Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 523, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802741

RESUMO

BACKGROUND: Members of the Planctomycetota phylum harbour an outstanding potential for carbohydrate degradation given the abundance and diversity of carbohydrate-active enzymes (CAZymes) encoded in their genomes. However, mainly members of the Planctomycetia class have been characterised up to now, and little is known about the degrading capacities of the other Planctomycetota. Here, we present a comprehensive comparative analysis of all available planctomycetotal genome representatives and detail encoded carbohydrolytic potential across phylogenetic groups and different habitats. RESULTS: Our in-depth characterisation of the available planctomycetotal genomic resources increases our knowledge of the carbohydrolytic capacities of Planctomycetota. We show that this single phylum encompasses a wide variety of the currently known CAZyme diversity assigned to glycoside hydrolase families and that many members encode a versatile enzymatic machinery towards complex carbohydrate degradation, including lignocellulose. We highlight members of the Isosphaerales, Pirellulales, Sedimentisphaerales and Tepidisphaerales orders as having the highest encoded hydrolytic potential of the Planctomycetota. Furthermore, members of a yet uncultivated group affiliated to the Phycisphaerales order could represent an interesting source of novel lytic polysaccharide monooxygenases to boost lignocellulose degradation. Surprisingly, many Planctomycetota from anaerobic digestion reactors encode CAZymes targeting algal polysaccharides - this opens new perspectives for algal biomass valorisation in biogas processes. CONCLUSIONS: Our study provides a new perspective on planctomycetotal carbohydrolytic potential, highlighting distinct phylogenetic groups which could provide a wealth of diverse, potentially novel CAZymes of industrial interest.


Assuntos
Genômica , Filogenia , Polissacarídeos , Polissacarídeos/metabolismo , Genômica/métodos , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Bactérias/genética , Bactérias/metabolismo , Bactérias/classificação , Biotecnologia , Genoma Bacteriano , Lignina
2.
Chemistry ; 29(7): e202202379, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36207279

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are copper enzymes that today comprise a large enzyme superfamily, grouped into the distinct members AA9-AA17 (with AA12 exempted). The LPMOs have the potential to facilitate the upcycling of biomass waste products by boosting the breakdown of cellulose and other recalcitrant polysaccharides. The cellulose biopolymer is the main component of biomass waste and thus comprises a large, unexploited resource. The LPMOs work through a catalytic, oxidative reaction whose mechanism is still controversial. For instance, the nature of the intermediate performing the oxidative reaction is an open question, and the same holds for the employed co-substrate. Here we review theoretical investigations addressing these questions. The applied theoretical methods are usually based on quantum mechanics (QM), often combined with molecular mechanics (QM/MM). We discuss advantages and disadvantages of the employed theoretical methods and comment on the interplay between theoretical and experimental results.


Assuntos
Oxigenases de Função Mista , Polissacarídeos , Oxigenases de Função Mista/química , Polissacarídeos/metabolismo , Oxirredução , Celulose/química
3.
Int J Mol Sci ; 24(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38069150

RESUMO

Pleurotus ostreatus is a white-rot fungus that can degrade lignin in a preferential manner using a variety of extracellular enzymes, including manganese and versatile peroxidases (encoded by the vp1-3 and mnp1-6 genes, respectively). This fungus also secretes a family of structurally related small secreted proteins (SSPs) encoded by the ssp1-6 genes. Using RNA sequencing (RNA-seq), we determined that ssp4 and ssp6 are the predominant members of this gene family that were expressed by P. ostreatus during the first three weeks of growth on wheat straw. Downregulation of ssp4 in a strain harboring an ssp RNAi construct (KDssp1) was then confirmed, which, along with an increase in ssp6 transcript levels, coincided with reduced lignin degradation and the downregulation of vp2 and mnp1. In contrast, we observed an increase in the expression of genes related to pectin and side-chain hemicellulose degradation, which was accompanied by an increase in extracellular pectin-degrading capacity. Genome-wide comparisons between the KDssp1 and the wild-type strains demonstrated that ssp silencing conferred accumulated changes in gene expression at the advanced cultivation stages in an adaptive rather than an inductive mode of transcriptional response. Based on co-expression networking, crucial gene modules were identified and linked to the ssp knockdown genotype at different cultivation times. Based on these data, as well as previous studies, we propose that P. ostreatus SSPs have potential roles in modulating the lignocellulolytic and pectinolytic systems, as well as a variety of fundamental biological processes related to fungal growth and development.


Assuntos
Lignina , Pleurotus , Lignina/metabolismo , Pleurotus/metabolismo , Peroxidases/genética , Peroxidases/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Pectinas/metabolismo
4.
Appl Environ Microbiol ; 88(20): e0127422, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36169328

RESUMO

Extremely thermophilic Caldicellulosiruptor species solubilize carbohydrates from lignocellulose through glycoside hydrolases (GHs) that can be extracellular, intracellular, or cell surface layer (S-layer) associated. Caldicellulosiruptor genomes sequenced so far encode at least one surface layer homology domain glycoside hydrolase (SLH-GH), representing six different classes of these enzymes; these can have multiple binding and catalytic domains. Biochemical characterization of a representative from each class was done to determine their biocatalytic features: four SLH-GHs from Caldicellulosiruptor kronotskyensis (Calkro_0111, Calkro_0402, Calkro_0072, and Calkro_2036) and two from Caldicellulosiruptor hydrothermalis (Calhy_1629 and Calhy_2383). Calkro_0111, Calkro_0072, and Calhy_2383 exhibited ß-1,3-glucanase activity, Calkro_0402 was active on both ß-1,3/1,4-glucan and ß-1,4-xylan, Calkro_2036 exhibited activity on both ß-1,3/1,4-glucan and ß-1,4-glucan, and Calhy_1629 was active only on arabinan. Caldicellulosiruptor bescii, the only species with molecular genetic tools as well as already a strong cellulose degrader, contains only one SLH-GH, Athe_0594, a glucanase that is a homolog of Calkro_2036; the other 5 classes of SLH-GHs are absent in C. bescii. The C. bescii secretome, supplemented with individual enzymes or cocktails of SLH-GHs, increased in vitro sugar release from sugar cane bagasse and poplar. Expression of non-native SLH-GHs in vivo, either associated with the S-layer or as freely secreted enzymes, improved total carbohydrate solubilization of sugar cane bagasse and poplar by up to 45% and 23%, respectively. Most notably, expression of Calkro_0402, a xylanase/glucanase, improved xylose solubilization from poplar and bagasse by over 70% by C. bescii. While Caldicellulosiruptor species are already prolific lignocellulose degraders, they can be further improved by the strategy described here. IMPORTANCE Caldicellulosiruptor species hold promise as microorganisms that can solubilize the carbohydrate portion of lignocellulose and subsequently convert fermentable sugars into bio-based chemicals and fuels. Members of the genus have surface layer (S-layer) homology domain-associated glycoside hydrolases (SLH-GHs) that mediate attachment to biomass as well as hydrolysis of carbohydrates. Caldicellulosiruptor bescii, the most studied member of the genus, has only one SLH-GH. Expression of SLH-GHs from other Caldicellulosiruptor species in C. bescii significantly improved degradation of sugar cane bagasse and poplar. This suggests that this extremely thermophilic bacterium can be engineered to further improve its ability to degrade specific plant biomasses by inserting genes encoding SLH-GHs recruited from other Caldicellulosiruptor species.


Assuntos
Glicosídeo Hidrolases , Populus , Glicosídeo Hidrolases/metabolismo , Biomassa , Xilanos/metabolismo , Xilose , Clostridiales/metabolismo , Celulose/metabolismo , Plantas/microbiologia
5.
Microb Cell Fact ; 21(1): 144, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842666

RESUMO

BACKGROUND: Filamentous fungi are highly efficient at deconstructing plant biomass by secreting a variety of enzymes, but the complex enzymatic regulation underlying this process is not conserved and remains unclear. RESULTS: In this study, cellulases and xylanases could specifically respond to Avicel- and xylan-induction, respectively, in lignocellulose-degrading strain Trichoderma guizhouense NJAU4742, however, the differentially regulated cellulases and xylanases were both under the absolute control of the same TgXyr1-mediated pathway. Further analysis showed that Avicel could specifically induce cellulase expression, which supported the existence of an unknown specific regulator of cellulases in strain NJAU4742. The xylanase secretion is very complex, GH10 endoxylanases could only be induced by Avicel, while, other major xylanases were significantly induced by both Avicel and xylan. For GH10 xylanases, an unknown specific regulator was also deduced to exist. Meanwhile, the post-transcriptional inhibition was subsequently suggested to stop the Avicel-induced xylanases secretion, which explained the specifically high xylanase activities when induced by xylan in strain NJAU4742. Additionally, an economical strategy used by strain NJAU4742 was proposed to sense the environmental lignocellulose under the carbon starvation condition, that only slightly activating 4 lignocellulose-degrading genes before largely secreting all 33 TgXyr1-controlled lignocellulases if confirming the existence of lignocellulose components. CONCLUSIONS: This study, aiming to explore the unknown mechanisms of plant biomass-degrading enzymes regulation through the combined omics analysis, will open directions for in-depth understanding the complex carbon utilization in filamentous fungi.


Assuntos
Celulases , Hypocreales , Trichoderma , Carbono/metabolismo , Celulases/genética , Celulases/metabolismo , Celulose/metabolismo , Hypocreales/genética , Hypocreales/metabolismo , Trichoderma/genética , Trichoderma/metabolismo , Xilanos/metabolismo
6.
Int J Mol Sci ; 22(24)2021 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-34948409

RESUMO

The first lytic polysaccharide monooxygenase (LPMO) detected in the genome of the widespread ascomycete Talaromyces amestolkiae (TamAA9A) has been successfully expressed in Pichia pastoris and characterized. Molecular modeling of TamAA9A showed a structure similar to those from other AA9 LPMOs. Although fungal LPMOs belonging to the genera Penicillium or Talaromyces have not been analyzed in terms of regioselectivity, phylogenetic analyses suggested C1/C4 oxidation which was confirmed by HPAEC. To ascertain the function of a C-terminal linker-like region present in the wild-type sequence of the LPMO, two variants of the wild-type enzyme, one without this sequence and one with an additional C-terminal carbohydrate binding domain (CBM), were designed. The three enzymes (native, without linker and chimeric variant with a CBM) were purified in two chromatographic steps and were thermostable and active in the presence of H2O2. The transition midpoint temperature of the wild-type LPMO (Tm = 67.7 °C) and its variant with only the catalytic domain (Tm = 67.6 °C) showed the highest thermostability, whereas the presence of a CBM reduced it (Tm = 57.8 °C) and indicates an adverse effect on the enzyme structure. Besides, the potential of the different T. amestolkiae LPMO variants for their application in the saccharification of cellulosic and lignocellulosic materials was corroborated.


Assuntos
Celulose/metabolismo , Proteínas Fúngicas/metabolismo , Oxigenases de Função Mista/metabolismo , Talaromyces/metabolismo , Sequência de Aminoácidos , Celulose/química , Estabilidade Enzimática , Proteínas Fúngicas/química , Oxigenases de Função Mista/química , Modelos Moleculares , Conformação Proteica , Alinhamento de Sequência , Especificidade por Substrato , Talaromyces/química , Talaromyces/enzimologia
7.
Biotechnol Lett ; 42(1): 93-102, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31745843

RESUMO

OBJECTIVE: The development of an enzymatic assay for the specific quantification of the C1-oxidation product, i.e. gluconic acid of cellulose active lytic polysaccharide monooxygenases (LPMOs). RESULTS: In combination with a ß-glucosidase, the spectrophotometrical assay can reliably quantify the specific C1- oxidation product of LPMOs acting on cellulose. It is applicable for a pure cellulose model substrate as well as lignocellulosic biomass. The enzymatic assay compares well with the quantification performed by HPAEC-PAD. In addition, we show that simple boiling is not sufficient to inactivate LPMOs and we suggest to apply a metal chelator in addition to boiling or to drastically increase pH for proper inactivation. CONCLUSIONS: We conclude that the versatility of this simple enzymatic assay makes it useful in a wide range of experiments in basic and applied LPMO research and without the need for expensive instrumentation, e.g. HPAEC-PAD.


Assuntos
Celulose/metabolismo , Ensaios Enzimáticos/métodos , Gluconatos/análise , Oxigenases de Função Mista/metabolismo , Concentração de Íons de Hidrogênio , Oxirredução , Espectrofotometria
8.
Proc Natl Acad Sci U S A ; 114(41): E8665-E8674, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28973881

RESUMO

Identifying nutrients available in the environment and utilizing them in the most efficient manner is a challenge common to all organisms. The model filamentous fungus Neurospora crassa is capable of utilizing a variety of carbohydrates, from simple sugars to the complex carbohydrates found in plant cell walls. The zinc binuclear cluster transcription factor CLR-1 is necessary for utilization of cellulose, a major, recalcitrant component of the plant cell wall; however, expression of clr-1 in the absence of an inducer is not sufficient to induce cellulase gene expression. We performed a screen for unidentified actors in the cellulose-response pathway and identified a gene encoding a hypothetical protein (clr-3) that is required for repression of CLR-1 activity in the absence of an inducer. Using clr-3 mutants, we implicated the hyperosmotic-response pathway in the tunable regulation of glycosyl hydrolase production in response to changes in osmolarity. The role of the hyperosmotic-response pathway in nutrient sensing may indicate that cells use osmolarity as a proxy for the presence of free sugar in their environment. These signaling pathways form a nutrient-sensing network that allows Ncrassa cells to tightly regulate gene expression in response to environmental conditions.


Assuntos
Carbono/metabolismo , Parede Celular/metabolismo , Celulose/metabolismo , Proteínas Fúngicas/metabolismo , Sistema de Sinalização das MAP Quinases , Neurospora crassa/metabolismo , Carboidratos , Celulase/metabolismo , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Neurospora crassa/genética , Neurospora crassa/crescimento & desenvolvimento , Concentração Osmolar
9.
Int J Mol Sci ; 21(5)2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32111065

RESUMO

Lignocellulosic biomass is a most promising feedstock in the production of second-generation biofuels. Efficient degradation of lignocellulosic biomass requires a synergistic action of several cellulases and hemicellulases. Cellulases depolymerize cellulose, the main polymer of the lignocellulosic biomass, to its building blocks. The production of cellulase cocktails has been widely explored, however, there are still some main challenges that enzymes need to overcome in order to develop a sustainable production of bioethanol. The main challenges include low activity, product inhibition, and the need to perform fine-tuning of a cellulase cocktail for each type of biomass. Protein engineering and directed evolution are powerful technologies to improve enzyme properties such as increased activity, decreased product inhibition, increased thermal stability, improved performance in non-conventional media, and pH stability, which will lead to a production of more efficient cocktails. In this review, we focus on recent advances in cellulase cocktail production, its current challenges, protein engineering as an efficient strategy to engineer cellulases, and our view on future prospects in the generation of tailored cellulases for biofuel production.


Assuntos
Celulases/metabolismo , Lignina/metabolismo , Engenharia de Proteínas/métodos , Bactérias/enzimologia , Biocombustíveis , Biomassa , Biotecnologia/métodos , Celulases/genética , Celulose/metabolismo , Estabilidade Enzimática , Glicosídeo Hidrolases , Concentração de Íons de Hidrogênio , Hidrólise , Líquidos Iônicos , Penicillium/enzimologia , Sais , Solventes
10.
Microb Cell Fact ; 18(1): 193, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31699093

RESUMO

BACKGROUND: Biomass contains cellulose (C6-sugars), hemicellulose (C5-sugars) and lignin. Biomass ranks amongst the most abundant hydrocarbon resources on earth. However, biomass is recalcitrant to enzymatic digestion by cellulases. Physicochemical pretreatment methods make cellulose accessible but partially destroy hemicellulose, producing a C5-sugar-rich liquor. Typically, digestion of pretreated LCB is performed with commercial cellulase preparations, but C5-sugars could in principle be used for "on site" production of cellulases by genetically engineered microorganism, thereby reducing costs. RESULTS: Here we report a succession of genetic interventions in Aspergillus nidulans that redesign the natural regulatory circuitry of cellulase genes in such a way that recombinant strains use C5-sugar liquors (xylose) to grow a vegetative tissue and simultaneously accumulate large amounts of cellulases. Overexpression of XlnR showed that under xylose-induction conditions only xylanase C was produced. XlnR overexpression strains were constructed that use the xynCp promoter to drive the production of cellobiohydrolases, endoglucanases and ß-glucosidase. All five cellulases accumulated at high levels when grown on xylose. Production of cellulases in the presence of pretreated-biomass C5-sugar liquors was investigated, and cellulases accumulated to much higher enzyme titers than those obtained for traditional fungal cell factories with cellulase-inducing substrates. CONCLUSIONS: By replacing expensive substrates with a cheap by-product carbon source, the use of C5-sugar liquors directly derived from LCB pretreatment processes not only reduces enzyme production costs, but also lowers operational costs by eliminating the need for off-site enzyme production, purification, concentration, transport and dilution.


Assuntos
Aspergillus nidulans/metabolismo , Celulase/biossíntese , Celulose/metabolismo , Microrganismos Geneticamente Modificados/metabolismo , Xilose/metabolismo , Aspergillus nidulans/genética , Engenharia Genética
11.
Fungal Genet Biol ; 112: 40-46, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28803908

RESUMO

Basidiomycete fungi can degrade a wide range of plant biomass, including living and dead trees, forest litter, crops, and plant matter in soils. Understanding the process of plant biomass decay by basidiomycetes could facilitate their application in various industrial sectors such as food & feed, detergents and biofuels, and also provide new insights into their essential biological role in the global carbon cycle. The fast expansion of basidiomycete genomic and functional genomics data (e.g. transcriptomics, proteomics) has facilitated exploration of key genes and regulatory mechanisms of plant biomass degradation. In this study, we comparatively analyzed 22 transcriptome datasets from basidiomycetes related to plant biomass degradation, and identified 328 commonly induced genes and 318 repressed genes, and defined a core set of carbohydrate active enzymes (CAZymes), which was shared by most of the basidiomycete species. High conservation of these CAZymes in genomes and similar regulation pattern in transcriptomics data from lignocellulosic substrates indicate their key role in plant biomass degradation and need for their further biochemical investigation.


Assuntos
Basidiomycota/enzimologia , Basidiomycota/genética , Hidrolases/biossíntese , Hidrolases/genética , Lignina/metabolismo , Plantas/metabolismo , Transcriptoma , Basidiomycota/metabolismo , Biomassa
12.
Appl Environ Microbiol ; 84(11)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29572208

RESUMO

Fungi can decompose plant biomass into small oligo- and monosaccharides to be used as carbon sources. Some of these small molecules may induce metabolic pathways and the production of extracellular enzymes targeted for degradation of plant cell wall polymers. Despite extensive studies in ascomycete fungi, little is known about the nature of inducers for the lignocellulolytic systems of basidiomycetes. In this study, we analyzed six sugars known to induce the expression of lignocellulolytic genes in ascomycetes for their role as inducers in the basidiomycete white-rot fungus Dichomitus squalens using a transcriptomic approach. This identified cellobiose and l-rhamnose as the main inducers of cellulolytic and pectinolytic genes, respectively, of D. squalens Our results also identified differences in gene expression patterns between dikaryotic and monokaryotic strains of D. squalens cultivated on plant biomass-derived monosaccharides and the disaccharide cellobiose. This suggests that despite conservation of the induction between these two genetic forms of D. squalens, the fine-tuning in the gene regulation of lignocellulose conversion is differently organized in these strains.IMPORTANCE Wood-decomposing basidiomycete fungi have a major role in the global carbon cycle and are promising candidates for lignocellulosic biorefinery applications. However, information on which components trigger enzyme production is currently lacking, which is crucial for the efficient use of these fungi in biotechnology. In this study, transcriptomes of the white-rot fungus Dichomitus squalens from plant biomass-derived monosaccharide and cellobiose cultures were studied to identify compounds that induce the expression of genes involved in plant biomass degradation.


Assuntos
Basidiomycota/enzimologia , Basidiomycota/genética , Parede Celular/metabolismo , Proteínas Fúngicas/genética , Lignina/metabolismo , Biomassa , Celobiose/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica , Células Vegetais/metabolismo , Madeira/metabolismo , Madeira/microbiologia
13.
Appl Microbiol Biotechnol ; 102(6): 2913-2927, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29397428

RESUMO

The microbial degradation of plant-derived compounds under salinity stress remains largely underexplored. The pretreatment of lignocellulose material, which is often needed to improve the production of lignocellulose monomers, leads to high salt levels, generating a saline environment that raises technical considerations that influence subsequent downstream processes. Here, we constructed halotolerant lignocellulose degrading microbial consortia by enriching a salt marsh soil microbiome on a recalcitrant carbon and energy source, i.e., wheat straw. The consortia were obtained after six cycles of growth on fresh substrate (adaptation phase), which was followed by four cycles on pre-digested (highly-recalcitrant) substrate (stabilization phase). The data indicated that typical salt-tolerant bacteria made up a large part of the selected consortia. These were "trained" to progressively perform better on fresh substrate, but a shift was observed when highly recalcitrant substrate was used. The most dominant bacteria in the consortia were Joostella marina, Flavobacterium beibuense, Algoriphagus ratkowskyi, Pseudomonas putida, and Halomonas meridiana. Interestingly, fungi were sparsely present and negatively affected by the change in the substrate composition. Sarocladium strictum was the single fungal strain recovered at the end of the adaptation phase, whereas it was deselected by the presence of recalcitrant substrate. Consortia selected in the latter substrate presented higher cellulose and lignin degradation than consortia selected on fresh substrate, indicating a specialization in transforming the recalcitrant regions of the substrate. Moreover, our results indicate that bacteria have a prime role in the degradation of recalcitrant lignocellulose under saline conditions, as compared to fungi. The final consortia constitute an interesting source of lignocellulolytic haloenzymes that can be used to increase the efficiency of the degradation process, while decreasing the associated costs.


Assuntos
Bactérias/metabolismo , Biomassa , Fungos/metabolismo , Lignina/metabolismo , Consórcios Microbianos , Triticum/metabolismo , Bactérias/classificação , Bactérias/isolamento & purificação , Fungos/classificação , Fungos/isolamento & purificação , Hidrólise , Salinidade , Microbiologia do Solo
14.
Appl Environ Microbiol ; 83(2)2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27836848

RESUMO

Conversion of biomass into high-value products, including biofuels, is of great interest to developing sustainable biorefineries. Fungi are an inexhaustible source of enzymes to degrade plant biomass. Cellobiose dehydrogenases (CDHs) play an important role in the breakdown through synergistic action with fungal lytic polysaccharide monooxygenases (LPMOs). The three CDH genes of the model fungus Podospora anserina were inactivated, resulting in single and multiple CDH mutants. We detected almost no difference in growth and fertility of the mutants on various lignocellulose sources, except on crystalline cellulose, on which a 2-fold decrease in fertility of the mutants lacking P. anserina CDH1 (PaCDH1) and PaCDH2 was observed. A striking difference between wild-type and mutant secretomes was observed. The secretome of the mutant lacking all CDHs contained five beta-glucosidases, whereas the wild type had only one. P. anserina seems to compensate for the lack of CDH with secretion of beta-glucosidases. The addition of P. anserina LPMO to either the wild-type or mutant secretome resulted in improvement of cellulose degradation in both cases, suggesting that other redox partners present in the mutant secretome provided electrons to LPMOs. Overall, the data showed that oxidative degradation of cellulosic biomass relies on different types of mechanisms in fungi. IMPORTANCE: Plant biomass degradation by fungi is a complex process involving dozens of enzymes. The roles of each enzyme or enzyme class are not fully understood, and utilization of a model amenable to genetic analysis should increase the comprehension of how fungi cope with highly recalcitrant biomass. Here, we report that the cellobiose dehydrogenases of the model fungus Podospora anserina enable it to consume crystalline cellulose yet seem to play a minor role on actual substrates, such as wood shavings or miscanthus. Analysis of secreted proteins suggests that Podospora anserina compensates for the lack of cellobiose dehydrogenase by increasing beta-glucosidase expression and using an alternate electron donor for LPMO.


Assuntos
Desidrogenases de Carboidrato/genética , Celulose/metabolismo , Proteínas Fúngicas/genética , Podospora/enzimologia , Podospora/genética , Desidrogenases de Carboidrato/metabolismo , Ativação Enzimática/genética , Proteínas Fúngicas/metabolismo , Deleção de Genes , Fenótipo , Filogenia , Podospora/metabolismo
15.
Microb Cell Fact ; 16(1): 83, 2017 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-28511724

RESUMO

BACKGROUND: Fungal swollenins (SWOs) constitute a class of accessory proteins that are homologous to canonical plant expansins. Expansins and expansin-related proteins are well known for acting in the deagglomeration of cellulose structure by loosening macrofibrils. Consequently, SWOs can increase the accessibility and efficiency of the other enzymes involved in the saccharification of cellulosic substrates. Thus, SWOs are promising targets for improving the hydrolysis of plant biomass and for use as an additive to enhance the efficiency of an enzyme cocktail designed for the production of biofuels. RESULTS: Here, we report the initial characterization of an SWO from Trichoderma harzianum (ThSwo) that was successfully produced using Escherichia coli as a host. Initially, transcriptome and secretome data were used to compare swo gene expression and the amount of secreted ThSwo. The results from structural modeling and phylogenetic analysis of the ThSwo protein showed that ThSwo does preserve some structural features of the plant expansins and family-45 glycosyl hydrolase enzymes, but it evolutionarily diverges from both of these protein classes. Recombinant ThSwo was purified at a high yield and with high purity and showed secondary folding similar to that of a native fungal SWO. Bioactivity assays revealed that the purified recombinant ThSwo created a rough and amorphous surface on Avicel and displayed a high synergistic effect with a commercial xylanase from T. viride, enhancing its hydrolytic performance up to 147 ± 7%. CONCLUSIONS: Many aspects of the structure and mechanism of action of fungal SWOs remain unknown. In the present study, we produced a recombinant, active SWO from T. harzianum using a prokaryotic host and confirmed its potential synergistic role in biomass degradation. Our work paves the way for further studies evaluating the structure and function of this protein, especially regarding its use in biotechnology.


Assuntos
Biocombustíveis , Biomassa , Escherichia coli/metabolismo , Proteínas Fúngicas/metabolismo , Trichoderma/metabolismo , Biotecnologia/métodos , Celulose/metabolismo , Escherichia coli/genética , Proteínas Fúngicas/genética , Hidrólise , Filogenia , Trichoderma/genética
16.
BMC Microbiol ; 16(1): 244, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27756215

RESUMO

BACKGROUND: Paenibacillus polymyxa is a plant-growth promoting rhizobacterium that could be exploited as an environmentally friendlier alternative to chemical fertilizers and pesticides. Various strains have been isolated that can benefit agriculture through antimicrobial activity, nitrogen fixation, phosphate solubilization, plant hormone production, or lignocellulose degradation. However, no single strain has yet been identified in which all of these advantageous traits have been confirmed. RESULTS: P. polymyxa CR1 was isolated from degrading corn roots from southern Ontario, Canada. It was shown to possess in vitro antagonistic activities against the common plant pathogens Phytophthora sojae P6497 (oomycete), Rhizoctonia solani 1809 (basidiomycete fungus), Cylindrocarpon destructans 2062 (ascomycete fungus), Pseudomonas syringae DC3000 (bacterium), and Xanthomonas campestris 93-1 (bacterium), as well as Bacillus cereus (bacterium), an agent of food-borne illness. P. polymyxa CR1 enhanced growth of maize, potato, cucumber, Arabidopsis, and tomato plants; utilized atmospheric nitrogen and insoluble phosphorus; produced the phytohormone indole-3-acetic acid (IAA); and degraded and utilized the major components of lignocellulose (lignin, cellulose, and hemicellulose). CONCLUSIONS: P. polymyxa CR1 has multiple beneficial traits that are relevant to sustainable agriculture and the bio-economy. This strain could be developed for field application in order to control pathogens, promote plant growth, and degrade crop residues after harvest.


Assuntos
Biocombustíveis/microbiologia , Agentes de Controle Biológico , Biomassa , Fertilizantes/microbiologia , Paenibacillus polymyxa/isolamento & purificação , Paenibacillus polymyxa/metabolismo , Paenibacillus polymyxa/fisiologia , Agricultura , Antibiose , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/microbiologia , Ascomicetos/patogenicidade , Bacillus cereus/patogenicidade , Canadá , Cucumis sativus/crescimento & desenvolvimento , Cucumis sativus/microbiologia , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Lignina/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Fixação de Nitrogênio , Paenibacillus polymyxa/genética , Controle Biológico de Vetores , Fósforo/metabolismo , Filogenia , Phytophthora/patogenicidade , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/microbiologia , Pseudomonas syringae/patogenicidade , RNA Ribossômico 16S/genética , Rhizoctonia/patogenicidade , Microbiologia do Solo , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/microbiologia , Xanthomonas campestris/patogenicidade , Zea mays/crescimento & desenvolvimento , Zea mays/microbiologia
17.
Appl Microbiol Biotechnol ; 100(10): 4535-47, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27075737

RESUMO

Fungal genomes contain multiple genes encoding AA9 lytic polysaccharide monooxygenases (LPMOs), a recently discovered class of enzymes known to be active on cellulose and expressed when grown on biomass. Because of extensive genetic and biochemical data already available, Aspergillus nidulans offers an excellent model system to study the need for multiple AA9 LPMOs and their activity during oxidative degradation of biomass. We provide the first report on regulation of the entire family of AA9 LPMOs in A. nidulans over a range of polysaccharides including xylan, xyloglucan, pectin, glucan, and cellulose. We have successfully cloned and expressed AN3046, an AA9 LPMO in A. nidulans that is active on cellulose. Additionally, we performed mass spectral analyses that show the enzyme is active on the hemicellulose xyloglucan. The AN3046 LPMO showed synergy with other hydrolases in degrading sorghum stover. Our data showing activity of the overexpressed LPMO on cellulose and xyloglucan provides further evidence for the breadth of substrates acted on by AA9 LPMOs.


Assuntos
Aspergillus nidulans/enzimologia , Celulose/química , Glucanos/química , Oxigenases de Função Mista/metabolismo , Xilanos/química , Sequência de Aminoácidos , Aspergillus nidulans/genética , Sequência de Bases , Parede Celular/microbiologia , Quitina/química , Clonagem Molecular , Genes Fúngicos , Oxigenases de Função Mista/genética , Filogenia , Células Vegetais/microbiologia , Polissacarídeos/química , Regiões Promotoras Genéticas , RNA Fúngico/genética , Especificidade por Substrato
18.
J Basic Microbiol ; 55(12): 1384-93, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26370071

RESUMO

The raw materials used to produce bioethanol mostly are food crops, which has led to conflicts on food security. It is, therefore, recommended the gradual replacement for second generation substrates such as lignocellulosic materials. Herein, cellulolytic bacteria were isolated from the gut content of native larvae from Lepidoptera, Coleoptera, and adults of Isoptera. Few environmental samples from the pulp and paper feedstock were also assessed. A total of 233 isolates were obtained using enrichment cultures and classic criteria. Interestingly, several halo-forming colonies were found to be bacterial consortia that presented difficulties to take apart the microbial members. Those pure isolates which hydrolyzed cellulose in larger extend (45 strains) were selected and identified by means of 16S rRNA sequence analysis. Firmicutes was the prevalent phylum (62.2%) being Bacillus spp. the most frequent genus, while Paenibacillus, Brevibacillus, Cohnella, and Staphylococcus species were less frequent. The phylum Actinobacteria (6.7%) was represented by isolates related to Agromyces spp. and Microbacterium spp. Regarding Gram-negative bacteria (31.1%), the more depicted genus was Pseudomonas spp., and members of Achromobacter spp., Enterobacter spp., and Bacteroidetes phylum were also selected. These native bacterial strains are expected to enlarge the cellulolytic toolbox for efficient biomass deconstruction.


Assuntos
Celulose/metabolismo , Bactérias Gram-Negativas/isolamento & purificação , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/isolamento & purificação , Bactérias Gram-Positivas/metabolismo , Insetos/microbiologia , Animais , Argentina , Biomassa , Celulase/metabolismo , DNA Ribossômico/genética , Microbioma Gastrointestinal , Bactérias Gram-Negativas/classificação , Bactérias Gram-Negativas/genética , Bactérias Gram-Positivas/classificação , Bactérias Gram-Positivas/genética , Isópteros/microbiologia , Larva/microbiologia , Filogenia , RNA Ribossômico 16S/genética
19.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 10): 2583-92, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25286843

RESUMO

Microorganisms that degrade biomass produce diverse assortments of carbohydrate-active enzymes and binding modules. Despite tremendous advances in the genomic sequencing of these organisms, many genes do not have an ascribed function owing to low sequence identity to genes that have been annotated. Consequently, biochemical and structural characterization of genes with unknown function is required to complement the rapidly growing pool of genomic sequencing data. A protein with previously unknown function (Cthe_2159) was recently isolated in a genome-wide screen using phage display to identify cellulose-binding protein domains from the biomass-degrading bacterium Clostridium thermocellum. Here, the crystal structure of Cthe_2159 is presented and it is shown that it is a unique right-handed parallel ß-helix protein. Despite very low sequence identity to known ß-helix or carbohydrate-active proteins, Cthe_2159 displays structural features that are very similar to those of polysaccharide lyase (PL) families 1, 3, 6 and 9. Cthe_2159 is conserved across bacteria and some archaea and is a member of the domain of unknown function family DUF4353. This suggests that Cthe_2159 is the first representative of a previously unknown family of cellulose and/or acid-sugar binding ß-helix proteins that share structural similarities with PLs. Importantly, these results demonstrate how functional annotation by biochemical and structural analysis remains a critical tool in the characterization of new gene products.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cálcio/química , Cálcio/metabolismo , Celulose/metabolismo , Clonagem Molecular , Clostridium thermocellum/química , Clostridium thermocellum/metabolismo , Cristalografia por Raios X , Gadolínio/química , Modelos Moleculares , Polissacarídeo-Liases/química , Conformação Proteica , Estrutura Terciária de Proteína , Homologia Estrutural de Proteína
20.
Biotechnol Bioeng ; 111(8): 1550-65, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24728961

RESUMO

Although recent nucleotide sequencing technologies have significantly enhanced our understanding of microbial genomes, the function of ∼35% of genes identified in a genome currently remains unknown. To improve the understanding of microbial genomes and consequently of microbial processes it will be crucial to assign a function to this "genomic dark matter." Due to the urgent need for additional carbohydrate-active enzymes for improved production of transportation fuels from lignocellulosic biomass, we screened the genomes of more than 5,500 microorganisms for hypothetical proteins that are located in the proximity of already known cellulases. We identified, synthesized and expressed a total of 17 putative cellulase genes with insufficient sequence similarity to currently known cellulases to be identified as such using traditional sequence annotation techniques that rely on significant sequence similarity. The recombinant proteins of the newly identified putative cellulases were subjected to enzymatic activity assays to verify their hydrolytic activity towards cellulose and lignocellulosic biomass. Eleven (65%) of the tested enzymes had significant activity towards at least one of the substrates. This high success rate highlights that a gene context-based approach can be used to assign function to genes that are otherwise categorized as "genomic dark matter" and to identify biomass-degrading enzymes that have little sequence similarity to already known cellulases. The ability to assign function to genes that have no related sequence representatives with functional annotation will be important to enhance our understanding of microbial processes and to identify microbial proteins for a wide range of applications.


Assuntos
Bactérias/genética , Proteínas de Bactérias/genética , Celulases/genética , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Biomassa , Celulases/metabolismo , Celulose/metabolismo , Clonagem Molecular , Genes Bacterianos , Genômica , Hidrólise , Lignina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA