Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.132
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 146: 109383, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246266

RESUMO

A mucoadhesive chitosan polymer-based nanoplatform has been increasingly recognized as an effective mucosal vaccine delivery system for fish. The present study aimed to investigate the effectiveness of immersion vaccination with a chitosan polymer-based nanovaccine to elicit an immune response in serum and mucus of red tilapia and evaluate its protective efficacy after immersion challenge with a heterogenous strain of Aeromonas veronii UDRT09. Six hundred red tilapia (22 ± 1.8 g) were randomly allocated into four experimental groups: control, empty-polymeric nanoparticle (PC), formalin-killed vaccine (FKV), and chitosan polymer-based nanovaccine (CS-NV) in triplicate. The specific IgM antibody levels and their bactericidal activity were assessed in serum and mucus for 28 days after immersion vaccination and followed by immersion challenge with A. veronii. The immersion vaccine was found to be safe for red tilapia, with no mortalities occurring during the vaccination procedure. The specific IgM antibody levels and bactericidal activity against A. veronii in both serum and mucus were significantly higher in red tilapia vaccinated with CS-NV compared to the FKV and control groups at all time points. Furthermore, the serum lysozyme activity, ACH50, and total Ig levels demonstrated a significant elevation in the groups vaccinated with CS-NV compared to the FKV and control groups. Importantly, the Relative Percentage Survival (RPS) value of the CS-NV group (71 %) was significantly higher than that of the FKV (15.12 %) and PC (2.33 %) groups, respectively. This indicates that the chitosan polymer-based nanovaccine platform is an effective delivery system for the immersion vaccination of tilapia.


Assuntos
Quitosana , Ciclídeos , Doenças dos Peixes , Tilápia , Animais , Nanovacinas , Aeromonas veronii , Imunidade nas Mucosas , Polímeros , Imersão , Vacinação/veterinária , Vacinação/métodos , Vacinas de Produtos Inativados , Imunoglobulina M
2.
J Periodontal Res ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594813

RESUMO

AIMS: This study aimed to evaluate the effectiveness of a chitosan-based dressing (CD) in achieving early wound healing and hemostasis at palatal donor sites in patients undergoing free gingival graft (FGG) surgery. METHODS: Thirty-two patients requiring FGG were treated in this randomized controlled clinical trial. Complete epithelialization (CE) and color match (CM) at donor sites were assessed by a blinded examiner on postoperative days 7, 14, 21, and 28. Donor sites were compressed for 2 min with wet gauze (WG) alone in control group (CG) or WG + CD in test group (TG) immediately after graft harvesting, and immediate bleeding (IB) was recorded (yes/no). Delayed bleeding (DB) (for 1 week), and number of analgesic tablets consumed, and VAS scores for pain (for 2 weeks) were recorded by patient every day. RESULTS: Twenty-eight patients (14 in each group) were included in final analysis. The prevalence of CE (at weeks 2 and 3) and VAS scores for CM scores were higher in TG but the intergroup differences were statistically significant only for CM (at week 4). Number of patients exhibiting IB and DB was significantly fewer in the TG (p < .05). Although average pain scores and analgesic consumption were higher in TG up to 5 days, differences between two groups were not statistically significant at any time point. CONCLUSION: Our data suggests that the application of CD increased re-epithelialization and accelerated wound healing process, although it did not reach statistical significance. Moreover, CD was found to significantly reduce bleeding complications, but it did not decrease the pain levels.

3.
Mol Biol Rep ; 51(1): 369, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411765

RESUMO

BACKGROUND: In this study the formulation of parthenolide (PN), an anticancer agent extracted from a natural product, into a liposome (PN-liposome), was examined. The surface of the PN-liposome was modified using chitosan (PN-chitosome). By using real-time quantitative PCR and flow cytometry, we examined the release of PN-chitosomes, cytotoxicity, and ability to induce apoptosis in vitro. METHODS AND RESULTS: According to the present study, PN-chitosomes had a size of 251 nm which is acceptable for efficient enhanced permeation and retention (EPR) performance. PN-chitosomes were confirmed to be spherical in shape and size through FESEM analysis. In terms of encapsulation efficiency, 94.5% was achieved. PN-chitosome possessed a zeta potential of 34.72 mV, which was suitable for its stability. According to the FTIR spectra of PN and PN-chitosome, PN was chemically stable due to the intermolecular interaction between the liposome and the drug. After 48 h, only 10% of the PN was released from the PN-chitosome in PBS (pH 7.4), and less than 20% was released after 144 h. CONCLUSION: In a dose-dependent manner, PN-chitosome exhibited anticancer properties that were more cytotoxic against cancer cells than normal cells. Moreover, the formulation activated both the apoptosis pathway and cytotoxic genes in real-time qPCR experiments. According to the cytotoxicity and activating apoptosis of the prepared modified particle, PN-chitosome may be helpful in the treatment of cancer.


Assuntos
Quitosana , Sesquiterpenos , Quitosana/farmacologia , Lipossomos , Sesquiterpenos/farmacologia , Apoptose
4.
Environ Res ; 247: 118192, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38224939

RESUMO

In this investigation, synthesis of a surface-functionalized chitosan known as amino-rich chitosan (ARCH) was achieved by successful modification of chitosan by polyethyleneimine (PEI). The synthesized ARCH was characterized by a specific surface area of 8.35 m2 g-1 and a microporous structure, with pore sizes predominantly under 25 nm. The Zeta potential of ARCH maintained a strong positive charge across a wide pH range of 3-11. These characteristics contribute to its high adsorption efficiency in aqueous solutions, demonstrated by its application in removing various anionic dyes, including erioglaucine disodium salt (EDS), methyl orange (MO), amaranth (ART), tartrazine (TTZ), and hexavalent chromium ions (Cr(VI)). The adsorption capacities (Qe) for these contaminants were measured at 1301.15 mg g-1 for EDS, 1025.45 mg g-1 for MO, 940.72 mg g-1 for ART, 732.96 mg g-1 for TTZ, and 350.15 mg g-1 for Cr(VI). A significant observation was the rapid attainment of adsorption equilibrium, occurring within 10 min for ARCH. The adsorption behavior was well-described by the Pseudo-second-order and Langmuir models. Thermodynamic studies indicated that the adsorption process is spontaneous and endothermic in nature. Additionally, an increase in temperature was found to enhance the adsorption capacity of ARCH. The material demonstrated robust stability and selective adsorption capabilities in varied conditions, including different organic compounds, pH environments, sodium salt presence, and in the face of interfering ions. After five cycles of adsorption, ARCH maintained about 60% of its initial adsorption capacity. Due to its efficient adsorption performance, simple synthesis process, low biological toxicity, and cost-effectiveness, ARCH is a promising candidate for future water treatment technologies.


Assuntos
Compostos Azo , Quitosana , Poluentes Químicos da Água , Purificação da Água , Quitosana/química , Polietilenoimina/química , Corantes , Ânions , Cromo/análise , Corante Amaranto , Tartrazina , Adsorção , Cinética , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio
5.
Environ Res ; 252(Pt 3): 118894, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38599449

RESUMO

Microplastics, an invisible threat, are emerging as serious pollutants that continuously affect health by interrupting/contaminating the human cycle, mainly involving food, water, and air. Such serious scenarios raised the demand for developing efficient sensing systems to detect them at an early stage efficiently and selectively. In this direction, the proposed research reports an electrochemical hexamethylenetetramine (HMT) sensing utilizing a sensing platform fabricated using chitosan-magnesium oxide nanosheets (CHIT-MgO NS) nanocomposite. HMT is considered as a hazardous microplastic, which is used as an additive in plastic manufacturers and has been selected as a target analyte. To fabricate sensing electrodes, a facile co-precipitation technique was employed to synthesize MgO NS, which was further mixed with 1% CHIT solution to form a CHIT_MgO NS composite. Such prepared nanocomposite solution was then drop casted to an indium tin oxide (ITO) to fabricate CHIT_MgO NS/ITO sensing electrode to detect HMT electrochemically using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. To determine the limit of detection (LOD) and sensitivity, DPV was performed. The resulting calibrated curve for HMT, ranging from 0.5 µM to 4.0 µM, exhibited a sensitivity of 12.908 µA (µM)-1 cm-2 with a detection limit of 0.03 µM and a limit of quantitation (LOQ) of 0.10 µM. Further, the CHIT_MgO NS/ITO modified electrode was applied to analyze HMT in various real samples, including river water, drain water, packaged water, and tertiary processed food. The results demonstrated the method's high sensitivity and suggested its potential applications in the field of microplastic surveillance, with a focus on health management.


Assuntos
Quitosana , Técnicas Eletroquímicas , Óxido de Magnésio , Microplásticos , Quitosana/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Microplásticos/análise , Óxido de Magnésio/química , Óxido de Magnésio/análise , Poluentes Químicos da Água/análise , Nanoestruturas/química , Nanocompostos/química , Limite de Detecção , Monitoramento Ambiental/métodos
6.
Appl Microbiol Biotechnol ; 108(1): 6, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38165478

RESUMO

Wound healing is a dynamic and complex process where infection prevention is essential. Chitosan, thanks to its bactericidal activity against gram-positive and gram-negative bacteria, as well as anti-inflammatory and hemostatic properties, is an excellent candidate to design dressings for difficult-to-heal wound treatment. The great advantage of this biopolymer is its capacity to be chemically modified, which allows for the production of various functional forms, depending on the needs and subsequent use. Moreover, chitosan can be an excellent polymer matrix for bacteriophage (phage) packing as a novel alternative/supportive antibacterial therapy approach. This study is focused on the preparation and characteristics of chitosan-based material in the form of a film with the addition of Pseudomonas lytic phages (KTN4, KT28, and LUZ19), which would exhibit antibacterial activity as a potential dressing that accelerates the wound healing. We investigated the method of producing a polymer based on microcrystalline chitosan (MKCh) to serve as the matrix for phage deposition. We described some important parameters such as average molar mass, swelling capacity, surface morphology, phage release profile, and antibacterial activity tested in the Pseudomonas aeruginosa bacterial model. The chitosan polysaccharide turned out to interact with phage particles immobilizing them within a material matrix. Nevertheless, with the high hydrophilicity and swelling features of the prepared material, the external solution of bacterial culture was absorbed and phages went in direct contact with bacteria causing their lysis in the polymer matrix. KEY POINTS: • A novel chitosan-based matrix with the addition of active phages was prepared • Phage interactions with the chitosan matrix were determined as electrostatic • Phages in the matrix work through direct contact with the bacterial cells.


Assuntos
Bacteriófagos , Quitosana , Fagos de Pseudomonas , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Polímeros
7.
Biotechnol Appl Biochem ; 71(1): 72-80, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37817403

RESUMO

In this study, we designed nanoparticles (NPs) based on polylactic acid glycolic acid modified with chitosan and folic acid to optimize the anti-cancer, anti-inflammatory, and antioxidant effects of arctiin (ARC), and we measured its effects on cancer cells, including colon cancer. NPs were synthesized using the W1/O/W2 double-emulsion solvent evaporation method. Physicochemical characteristics of synthesized NPs (ARC-PCF-NPs), including average particle size, dispersity index (PDI), zeta potential (ZP), field emission scanning electron microscope figures, and encapsulation efficiency (EE), were evaluated. 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and ferric reducing antioxidant power (FRAP) methods were carried out to determine the antioxidant properties of NPs. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay was performed to investigate cytotoxicity effects on cancer cells and normal fibroblasts. Quantitative polymerase chain reaction was also performed on inflammatory and antioxidant genes. The obtained results indicated that the synthesized NPs have a size of 100 nm, a DPI of 0.36, a ZP of 26.30 mV, and EE was calculated at about 87.5%. The antioxidant influence of ARC-PCF-NPs was confirmed by inhibiting ABTS and DPPH free radicals and ferrous reduction in the FRAP method. Moreover, the reduction of inflammatory and antioxidant genes confirmed the anti-inflammatory and antioxidant properties of NPs. These results indicate the modification of the surface of NPs in order to increase the bioavailability, stability, and effectiveness of medicinal compounds in therapeutic applications.


Assuntos
Benzotiazóis , Quitosana , Neoplasias do Colo , Furanos , Glucosídeos , Nanopartículas , Ácidos Sulfônicos , Humanos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Quitosana/farmacologia , Quitosana/química , Antioxidantes/farmacologia , Antioxidantes/química , Ácido Fólico/farmacologia , Neoplasias do Colo/tratamento farmacológico , Nanopartículas/química , Anti-Inflamatórios , Tamanho da Partícula , Portadores de Fármacos/química
8.
J Nanobiotechnology ; 22(1): 323, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38849931

RESUMO

BACKGROUND: The non-toxic self-crosslinked hydrogel films designed from biocompatible materials allow for controlled drug release and have gathered remarkable attention from healthcare professionals as wound dressing materials. Thus, in the current study the chitosan (CS) film is infused with oil-in-water Pickering emulsion (PE) loaded with bioactive compound quercetin (Qu) and stabilized by dialdehyde cellulose nanocrystal-silver nanoparticles (DCNC-AgNPs). The DCNC-AgNPs play a dual role in stabilizing PE and are involved in the self-crosslinking with CS films. Also, this film could combine the advantage of the controlled release and synergistic wound-healing effect of Qu and AgNPs. RESULTS: The DCNC-AgNPs were synthesized using sodium periodate oxidation of CNC. The DCNC-AgNPs were used to stabilize oil-in-water PE loaded with Qu in its oil phase by high speed homogenization. Stable PEs were prepared by 20% v/v oil: water ratio with maximum encapsulation of Qu in the oil phase. The Qu-loaded PE was then added to CS solution (50% v/v) to prepare self-crosslinked films (CS-PE-Qu). After grafting CS films with PE, the surface and cross-sectional SEM images show an inter-penetrated network within the matrix between DCNC and CS due to the formation of a Schiff base bond between the reactive aldehyde groups of DCNC-AgNPs and amino groups of CS. Further, the addition of glycerol influenced the extensibility, swelling ratio, and drug release of the films. The fabricated CS-PE-Qu films were analyzed for their wound healing and tissue regeneration potential using cell scratch assay and full-thickness excisional skin wound model in mice. The as-fabricated CS-PE-Qu films showed great biocompatibility, increased HaCat cell migration, and promoted collagen synthesis in HDFa cells. In addition, the CS-PE-Qu films exhibited non-hemolysis and improved wound closure rate in mice compared to CS, CS-Qu, and CS-blank PE. The H&E staining of the wounded skin tissue indicated the wounded tissue regeneration in CS-PE-Qu films treated mice. CONCLUSION: Results obtained here confirm the wound healing benefits of CS-PE-Qu films and project them as promising biocompatible material and well suited for full-thickness wound healing in clinical applications.


Assuntos
Quitosana , Emulsões , Hidrogéis , Nanopartículas Metálicas , Quercetina , Prata , Pele , Cicatrização , Quercetina/química , Quercetina/farmacologia , Cicatrização/efeitos dos fármacos , Quitosana/química , Animais , Emulsões/química , Camundongos , Humanos , Pele/efeitos dos fármacos , Pele/lesões , Nanopartículas Metálicas/química , Prata/química , Hidrogéis/química , Materiais Biocompatíveis/química , Bandagens , Liberação Controlada de Fármacos , Sistemas de Liberação de Medicamentos/métodos , Celulose/química , Masculino , Regeneração/efeitos dos fármacos , Células HaCaT , Oxirredução , Metilgalactosídeos
9.
Mar Drugs ; 22(1)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38248665

RESUMO

The present study focused on the design and preparation of acid-responsive benzimidazole-chitosan quaternary ammonium salt (BIMIXHAC) nanogels for a controlled, slow-release of Doxorubicin HCl (DOX.HCl). The BIMIXHAC was crosslinked with sodium tripolyphosphate (TPP) using the ion crosslinking method. The method resulted in nanogels with low polydispersity index, small particle size, and positive zeta potential values, indicating the good stability of the nanogels. Compared to hydroxypropyl trimethyl ammonium chloride chitosan-Doxorubicin HCl-sodium tripolyphosphate (HACC-D-TPP) nanogel, the benzimidazole-chitosan quaternary ammonium salt-Doxorubicin HCl-sodium tripolyphosphate (BIMIXHAC-D-TPP) nanogel show higher drug encapsulation efficiency and loading capacity (BIMIXHAC-D-TPP 93.17 ± 0.27% and 31.17 ± 0.09%), with acid-responsive release profiles and accelerated release in vitro. The hydroxypropyl trimethyl ammonium chloride chitosan-sodium tripolyphosphate (HACC-TPP), and benzimidazole-chitosan quaternary ammonium salt-sodium tripolyphosphate (BIMIXHAC-TPP) nanogels demonstrated favorable antioxidant capability. The assay of cell viability, measured by the MTT assay, revealed that nanogels led to a significant reduction in the cell viability of two cancer cells: the human lung adenocarcinoma epithelial cell line (A549) and the human breast cancer cell line (MCF-7). Furthermore, the BIMIXHAC-D-TPP nanogel was 2.96 times less toxic than DOX.HCl to the mouse fibroblast cell line (L929). It was indicated that the BIMIXHAC-based nanogel with enhanced antioxidant and antitumor activities and acidic-responsive release could serve as a potential nanocarrier.


Assuntos
Quitosana , Neoplasias Pulmonares , Polietilenoglicóis , Polietilenoimina , Polifosfatos , Humanos , Animais , Camundongos , Nanogéis , Antioxidantes/farmacologia , Cloreto de Amônio , Benzimidazóis , Doxorrubicina/farmacologia , Compostos de Amônio Quaternário/farmacologia
10.
Int Endod J ; 57(4): 477-489, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38240378

RESUMO

AIM: Endodontic irrigants may affect the mechanical and chemical properties of dentine. This study evaluated the effects of various final irrigation protocols including the use of chitosan nanoparticle (CSnp) and cross-linking with genipin on the (1) mechanical and (2) chemical properties of dentine against enzymatic degradation. METHODOLOGY: CSnp was synthesized and characterized considering physiochemical parameters and stability. The root canals of 90 single-rooted teeth were prepared and irrigated with NaOCl. Dentine discs were obtained and divided into groups according to the following irrigation protocols: Group NaOCl+EDTA, Group NaOCl+CSnp, Group NaOCl+EDTA+CSnp, Group NaOCl+CSnp+Genipin, Group NaOCl+EDTA+CSnp+Genipin and Group distilled water. (1) Mechanical changes were determined by microhardness analysis using Vickers-tester. (2) Chemical changes were determined by evaluating molecular and elemental compositions of dentine using Fourier transform infrared spectroscopy (FTIR) analysis and scanning electron microscope (SEM)/energy dispersive X-ray spectroscopy (EDS) analysis, respectively. All analyses were repeated after the discs were kept in collagenase for 24 h. Data were analysed with repeated measures analysis of variance and Bonferroni correction for microhardness analysis, and Kruskal-Wallis and Wilcoxon tests for FTIR and SEM/EDS analyses (p = .05). RESULTS: (1) Collagenase application did not have a negative effect on microhardness only in Group NaOCl+EDTA+CSnp+Genipin when compared with the post-irrigation values (p > .05). Post-collagenase microhardness of Group NaOCl+EDTA+CSnp and Group NaOCl+CSnp+Genipin was similar to the initial microhardness (p > .05). (2) After collagenase, Amide III/ PO 4 3 - ratio presented no change in Group NaOCl+EDTA+CSnp, Group NaOCl+CSnp+Genipin and Group NaOCl+EDTA+CSnp+Genipin (p > .05), while decreased in other groups (p < .05). Collagenase did not affect CO 3 2 - / PO 4 3 - ratio in the groups (p > .05). There were no changes in the groups in terms of elemental level before and after collagenase application (p > .05). CONCLUSIONS: CSnp and genipin positively affected the microhardness and molecular composition of dentine. This effect was more pronounced when CSnp was used after EDTA.


Assuntos
Quitosana , Iridoides , Hipoclorito de Sódio , Ácido Edético/farmacologia , Hipoclorito de Sódio/farmacologia , Quitosana/farmacologia , Quitosana/análise , Dentina , Irrigantes do Canal Radicular/farmacologia , Cavidade Pulpar
11.
Ecotoxicol Environ Saf ; 279: 116496, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38816322

RESUMO

Microbially induced carbonate precipitation (MICP), as an eco-friendly and promising technology that can transform free metal ions into stable precipitation, has been extensively used in remediation of heavy metal contamination. However, its depressed efficiency of heavy metal elimination remains in question due to the inhibition effect of heavy metal toxicity on bacterial activity. In this work, an efficient, low-cost manganese (Mn) elimination strategy by coupling MICP with chitosan biopolymer as an additive with reduced treatment time was suggested, optimized, and implemented. The influences of chitosan at different concentrations (0.01, 0.05, 0.10, 0.15 and 0.30 %, w/v) on bacterial growth, enzyme activity, Mn removal efficiency and microstructure properties of the resulting precipitation were investigated. Results showed that Mn content was reduced by 94.5 % within 12 h with 0.15 % chitosan addition through adsorption and biomineralization as MnCO3 (at an initial Mn concentration of 3 mM), demonstrating a two-thirds decrease in remediation time compared to the chitosan-absent system, whereas maximum urease activity increased by ∼50 %. Microstructure analyses indicated that the mineralized precipitates were spherical-shaped MnCO3, and a smaller size and more uniform distribution of MnCO3 is obtained by the regulation of abundant amino and hydroxyl groups in chitosan. These results demonstrate that chitosan accelerates nucleation and tunes the growth of MnCO3 by providing nucleation sites for mineral formation and alleviating the toxicity of metal ions, which has the potential to upgrade MICP process in a sustainable and effective manner. This work provides a reference for further understanding of the biomineralization regulation mechanism, and gives a new perspective into the application of biopolymer-intensified strategies of MICP technology in heavy metal contamination.


Assuntos
Carbonatos , Quitosana , Manganês , Quitosana/química , Manganês/química , Manganês/toxicidade , Carbonatos/química , Adsorção , Biopolímeros/química , Precipitação Química , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química , Urease , Recuperação e Remediação Ambiental/métodos , Biomineralização/efeitos dos fármacos , Biodegradação Ambiental
12.
Int Endod J ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888363

RESUMO

BACKGROUND: The dental pulp's environment is essential for the regulation of mesenchymal stem cells' homeostasis and thus, it is of great importance to evaluate the materials used in regenerative procedures. AIM: To assess in vitro (i) the effect of chitosan nanoparticles, 0.2% chitosan irrigation solution, Dual Rinse®, 17% EDTA, 10% citric acid and 2.5% NaOCl on DSCS viability; (ii) the effect of different concentrations of TGF-ß1 on DCSC proliferation; and (iii) whether treatment with TGF-ß1 following exposure to the different irrigation solutions could compensate for their negative effects. METHODOLOGY: (i) DSCS were treated with three dilutions (1:10, 1:100 and 1:1000) of the six irrigation solutions prepared in DMEM for 10 and 60 min to assess the effect on viability. (ii) The effect of different concentrations (0, 1, 5 and 10 ng/mL) of TGF-ß1 on DCSC proliferation was assessed at 1, 3 and 7 days. (iii) The proliferative effect of TGF-ß1 following 10-min exposure to 1:10 dilution of each irrigation solution was also tested. We used MTT assay to assess viability and proliferation. We performed statistical analysis using Prism software. RESULTS: (i) The different endodontic irrigation solutions tested showed a significant effect on cell viability (p ≤ .0001). Significant interactions between the endodontic irrigation solutions and their dilutions were also found for all parameters (p ≤ .0001). Chitosan nanoparticles and 0.2% chitosan irrigation solution were the least cytotoxic to DSCS whilst 2.5% NaOCl was the most cytotoxic followed by 17% EDTA. (ii) TGF-ß1 at concentrations of 1 and 5 ng/mL resulted in significantly higher proliferation compared to the control group. (iii) Exposure to 17% EDTA or 2.5% NaOCl for 10 min was sufficient to make DSCS cells refractory to the proliferative effects of TGF-ß1. DSCS groups treated with TGF-ß1 following exposure to chitosan nanoparticles, 0.2% chitosan irrigation solution, Dual Rinse® and 10% CA demonstrated significantly higher proliferation compared to non-TGF-ß1-treated groups (p ≤ .0001, p ≤ .0001, p ≤ .0001 and p = .01 respectively). CONCLUSIONS: The current study offers data that can be implemented to improve the outcome of regenerative endodontic procedures by using less toxic irrigation solutions and adding TGF-ß1 to the treatment protocol.

13.
Drug Dev Ind Pharm ; 50(6): 495-510, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718260

RESUMO

OBJECTIVE: The purpose of this study is to investigate the taste masking of Paracetamol granules in the range of 250-850 µm, coated by two nanocomposites prepared from Eudragit® E100, nanozinc oxide, and nanochitosan, respectively, from 1 to 5% by the weight of the granules. METHODS: In this study, Paracetamol granules were coated in several formulas with two different types of nanocomposites (polymeric and mineral) on two sizes of granules to reduce bitter taste and with the FBC method and pH-sensitive polymers (Eudragit® E100). RESULTS: The effect of nanoparticles (Nano zinc oxide and Nanochitosan) on taste-masking Paracetamol was studied with dissolution-coated granules in vitro by simulating in the oral (pH 6.8) range. Based on the results of the studies, the rate of drug release was confirmed by the taste test, and the formulated granule with 5% nano-chitosan (F14) had the best bitter taste mask function of all samples. These results were also confirmed by scanning electron microscopy (SEM) analysis, which showed a smoother and more stable surface than the samples obtained from other formulations. CONCLUSION: In the comparison of the release of two types of nanocomposites in the dissolution test, it was shown that the type B granules of Paracetamol's 5% nano-chitosan-coated granule (F14) were released 99% less than Paracetamol's 5% nano-ZnO-coated granule (F11). and Paracetamol's 1% nano-chitosan-coated granule (F12) was released 91% less than Paracetamol's 1% nano-ZnO-coated granule (F9). The results showed that nano-chitosan-coated granules have better coverage of bitter taste instead of nano-ZnO.


Assuntos
Acetaminofen , Quitosana , Liberação Controlada de Fármacos , Nanocompostos , Paladar , Óxido de Zinco , Acetaminofen/administração & dosagem , Acetaminofen/química , Acetaminofen/farmacologia , Quitosana/química , Paladar/efeitos dos fármacos , Óxido de Zinco/química , Óxido de Zinco/administração & dosagem , Óxido de Zinco/farmacologia , Nanocompostos/química , Nanopartículas/química , Química Farmacêutica/métodos , Polímeros/química , Solubilidade , Tamanho da Partícula , Composição de Medicamentos/métodos , Humanos , Concentração de Íons de Hidrogênio , Acrilatos
14.
Nano Lett ; 23(3): 757-764, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36648291

RESUMO

Effective delivery of the CRISPR-Cas9 components is crucial to realizing the therapeutic potential. Although many delivery approaches have been developed for this application, oral delivery has not been explored due to the degradative nature of the gastrointestinal tract. For this issue, we developed a series of novel phenylboronic acid (PBA)-functionalized chitosan-polyethylenimine (CS-PEI) polymers for oral CRISPR delivery. PBA functionalization equipped the polyplex with higher stability, smooth transport across the mucus, and efficient endosomal escape and cytosolic unpackaging in the cells. From a library of 12 PBA-functionalized CS-PEI polyplexes, we identified a formulation that showed the most effective penetration in the intestinal mucosa after oral gavage to mice. The optimized formulation performed feasible CRISPR-mediated downregulation of the target protein and reduction in the downstream cholesterol. As the first oral CRISPR carrier, this study suggests the potential of addressing the needs of both local and systemic editing in a patient-compliant manner.


Assuntos
Ácidos Borônicos , Quitosana , Animais , Camundongos , Polímeros , Técnicas de Transferência de Genes
15.
Odontology ; 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280114

RESUMO

The purpose of this study was to evaluate the antibacterial efficacy of using 2.5% NaOCl, 2% chlorhexidine (CHX), Irritrol, and chitosan-coated silver nanoparticles (AgCNPs) alone or in combination with deoxyribonuclease I (DNase I) and trypsin pre-enzyme applications in dentin samples contaminated with Enterococcus faecalis (E. faecalis) by CLSM. 144 dentin blocks with confirmed E. faecalis biofilm formation were divided randomly according to the irrigation protocol (n = 12): NaOCl, CHX, Irritrol, AgCNPs, trypsin before NaOCl, CHX, Irritrol, AgCNPs, and DNase I before NaOCl, CHX, Irritrol, AgCNPs. Dentin blocks were stained with the Live/Dead BacLight Bacterial Viability Kit and viewed with CLSM after irrigation applications. The percentage of dead and viable bacteria was calculated using ImageJ software on CLSM images. At a significance level of p < 0.05, the obtained data were analyzed using one-way Anova and post-hoc Tukey tests. In comparison with NaOCl, CHX had a higher percentage of dead bacteria, both when no pre-enzyme was applied and when DNase I was applied as a pre-enzyme (p < 0.05). There was no difference in the percentage of dead bacteria between the irrigation solutions when trypsin was applied as a pre-enzyme (p > 0.05). AgCNPs showed a higher percentage of dead bacteria when trypsin was applied as a pre-enzyme compared to other irrigation solutions (p < 0.05), while the pre-enzyme application did not affect the percentage of dead bacteria in NaOCl, CHX, and Irritrol (p > 0.05). No irrigation protocol tested was able to eliminate the E. faecalis biofilm. While the application of trypsin as a pre-enzyme improved the antimicrobial effect of AgCNPs, it did not make any difference over other irrigation solutions.

16.
Altern Lab Anim ; 52(2): 107-116, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38351650

RESUMO

In vitro models of the dental pulp microenvironment have been proposed for the assessment of biomaterials, to minimise animal use in operative dentistry. In this study, a scaffold/3-D dental pulp cell culture interface was created in a microchip, under simulated dental pulp pressure, to evaluate the cell-homing potential of a chitosan (CH) scaffold functionalised with calcium aluminate (the 'CHAlCa scaffold'). This microphysiological platform was cultured at a pressure of 15 cm H2O for up to 14 days; cell viability, migration and odontoblastic differentiation were then assessed. The CHAlCa scaffold exhibited intense chemotactic potential, causing cells to migrate from the 3-D culture to its surface, followed by infiltration into the macroporous structure of the scaffold. By contrast, the cells in the presence of the non-functionalised chitosan scaffold showed low cell migration and no cell infiltration. CHAlCa scaffold bioactivity was confirmed in dentin sialophosphoprotein-positive migrating cells, and odontoblastic markers were upregulated in 3-D culture. Finally, in situ mineralised matrix deposition by the cells was confirmed in an Alizarin Red-based assay, in which the CHAlCa and CH scaffolds were adapted to fit within dentin discs. More intense deposition of matrix was observed with the CHAlCa scaffold, as compared to the CH scaffold. In summary, we present an in vitro platform that provides a simple and reproducible model for selecting and developing innovative biomaterials through the assessment of their cell-homing potential. By using this platform, it was shown that the combination of calcium aluminate and chitosan has potential as an inductive biomaterial that can mediate dentin tissue regeneration during cell-homing therapies.


Assuntos
Compostos de Alumínio , Compostos de Cálcio , Quitosana , Animais , Alicerces Teciduais/química , Polpa Dentária , Materiais Biocompatíveis/química , Diferenciação Celular , Células Cultivadas , Engenharia Tecidual
17.
Int J Mol Sci ; 25(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38396783

RESUMO

Wound management practices have made significant advancements, yet the search for improved antiseptics persists. In our pursuit of solutions that not only prevent infections but also address broader aspects of wound care, we investigated the impact of integrating trimethyl chitosan (TMC) into a widely used poly(vinylpyrrolidone)-iodine gel (PVP-I gel). Our study assessed the antimicrobial efficacy of the PVP gel with TMC against Escherichia coli, Staphylococcus aureus, multidrug-resistant S. aureus MRSA, and Candida albicans. Additionally, we compared hemostatic effects using a liver puncture bleeding model and evaluated wound healing through histological sections from full-thickness dermal wounds in rats. The results indicate that incorporating TMC into the commercially available PVP-I gel did not compromise its antimicrobial activity. The incorporation of TMC into the PVP-I gel markedly improves its hemostatic activity. The regular application of the PVP-I gel with TMC resulted in an increased blood vessel count in the wound bed and facilitated the development of thicker fibrous tissue with a regenerated epidermal layer. These findings suggest that TMC contributes not only to antimicrobial activity but also to the intricate processes of tissue regeneration. In conclusion, incorporating TMC proves beneficial, making it a valuable additive to commercially available antiseptic agents.


Assuntos
Anti-Infecciosos Locais , Anti-Infecciosos , Quitosana , Hemostáticos , Iodo , Staphylococcus aureus Resistente à Meticilina , Ratos , Animais , Anti-Infecciosos Locais/farmacologia , Povidona-Iodo/farmacologia , Quitosana/farmacologia , Hemostáticos/farmacologia , Anti-Infecciosos/farmacologia
18.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612802

RESUMO

A novel organic-inorganic gliclazide-loaded composite bead was developed by an ionic gelation process using acidified CaCl2, chitosan and tetraethylorthosilicate (TEOS) as a crosslinker. The beads were manufactured by crosslinking an inorganic silicone elastomer (-OH terminated polydimethylsiloxane, PDMS) with TEOS at different ratios before grafting onto an organic backbone (Na-alginate) using a 32 factorial experimental design. Gliclazide's encapsulation efficiency (EE%) and drug release over 8 h (% DR 8 h) were set as dependent responses for the optimisation of a pharmaceutical formula (herein referred to as 'G op') by response surface methodology. EE % and %DR 8 h of G op were 93.48% ± 0.19 and 70.29% ± 0.18, respectively. G op exhibited a controlled release of gliclazide that follows the Korsmeyer-Peppas kinetic model (R2 = 0.95) with super case II transport and pH-dependent swelling behaviour. In vitro testing of G op showed 92.17% ± 1.18 cell viability upon testing on C2C12 myoblasts, indicating the compatibility of this novel biomaterial platform with skeletal muscle drug delivery.


Assuntos
Gliclazida , Gliclazida/farmacologia , Dimetilpolisiloxanos , Alginatos , Materiais Biocompatíveis
19.
Int J Mol Sci ; 25(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38791360

RESUMO

Overly fast corrosion degradation of biodegradable magnesium alloys has been a major problem over the last several years. The development of protective coatings by using biocompatible, biodegradable, and non-toxic material such as chitosan ensures a reduction in the rate of corrosion of Mg alloys in simulated body fluids. In this study, chitosan/TiO2 nanocomposite coating was used for the first time to hinder the corrosion rate of Mg19Zn1Ca alloy in Hank's solution. The main goal of this research is to investigate and explain the corrosion degradation mechanism of Mg19Zn1Ca alloy coated by nanocomposite chitosan-based coating. The chemical composition, structural analyses, and corrosion tests were used to evaluate the protective properties of the chitosan/TiO2 coating deposited on the Mg19Zn1Ca substrate. The chitosan/TiO2 coating slows down the corrosion rate of the magnesium alloy by more than threefold (3.6 times). The interaction of TiO2 (NPs) with the hydroxy and amine groups present in the chitosan molecule cause their uniform distribution in the chitosan matrix. The chitosan/TiO2 coating limits the contact of the substrate with Hank's solution.


Assuntos
Ligas , Quitosana , Materiais Revestidos Biocompatíveis , Magnésio , Titânio , Quitosana/química , Titânio/química , Ligas/química , Corrosão , Magnésio/química , Materiais Revestidos Biocompatíveis/química , Zinco/química , Teste de Materiais , Cálcio/química , Nanocompostos/química
20.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542232

RESUMO

Chitosan (CS) is a polysaccharide obtainable by the deacetylation of chitin, which is highly available in nature and is consequently low-cost. Chitosan is already used in the biomedical field (e.g., guides for nerve reconstruction) and has been proposed as a biomaterial for tissue regeneration in different body districts, including bone tissue. The interest in chitosan as a biomaterial stems from its ease of functionalization due to the presence of reactive groups, its antibacterial properties, its ease of processing to obtain porous matrices, and its inherent similarity to polysaccharides that constitute the human extracellular matrix, such as hyaluronic acid (HA). Here, chitosan was made to react with succinic anhydride to develop a negatively charged chitosan (SCS) that better mimics HA. FT-IR and NMR analyses confirmed the presence of the carboxylic groups in the modified polymer. Four different electrospun matrices were prepared: CS, SCS, a layer-by-layer matrix (LBL), and a matrix with both CS and SCS simultaneously electrospun (HYB). All the matrices containing SCS showed increased human osteoblast proliferation, mineralization, and gene expression, with the best results obtained with HYB compared to the control (CS). Moreover, the antibacterial potential of CS was preserved in all the SCS-containing matrices, and the pure SCS matrix demonstrated a significant reduction in bacterial proliferation of both S. aureus and E. coli.


Assuntos
Quitosana , Humanos , Quitosana/farmacologia , Quitosana/química , Alicerces Teciduais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Escherichia coli , Staphylococcus aureus , Engenharia Tecidual/métodos , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Polissacarídeos , Antibacterianos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA