUMO

Developing tunable underwater adhesives that possess tough adhesion in service and easy detachment when required remains challenging. Herein, a strategy is proposed to design a near infrared (NIR) photothermal-responsive underwater adhesive by incorporating MXene (Ti3C2Tx)-based nanoparticles within isocyanate-modified polydimethylsiloxane (PDMS) polymer chains. The developed adhesive exhibits long-term and tough adhesion with an underwater adhesion strength reaching 5.478 MPa. Such strong adhesion is mainly attributed to the covalent bonds and hydrogen bonds at the adhesive-substrate interface. By making use of the photothermal-response of MXene-based nanoparticles and the thermal response of PDMS-based chains, the adhesive possesses photothermal-responsive performance, exhibiting sharply diminished adhesion under NIR irradiation. Such NIR-triggered tunable adhesion allows for easy and active detachment of the adhesive when needed. Moreover, the underwater adhesive exhibits photothermal antibacterial property, making it highly desirable for underwater applications. This work enhances the understanding of photothermal-responsive underwater adhesion, enabling the design of tunable underwater adhesives for biomedical and engineering applications.


Assuntos
Adesivos , Antibacterianos , Dimetilpolisiloxanos , Raios Infravermelhos , Antibacterianos/farmacologia , Antibacterianos/química , Adesivos/química , Adesivos/farmacologia , Dimetilpolisiloxanos/química , Nanopartículas/química , Escherichia coli/efeitos dos fármacos
8.
Small ; 20(19): e2309230, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38112271

RESUMO

Bone infection poses a major clinical challenge that can hinder patient recovery and exacerbate postoperative complications. This study has developed a bioactive composite scaffold through the co-assembly and intrafibrillar mineralization of collagen fibrils and zinc oxide (ZnO) nanowires (IMC/ZnO). The IMC/ZnO exhibits bone-like hierarchical structures and enhances capabilities for osteogenesis, antibacterial activity, and bacteria-infected bone healing. During co-cultivation with human bone marrow mesenchymal stem cells (BMMSCs), the IMC/ZnO improves BMMSC adhesion, proliferation, and osteogenic differentiation even under inflammatory conditions. Moreover, it suppresses the activity of Gram-negative Porphyromonas gingivalis and Gram-positive Streptococcus mutans by releasing zinc ions within the acidic infectious microenvironment. In vivo, the IMC/ZnO enables near-complete healing of infected bone defects within the intricate oral bacterial milieu, which is attributed to IMC/ZnO orchestrating M2 macrophage polarization, and fostering an osteogenic and anti-inflammatory microenvironment. Overall, these findings demonstrate the promise of the bioactive scaffold IMC/ZnO for treating bacteria-infected bone defects.


Assuntos
Regeneração Óssea , Colágeno , Células-Tronco Mesenquimais , Nanofios , Osteogênese , Alicerces Teciduais , Óxido de Zinco , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Nanofios/química , Regeneração Óssea/efeitos dos fármacos , Alicerces Teciduais/química , Humanos , Colágeno/química , Células-Tronco Mesenquimais/citologia , Osteogênese/efeitos dos fármacos , Animais , Porphyromonas gingivalis/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Streptococcus mutans/fisiologia , Streptococcus mutans/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos
9.
Small ; 20(37): e2401201, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38847560

RESUMO

Flexible electronics, like electronic skin (e-skin), rely on stretchable conductive materials that integrate diverse components to enhance mechanical, electrical, and interfacial properties. However, poor biocompatibility, bacterial infections, and limited compatibility of functional additives within polymer matrices hinder healthcare sensors' performance. This study addresses these challenges by developing an antibacterial hydrogel using polyvinyl alcohol (PVA), konjac glucomannan (KGM), borax (B), and flower-shaped silver nanoparticles (F-AgNPs), referred as PKB/F-AgNPs hydrogel. The developed hydrogel forms a hierarchical network structure, with a tensile strength of 96 kPa, 83% self-healing efficiency within 60 minutes, and 128% cell viability in Cell Counting Kit-8 (CCK-8) assays, indicating excellent biocompatibility. It also shows strong antibacterial efficacy against Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus). Blue light irradiation enhances its antibacterial activity by 1.3-fold for E. coli and 2.2-fold for S. aureus. The hydrogel's antibacterial effectiveness is assessed by monitoring changes in electrical conductivity, providing a cost-effective alternative to traditional microbial culture assays. The PKB/F-AgNPs hydrogel's flexibility and electrical conductivity enable it to function as strain sensors for detecting body movements and facial expressions. This antibacterial hydrogel underscores its potential for future human-machine interfaces and wearable electronics.


Assuntos
Antibacterianos , Materiais Biocompatíveis , Escherichia coli , Hidrogéis , Nanopartículas Metálicas , Prata , Staphylococcus aureus , Dispositivos Eletrônicos Vestíveis , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Hidrogéis/química , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Prata/química , Prata/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Nanopartículas Metálicas/química , Álcool de Polivinil/química , Mananas/química , Mananas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Boratos
10.
Small ; 20(29): e2400399, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38607266

RESUMO

To address the issue of bacterial growth on fresh-cut fruits, this paper reports the synthesis of nanosized γ-cyclodextrin metal-organic frameworks (CD-MOFs) using an ultrasound-assisted method and their application as carriers of limonene for antibacterial active packaging. The effects of the processing parameters on the morphology and crystallinity of the CD-MOFs are investigated, and the results prove that the addition of methanol is the key to producing nanosized CD-MOFs. The limonene loading content of the nanosized CD-MOFs can reach approximately 170 mg g-1. The sustained-release behaviors of limonene in the CD-MOFs are evaluated. Molecular docking simulations reveal the distribution and binding sites of limonene in the CD-MOFs. CD-MOFs are deposited on the surfaces of polycaprolactone (PCL) nanofibers via an immersion method, and limonene-loaded CD-MOF@PCL nanofibers are prepared. The morphology, crystallinity, thermal stability, mechanical properties, and antibacterial activity of the nanofibers are also studied. The nanofiber film effectively inhibits bacterial growth and prolongs the shelf life of fresh-cut apples. This study provides a novel strategy for developing antibacterial active packaging materials based on CD-MOFs and PCL nanofibers.


Assuntos
Frutas , Limoneno , Estruturas Metalorgânicas , Nanofibras , Poliésteres , gama-Ciclodextrinas , Limoneno/química , Limoneno/farmacologia , Nanofibras/química , Poliésteres/química , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , gama-Ciclodextrinas/química , Frutas/química , Terpenos/química , Terpenos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Simulação de Acoplamento Molecular
11.
Microb Pathog ; 196: 107006, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39401687

RESUMO

BACKGROUND: Considering that antimicrobial resistance among oral pathogens is a significant concern in dental practice, with broader implications for overall health due to the oral microbiota serving as a reservoir for antibiotic resistance genes (ARGs), research into natural products is crucial for addressing this issue. OBJECTIVE: This study aimed to evaluate tea tree oil (TTO) and chitosan (CH) performance against oral pathogens, including mixed-species biofilm, and its effects on bacteria growth, in addition to chemical characterization and cytotoxicity of TTO. METHODS: Tea Tree Oil and low molecular weight chitosan were used in this study. The chemical composition of TTO was analyzed using gas chromatography coupled with mass spectrometry (GC-MS). To evaluate TTO's antimicrobial properties, time-kill and cell viability assays were conducted. Additionally, minimum inhibitory concentration (MIC), minimum microbiocidal concentration (MMC), checkerboard, and biofilm assays were performed using TTO and CH alone and in combination. RESULTS: TTO chromatography peaks found consistent with the standard ISO4730:2017 and literature. TTO and CH exhibited inhibitory activity against all tested microorganisms. The predominantly microbiostatic activity of TTO is probably related to terpinen-4-ol associated with terpinene. The oil at MIC value was able to delay the log phase of Aggregatibacter actinomycetemcomitans growth. Fibroblasts (L929) viability remained above 70 % during 24 h for TTO concentrations ranging from 0.5 to 0.0625 mg/ml. TTO-CH combination showed a synergistic activity (FIC = 0.5) against A. actinomycetemcomitans and Streptococcus sanguinis, at a concentration of 0,25MIC for both species. The compounds at MIC concentration inhibited both monospecies and mixed-species biofilms studied bacteria to the same extent as the azithromycin control. CONCLUSION: TTO and CH demonstrated efficacy in combating oral pathogens and TTO-CH combination offers a promising approach to confront microbial resistance in the oral environment.


Assuntos
Antibacterianos , Biofilmes , Quitosana , Testes de Sensibilidade Microbiana , Óleo de Melaleuca , Óleo de Melaleuca/farmacologia , Óleo de Melaleuca/química , Quitosana/farmacologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Antibacterianos/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Boca/microbiologia , Humanos , Terpenos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Aggregatibacter actinomycetemcomitans/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Anti-Infecciosos/farmacologia
12.
Microb Pathog ; 196: 106965, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39321968

RESUMO

OBJECTIVE: This work aimed to evaluate the in vitro effect of zinc oxide-eugenol paste (ZOE) on planktonic aggregates (EfPA) and biofilm (EfBio) of Enterococcus faecalis, focusing on their morphological aspects observed and analyzed using atomic force microscopy (AFM). DESIGN: The eugenol and paste were characterized by Gas Chromatography coupled with Mass Spectrometry (GC-MS) and Fourier Transform Infrared Spectroscopy (FTIR), respectively. The effect of ZOE on EfPA and EfBio was evaluated by a direct-contact test through colony counting and crystal violet staining protocol. AFM images of untreated and treated EfPA and EfBio growth on bovine dentin were obtained to analyze the morphological damage caused by the treatments. RESULTS: The characterization showed high purity in the eugenol composition and chemical interaction between the components of the paste. A bactericidal effect on aggregates was observed after 6 h of exposure, and on biofilm after 24 h of treatment (p < 0.001). A disruptive effect on the biofilm was also evident. AFM images revealed the formation of EfPA, with a notable presence of an exopolysaccharide matrix. After 6 h of ZOE treatment, there was a significant increase in the size and surface roughness profile of treated cells (p < 0.05). Loss of typical cell morphology was observed after 24 h. The effect on the biofilm showed a tendency towards a less condensed biofilm pattern in the treated group, with no differences in surface roughness. CONCLUSION: ZOE presents bactericidal action on EfPA and EfBio, promoting significant morphological changes after treatment, especially in the aggregates.


Assuntos
Biofilmes , Enterococcus faecalis , Microscopia de Força Atômica , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/ultraestrutura , Animais , Bovinos , Espectroscopia de Infravermelho com Transformada de Fourier , Plâncton/efeitos dos fármacos , Antibacterianos/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Eugenol/farmacologia , Cimento de Óxido de Zinco e Eugenol/farmacologia , Dentina/efeitos dos fármacos , Dentina/microbiologia , Materiais Restauradores do Canal Radicular/farmacologia
13.
Chemistry ; 30(18): e202303012, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38266207

RESUMO

The use of Mg-based biomaterials with a number of their advantageous properties are overshadowed by uncontrollable metal corrosion. Moreover, the use of implants goes alongside with the threat of pathogens-associated complications. In this study, PEO coated Mg biomaterial loaded with antibacterial Ag(I) and Cu(II) complexes is produced and tested to meet both appropriate protective characteristics as well as sufficient level of antibacterial activity. To achieve a suitable level of anticorrosion protection phosphate and fluoride-phosphate electrolytes are used in the PEO process. Investigation of the surface thickness and morphology done by means of cross-section analysis and scanning electron microscopy (SEM), as well as electrochemical impedance spectroscopy (EIS) assay show precedence of the fluoride containing PEO coating and make it the material of choice for further modification with Ag(I) and Cu(II) complexes. The presence of the complexes on the PEO surface is confirmed by energy dispersive X-ray spectroscopy (EDX). X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and glow discharge optical emission spectroscopy (GDOES) are used to estimate the complexes' chemical state and depth of penetration in the coating surface. Based on the results of antibacterial assay, the modified coatings are found to be active against both Gram-positive and Gram-negative bacteria.


Assuntos
Antibacterianos , Fluoretos , Antibacterianos/farmacologia , Propriedades de Superfície , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Materiais Biocompatíveis , Espectroscopia Fotoeletrônica , Fosfatos
14.
Biopolymers ; 115(4): e23586, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38747448

RESUMO

Cellulose nanofibers, a sustainable and promising material with widespread applications, exhibit appreciable strength and excellent mechanical and physicochemical properties. The preparation of cellulosic nanofibers from food or agricultural residue is not sustainable. Therefore, this study was designed to use three halophytic plants (Cressa cretica, Phragmites karka, and Suaeda fruticosa) to extract cellulose for the subsequent conversion to cellulosic nanofibers composites. The other extracted biomass components including lignin, hemicellulose, and pectin were also utilized to obtain industrially valuable enzymes. The maximum pectinase (31.56 IU mL-1), xylanase (35.21 IU mL-1), and laccase (15.89 IU mL-1) were produced after the fermentation of extracted pectin, hemicellulose, and lignin from S. fruticosa, P. karka, and C. cretica, respectively. Cellulose was methylated (with a degree of substitution of 2.4) and subsequently converted into a composite using polyvinyl alcohol. Scanning electron microscopy and Fourier-transform infrared spectroscopy confirmed the successful synthesis of the composites. The composites made up of cellulose from C. cretica and S. fruticosa had a high tensile strength (21.5 and 15.2 MPa) and low biodegradability (47.58% and 44.56%, respectively) after dumping for 3 months in soil, as compared with the composite from P. karka (98.79% biodegradability and 4.9 MPa tensile strength). Moreover, all the composites exhibited antibacterial activity against gram-negative bacteria (Escherichia coli and Klebsiella pneumoniae) and gram-positive bacteria (Staphylococcus aureus). Hence, this study emphasizes the possibility for various industrial applications of biomass from halophytic plants.


Assuntos
Celulose , Celulose/química , Plantas Tolerantes a Sal/química , Plantas Tolerantes a Sal/metabolismo , Lignina/química , Resistência à Tração , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Poligalacturonase/metabolismo , Poligalacturonase/química , Espectroscopia de Infravermelho com Transformada de Fourier , Lacase/metabolismo , Lacase/química , Nanofibras/química , Pectinas/química , Pectinas/isolamento & purificação , Pectinas/metabolismo , Chenopodiaceae/química , Chenopodiaceae/metabolismo , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Endo-1,4-beta-Xilanases/metabolismo , Endo-1,4-beta-Xilanases/química
15.
Biomed Microdevices ; 26(1): 12, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38261085

RESUMO

The rise in drug resistance in pathogenic bacteria greatly endangers public health in the post-antibiotic era, and drug-resistant bacteria currently pose a great challenge not only to the community but also to clinical procedures, including surgery, stent implantation, organ transplantation, and other medical procedures involving any open wound and compromised human immunity. Biofilm-associated drug failure, as well as rapid resistance to last-resort antibiotics, necessitates the search for novel treatments against bacterial infection. In recent years, the flourishing development of nanotechnology has provided new insights for exploiting promising alternative therapeutics for drug-resistant bacteria. Metallic agents have been applied in antibacterial usage for several centuries, and the functional modification of metal-based biomaterials using nanotechnology has now attracted great interest in the antibacterial field, not only for their intrinsic antibacterial nature but also for their ready on-demand functionalization and enhanced interaction with bacteria, rendering them with good potential in further translation. However, the possible toxicity of MNPs to the host cells and tissue still hinders its application, and current knowledge on their interaction with cellular pathways is not enough. This review will focus on recent advances in developing metallic nanoparticles (MNPs), including silver, gold, copper, and other metallic nanoparticles, for antibacterial applications, and their potential mechanisms of interaction with pathogenic bacteria as well as hosts.


Assuntos
Antibacterianos , Nanopartículas Metálicas , Humanos , Antibacterianos/farmacologia , Prata , Materiais Biocompatíveis , Biofilmes
16.
Biotechnol Bioeng ; 121(4): 1453-1464, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38234099

RESUMO

An ideal antibacterial wound dressing with strong antibacterial behavior versus highly drug-resistant bacteria and great wound-healing capacity is still being developed. There is a clinical requirement to progress the current clinical cares that fail to fully restore the skin structure due to post-wound infections. Here, we aim to introduce a novel two-layer wound dressing using decellularized bovine skin (DBS) tissue and antibacterial nanofibers to design a bioactive scaffold with bio-mimicking the native extracellular matrix of both dermis and epidermis. For this purpose, polyvinyl alcohol (PVA)/chitosan (CS) solution was loaded with antibiotics (colistin and meropenem) and electrospun on the surface of the DBS scaffold to fabricate a two-layer antibacterial wound dressing (DBS-PVA/CS/Abs). In detail, the characterization of the fabricated scaffold was conducted using biomechanical, biological, and antibacterial assays. Based on the results, the fabricated scaffold revealed a homogenous three-dimensional microstructure with a connected pore network, a high porosity and swelling ratio, and favorable mechanical properties. In addition, according to the cell culture result, our fabricated two-layer scaffold surface had a good interaction with fibroblast cells and provided an excellent substrate for cell proliferation and attachment. The antibacterial assay revealed a strong antibacterial activity of DBS-PVA/CS/Abs against both standard strain and multidrug-resistant clinical isolates of Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli. Our bilayer antibacterial wound dressing is strongly suggested as an admirable wound dressing for the management of infectious skin injuries and now promises to advance with preclinical and clinical research.


Assuntos
Quitosana , Nanofibras , Infecção dos Ferimentos , Animais , Bovinos , Antibacterianos/farmacologia , Antibacterianos/química , Pele , Cicatrização , Quitosana/química , Álcool de Polivinil/química , Infecção dos Ferimentos/tratamento farmacológico , Nanofibras/química
17.
Mol Pharm ; 21(5): 2238-2249, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38622497

RESUMO

Tuberculosis (TB) is a chronic disease caused byMycobacterium tuberculosis (Mtb), which shows a long treatment cycle often leads to drug resistance, making treatment more difficult. Immunogens present in the pathogen's cell membrane can stimulate endogenous immune responses. Therefore, an effective lipid-based vaccine or drug delivery vehicle formulated from the pathogen's cell membrane can improve treatment outcomes. Herein, we extracted and characterized lipids fromMycobacterium smegmatis, and the extracts contained lipids belonging to numerous lipid classes and compounds typically found associated with mycobacteria. The extracted lipids were used to formulate biomimetic lipid reconstituted nanoparticles (LrNs) and LrNs-coated poly(lactic-co-glycolic acid) nanoparticles (PLGA-LrNs). Physiochemical characterization and results of morphology suggested that PLGA-LrNs exhibited enhanced stability compared with LrNs. And both of these two types of nanoparticles inhibited the growth of M. smegmatis. After loading different drugs, PLGA-LrNs containing berberine or coptisine strongly and synergistically prevented the growth of M. smegmatis. Altogether, the bacterial membrane lipids we extracted with antibacterial activity can be used as nanocarrier coating for synergistic antibacterial treatment of M. smegmatis─an alternative model of Mtb, which is expected as a novel therapeutic system for TB treatment.


Assuntos
Mycobacterium smegmatis , Nanopartículas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Nanopartículas/química , Mycobacterium smegmatis/efeitos dos fármacos , Lipídeos/química , Sinergismo Farmacológico , Membrana Celular/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Antituberculosos/farmacologia , Antituberculosos/química , Antituberculosos/administração & dosagem , Mycobacterium/efeitos dos fármacos , Berberina/farmacologia , Berberina/química , Portadores de Fármacos/química , Tuberculose/tratamento farmacológico
18.
Arch Microbiol ; 206(11): 430, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39387929

RESUMO

Biofilms are structured microbial communities encased in a matrix of self-produced extracellular polymeric substance (EPS) and pose significant challenges in various industrial cooling systems. A nuclear power plant uses a biocide active-bromide for control of biological growth in its condenser cooling system. This study is aimed at evaluating the anti-bacterial and anti-biofilm efficacy of active-bromide against planktonic and biofilm-forming bacteria that are commonly encountered in seawater cooling systems. The results demonstrated that active-bromide at the concentration used at the power plant (1 ppm) exhibited minimal killing activity against Pseudomonas aeruginosa planktonic cells. The bacterial cell surface hydrophobicity assay using Staphylococcus aureus and P. aeruginosa indicated that Triton-X 100 significantly decreased the hydrophobicity of planktonic cells, enhancing the susceptibility of the cells to active-bromide. Biofilm inhibition assays revealed limited efficacy of active-bromide at 1 ppm concentration, but significant inhibition at 5 ppm and 10 ppm. However, the addition of a surfactant, Triton-X 100, in combination with 1 ppm active-bromide displayed a synergistic effect, leading to significant biofilm dispersal of pre-formed P. aeruginosa biofilms. This observation was substantiated by epifluorescence microscopy using a live/dead bacterial assay that showed the combination treatment resulted in extensive cell death within the biofilm, as indicated by a marked increase in red fluorescence, compared to treatments with either agent alone. These findings suggest that active bromide alone may be insufficient for microfouling control in the seawater-based condenser cooling system of the power plant. Including a biocompatible surfactant that disrupts established biofilms (microfouling) can significantly improve the efficacy of active bromide treatment.


Assuntos
Antibacterianos , Biofilmes , Incrustação Biológica , Brometos , Pseudomonas aeruginosa , Staphylococcus aureus , Tensoativos , Biofilmes/efeitos dos fármacos , Tensoativos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Antibacterianos/farmacologia , Brometos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Incrustação Biológica/prevenção & controle , Sinergismo Farmacológico , Interações Hidrofóbicas e Hidrofílicas , Desinfetantes/farmacologia , Água do Mar/microbiologia , Água do Mar/química , Octoxinol/farmacologia
19.
Pharm Res ; 41(1): 93-104, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37985572

RESUMO

OBJECTIVE: To prepare polylactic acid microneedles (PLAMNs) with sustained antibacterial effect to avoid skin infection caused by traditional MNs-based biosensors. METHODS: Silver nanoparticles (AgNPs) were synthesized using an in-situ reduction process with polydopamine (PDA). PLAMNs were fabricated using the hot-melt method. A series of pressure tests and puncture experiments were conducted to confirm the physicochemical properties of PLAMNs. Then AgNPs were modified on the surface of PLAMNs through in-situ reduction of PDA, resulting in the formation of PLAMNs@PDA-AgNPs. The in vitro antibacterial efficacy of PLAMNs@PDA-AgNPs was evaluated using agar diffusion assays and bacterial liquid co-culture approach. Wound healing and simulated long-term application were performed to assess the in vivo antibacterial effectiveness of PLAMNs@PDA-AgNPs. RESULTS: The MNs array comprised 169 tiny needle tips in pyramidal rows. Strength and puncture tests confirmed a 100% puncture success rate for PLAMNs on isolated rat skin and tin foil. SEM analysis revealed the integrity of PLAMNs@PDA-AgNPs with the formation of new surface substances. EDS analysis indicated the presence of silver elements on the surface of PLAMNs@PDA-AgNPs, with a content of 14.44%. Transepidermal water loss (TEWL) testing demonstrated the rapid healing of micro-pores created by PLAMNs@PDA-AgNPs, indicating their safety. Both in vitro and in vivo tests confirmed antibacterial efficacy of PLAMNs@PDA-AgNPs. CONCLUSIONS: In conclusion, the sustained antibacterial activity exhibited by PLAMNs@PDA-AgNPs offers a promising solution for addressing skin infections associated with MN applications, especially when compared to traditional MN-based biosensors. This advancement offers significant potential for the field of MN technology.


Assuntos
Nanopartículas Metálicas , Poliésteres , Prata , Ratos , Animais , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana
20.
Nanotechnology ; 35(30)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38640906

RESUMO

Graphene oxide nanosheet (GO) is a multifunctional platform for binding with nanoparticles and stacking with two dimensional substrates. In this study, GO nanosheets were sonochemically decorated with zinc oxide nanoparticles (ZnO) and self-assembled into a hydrogel of GO-ZnO nanocomposite. The GO-ZnO hydrogel structure is a bioinspired approach for preserving graphene-based nanosheets from van der Waals stacking. X-ray diffraction analysis (XRD) showed that the sonochemical synthesis led to the formation of ZnO crystals on GO platforms. High water content (97.2%) of GO-ZnO hydrogel provided good property of ultrasonic dispersibility in water. Ultraviolet-visible spectroscopic analysis (UV-vis) revealed that optical band gap energy of ZnO nanoparticles (∼3.2 eV) GO-ZnO nanosheets (∼2.83 eV). Agar well diffusion tests presented effective antibacterial activities of GO-ZnO hydrogel against gram-negative bacteria (E. coli) and gram-positive bacteria (S. aureus). Especially, GO-ZnO hydrogel was directly used for brush painting on biodegradable polylactide (PLA) thin films. Graphene-based nanosheets with large surface area are key to van der Waals stacking and adhesion of GO-ZnO coating to the PLA substrate. The GO-ZnO/PLA films were characterized using photography, light transmittance spectroscopy, coating stability, scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopic mapping (EDS), antibacterial test and mechanical tensile measurement. Specifically, GO-ZnO coating on PLA substrate exhibited stability in aqueous food simulants for packaging application. GO-ZnO coating inhibited the infectious growth ofE. colibiofilm. GO-ZnO/PLA films had strong tensile strength and elastic modulus. As a result, the investigation of antibacterial GO-ZnO hydrogel and GO-ZnO coating on PLA film is fundamental for sustainable development of packaging and biomedical applications.


Assuntos
Antibacterianos , Escherichia coli , Grafite , Hidrogéis , Poliésteres , Staphylococcus aureus , Óxido de Zinco , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Grafite/química , Grafite/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Poliésteres/química , Poliésteres/farmacologia , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Hidrogéis/síntese química , Testes de Sensibilidade Microbiana , Nanocompostos/química , Ondas Ultrassônicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA