Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Int Endod J ; 57(5): 601-616, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38376108

RESUMO

AIM: To compare eight large- and low-tapered heat-treated reciprocating instruments regarding their design, metallurgy, mechanical properties, and irrigation flow through an in silico model. METHODOLOGY: A total of 472 new 25-mm E-Flex Rex (25/.04 and 25/.06), Excalibur (25/.05), Procodile (25/.06), Reciproc Blue R25 (25/.08v), WaveOne Gold Primary (25/.07v), and Univy Sense (25/.04 and 25/.06) instruments were evaluated regarding their design (stereomicroscopy, scanning electron microscopy, and 3D surface scanning), metallurgy (energy-dispersive X-ray spectroscopy and differential scanning calorimetry), and mechanical performance (cyclic fatigue, torsional resistance, cutting ability, bending and buckling resistance). Computational fluid dynamics assessment was also conducted to determine the irrigation flow pattern, apical pressure, and wall shear stress in simulated canal preparations. Kruskal-Wallis and one-way anova post hoc Tukey tests were used for statistical comparisons (α = 5%). RESULTS: Instruments presented variations in blade numbers, helical angles, and tip designs, with all featuring non-active tips, symmetrical blades, and equiatomic nickel-titanium ratios. Cross-sectional designs exhibited an S-shaped geometry, except for WaveOne Gold. Univy 25/.04 and Reciproc Blue displayed the smallest and largest core diameters at D3. Univy 25/.04 and E-Flex Rec 25/.04 demonstrated the longest time to fracture (p < .05). Reciproc Blue and Univy 25/.04 exhibited the highest and lowest torque to fracture, respectively (p < .05). Univy 25/.04 and Reciproc Blue had the highest rotation angles, whilst E-Flex Rec 25/.06 showed the lowest angle (p < .05). The better cutting ability was observed with E-Flex Rec 25/.06, Procodile, Excalibur, and Reciproc Blue (p > .05). Reciproc R25 and E-Flex Rec showed the highest buckling resistance values (p < .05), with WaveOne Gold being the least flexible instrument. The impact of instruments' size and taper on wall shear stress and apical pressure did not follow a distinct pattern, although Univy 25/.04 and E-Flex Rec 25/.06 yielded the highest and lowest values for both parameters, respectively. CONCLUSIONS: Low-tapered reciprocating instruments exhibit increased flexibility, higher time to fracture, and greater angles of rotation, coupled with reduced maximum bending loads and buckling strength compared to large-tapered instruments. Nevertheless, low-tapered systems also exhibit lower maximum torque to fracture and inferior cutting ability, contributing to a narrower apical canal enlargement that may compromise the penetration of irrigants in that region.


Assuntos
Instrumentos Odontológicos , Titânio , Estudos Transversais , Desenho de Equipamento , Teste de Materiais , Estresse Mecânico , Titânio/química , Preparo de Canal Radicular , Metalurgia
2.
Odontology ; 112(4): 1248-1256, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38703256

RESUMO

Understanding the apical pressure and irrigant flow patterns in root canals is crucial for safe and effective irrigation. Therefore, this study aimed to assess the flow characteristics of irrigants in root canal models with varying tapers during final irrigation by employing various needle designs, including a back-to-back double-side-vented needle, through computational fluid dynamics. The root canal model was configured as a closed geometrical cone with a simulated apical zone (size 30) and features tapers of 4%, 6%, and 8%. Three needle types-open-ended needle (OEN), single side-vented needle (SSVN), and double side-vented needle (DSVN)-were investigated. The results indicated that for the 4% taper models, the open-ended needle generated the maximum apical pressure, followed by the double side-vented needle and the single side-vented needle. However, in the 6% and 8% tapering root canal models, the double-side-vented needle applied the lowest maximum apical pressure. Consequently, the DSVN can pose a risk for irrigant extrusion in minimally prepared canals due to heightened apical pressure. In wider canals, the DSVN exhibited lower apical pressure. The maximum irrigant replacement was observed with OEN compared to that of the closed-ended group for both flow rates. Additionally, compared with OENs, closed-ended needles exhibited nonuniform and lower shear wall stress.


Assuntos
Cavidade Pulpar , Desenho de Equipamento , Hidrodinâmica , Agulhas , Irrigantes do Canal Radicular , Preparo de Canal Radicular , Humanos , Preparo de Canal Radicular/instrumentação , Simulação por Computador , Irrigação Terapêutica/instrumentação
3.
BMC Oral Health ; 24(1): 321, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461300

RESUMO

BACKGROUND: Root canal therapy is one of the main treatments for root canal diseases, and effective irrigation is the key to successful treatment. Side-vented needle is one of the commonly used needle types in clinic. In the real root canal, due to the influence of the curvature of the root canal, the irrigation flow field in different needle directions shows obvious differences. At the same time, changes in root canal curvature and working depth will lead to changes in irrigation efficiency and the flow field. Both the mainstream of the irrigation flow and the shear stress near the wall changes significant. Consequently, either the replacement in the root canal or the removal efficiency of the smear layers is apparently modified. MATERIALS AND METHODS: In this paper, the permanent root canal of the maxillary first molar prepared until 15/04 were scanned by micro-CT, and then imported into the software for 3D reconstruction. The key parameters of flushing efficiency of 30G side needle at different working depths of 4.75 mm, 5 mm, 5.25 mm and 5.5 mm were compared. Meanwhile, the simulated models with different curvatures of 0°, 5°, 10°, 20° and 30° based on the real root canal were reconstructed to investigate the curvature effect on the irrigation efficiency. RESULTS: The results show that moderate working depth (such as 4.75 mm and 5.25 mm in present paper) helps to improve the replacement capacity of irrigation flow. At the same time, the apical pressure decreased as the working depth increased. The curvature of the root canal seriously affects the removal depth of the smear layers of the root canal. A root canal with a large curvature (especially 20° and 30°) can significantly improve the difficulty of irrigation. CONCLUSIONS: (1) Moderate working depth helps to improve the displacement capacity, the ERD of the irrigation flow is generally improved at the working depths of 4.75 mm and 5.25 mm, and the apical pressure will decrease with the increase of working depth. (2) The large curvature of the root canal can significantly improve the difficulty of irrigation. The curvature of the root canal can severely influence the removal depth of the smear layer on the wall. It can be found both the span and the depth of the ESS for little curvatures (5° and 10°) root canals are higher than those for large curvatures (20° and 30°).


Assuntos
Cavidade Pulpar , Camada de Esfregaço , Humanos , Preparo de Canal Radicular/métodos , Hidrodinâmica , Irrigantes do Canal Radicular/uso terapêutico , Tratamento do Canal Radicular , Agulhas , Irrigação Terapêutica
4.
Pharmacol Res ; 192: 106778, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37094714

RESUMO

Curcumin could inhibit periprosthetic osteolysis induced by wear debris and adherent endotoxin, which commonly cause prosthesis loosening and negatively influence the long-term survival of joint arthroplasty. However, its limited water solubility and poor stability pose challenges for its further clinical application. To address these issues, we developed curcumin liposomes for intraarticular injection, as liposomes possess good lubricant capacity and pharmacological synergy with curcumin. Additionally, a nanocrystal dosage form was prepared to enable comparison with the liposomes based on their ability to disperse curcumin effectively. A microfluidic method was used for its controllability, repeatability, and scalability. The Box-Behnken Design was employed to screen the formulations and flow parameters, while computational fluid dynamics was used to simulate the mixing process and predict the formation of liposomes. The optimized curcumin liposomes (Cur-LPs) had a size of 132.9 nm and an encapsulation efficiency of 97.1%, whereas the curcumin nanocrystals (Cur-NCs) had a size of 172.3 nm. Both Cur-LPs and Cur-NCs inhibited LPS-induced pro-inflammatory polarization of macrophages and reduced the expression and secretion of inflammatory factors. The mouse air pouch model further demonstrated that both dosage forms attenuated inflammatory cell infiltration and inflammatory fibrosis in subcutaneous tissues. Interestingly, the anti-inflammatory effect of Cur-LPs was more potent than that of Cur-NCs, both in vitro and in vivo, although the cellular uptake of Cur-NCs was quicker. In conclusion, the results demonstrate that Cur-LPs have great potential for the clinical treatment of inflammatory osteolysis and that the therapeutic effect is closely related to the liposomal dosage form.


Assuntos
Curcumina , Nanopartículas , Osteólise , Camundongos , Animais , Lipossomos , Curcumina/farmacologia , Curcumina/uso terapêutico , Curcumina/química , Osteólise/tratamento farmacológico , Lipopolissacarídeos , Nanopartículas/química
5.
Orthod Craniofac Res ; 26(3): 311-319, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36534312

RESUMO

Maxillomandibular repositioning in orthognathic surgeries has both morphologic and functional effects. These surgeries are thought to change the pharyngeal space and cause obstructive sleep apnoea syndrome, however. The primary purpose of this study is to evaluate the effects of jaw movement in bimaxillary orthognathic surgery on airway function and to identify the morphometric factors that can predict postoperative airway function. The subjects were 11 males and 12 females who had undergone orthognathic surgeries of the maxilla and mandible. The results of cephalometric analysis, cross-sectional area of the pharynx (CSA), pharyngeal volume and computational fluid dynamics (CFD) were compared. The CSA of the nasal (CSA1), total volume and total nasal volume decreased after surgery with statistical significance. Velocity at the oropharyngeal space (V2) increased after surgery with statistical significance. V2, CSA of the oropharyngeal space (CSA2) and PV were correlated with the horizontal posterior movement of point B, point Menton and overjet. V2 and CSA2 were correlated with SNB before and after surgery in all 46 analyses. Changes in pharyngeal airflow were more affected by pressure drop in the pharyngeal space (ΔPp) than by pressure drop in the nasal space (ΔPn). The relationship between the actual amount of change in the cephalometric reference point and the airway function is evident. CFD may thus be very useful as morphological analysis in preoperative treatment decision making.


Assuntos
Má Oclusão Classe III de Angle , Cirurgia Ortognática , Procedimentos Cirúrgicos Ortognáticos , Masculino , Feminino , Humanos , Má Oclusão Classe III de Angle/cirurgia , Hidrodinâmica , Procedimentos Cirúrgicos Ortognáticos/métodos , Faringe/anatomia & histologia , Mandíbula/cirurgia , Maxila/cirurgia , Cefalometria/métodos , Tomografia Computadorizada de Feixe Cônico/métodos
6.
Int Endod J ; 56(11): 1412-1428, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37698946

RESUMO

AIM: To compare the design, metallurgy, and mechanical properties of four heat-treated reciprocating instruments coupled with the evaluation of the irrigation flow using an in silico model. METHODOLOGY: New EdgeOne Fire Primary, Easy-File Flex Regular 25, WaveOne Gold Primary and Reciproc Blue R25 instruments (n = 124) were initially evaluated regarding their design through stereomicroscopy, scanning electron microscopy and 3D surface scanning. In addition, energy-dispersive X-ray spectroscopy was utilized to determine their elemental composition, and differential scanning calorimetry tests to evaluate their phase transformation temperatures. Their mechanical performance was further assessed through torsional and bending tests. Using scans obtained from a real tooth and the instruments, a computational fluid dynamics assessment was conducted to determine the irrigation flow pattern, apical pressure, and wall shear stress in simulated canal preparation. Mood's median and One-way anova post hoc Tukey tests were used for statistical comparisons (α = 5%). RESULTS: Reciproc Blue exhibited a superior number of blades (n = 8), whereas EdgeOne Fire had the highest overall volume (4.38 mm3 ) and surface area (32.32 mm2 ). At the 3-mm axial level, EdgeOne Fire displayed the lowest core diameter (0.13 mm), while Reciproc Blue had the highest (0.16 mm). All blades were symmetrical, and the tips of the instruments were non-active but differed from each other. The most irregular surfaces were observed in EdgeOne Fire and Easy-File Flex. All instruments were manufactured from nickel-titanium alloys and exhibited distinct phase transformation temperatures. WaveOne Gold and Reciproc Blue demonstrated the highest maximum torque values (1.87 and 1.62 N cm, respectively), while the lowest was observed on EdgeOne Fire (1.21 N cm) (p < .05). The most flexible (p < .05) were EdgeOne Fire (angle of rotation: 602.6°; maximum bending load: 251.4 g.f) and Reciproc Blue (533.2° and 235.6 g.f). There were no significant differences observed in the irrigation flow among the four domains generated by the tested instruments. CONCLUSIONS: Despite observing variations in the design, phase transformation temperatures, and in the torsional and bending test outcomes among the four heat-treated reciprocating instruments, no significant differences were found in the irrigation flow pattern among the different groups in the simulated root canal preparations.


Assuntos
Instrumentos Odontológicos , Temperatura Alta , Desenho de Equipamento , Estresse Mecânico , Preparo de Canal Radicular , Titânio/química , Metalurgia , Ouro , Teste de Materiais
7.
Pharm Res ; 39(11): 3005-3019, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36071350

RESUMO

This work aimed to evaluate the relative inhalation parameters that affect the deposition of inhaled aerosols, including mouth-throat morphology, airflow rate, and initial condition of emitted particles. In vitro experiments were conducted using the US Pharmacopeia (USP) throat and a realistic mouth-throat (RMT) with Handihaler®. Then, in silico study of the gas-solid flow was performed by computational fluid dynamics and discrete phase method. Results indicated that aerosol deposition in RMT was higher compared to that in USP throat at an airflow rate of 30 L/min, with 33.16 ± 7.84% and 21.11 ± 7.1% lung deposition in USP throat and RMT models, respectively, which showed a better correlation with in vivo data from the literature. Increasing airflow rate resulted in better drug aerosolization, while the fine particle dose trend ascended before declining, with the peak value obtained at a flow rate of 40 L/min. Overall, the effect of geometrical variation was more significant. Additionally, in silico results demonstrated clearly that the initial conditions of the emitted particles from inhalers affected the subsequent deposition. Larger momentum possessed by the central aerosol jet entering the mouth directly led to stronger impaction, which resulted in the deposition in the front region of mouth-throat models. This study is beneficial to develop an in silico method to understand the underlying mechanisms of in vivo mouth-throat deposition.


Assuntos
Inaladores de Pó Seco , Faringe , Inaladores de Pó Seco/métodos , Faringe/anatomia & histologia , Desenho de Equipamento , Administração por Inalação , Aerossóis , Pulmão , Boca/anatomia & histologia , Tamanho da Partícula
8.
J Aerosol Sci ; 166: 106051, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36061037

RESUMO

Early in the CoViD-19 pandemic, musical practices, especially singing and playing wind instruments, have been pointed out as having a high risk disease transmission due to aerosol production. However, characterization of these emission sources was not consolidated. This study focuses on the generation of aerosols and potential reduction in the context of playing wind instruments and singing. Aerosol concentration reduction means are evaluated using aerosol measurements in clean room and Computational Fluid Dynamics. Measurements at the bell of a clarinet and in front of singers are performed with or without a protection (bell cover for clarinet and surgical mask for singers). Numerical results on clarinet suggest that most of the supermicron ( ≥ 1 µ m ) particles are trapped on the walls of the instruments, which act as a filter, depending on toneholes configurations (closed or opened) changing the frequency of sound produced. Experimental results are consistent since almost only submicron particles contribute to the measured number concentration during playing clarinet. First of all, the high inter and intra-individuals variability is highlighted, with high coefficients of variation. This study highlights the impact of fingerings on the generated particles and the efficiency of protections such as bell cover (from 3 to 100 times), depending on the played note and players. Results for singers show that surgical masks significantly reduce the aerosol concentration (from 8 to 170 times) in front of the mouth. The evolution of aerosol concentration is also correlated with sound intensity.

9.
Int Endod J ; 55(9): 938-949, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35762040

RESUMO

AIM: The aim of the study was (a) to develop a three-dimensional numerical model combining the oscillation of a tapered ultrasonic file and the induced irrigant flow along with their two-way interaction in the confinement of a root canal. (b) To validate this model through comparison with experiments and theoretical (analytical) solutions of the flow. METHODOLOGY: Two partial numerical models, one for the oscillation of the ultrasonic file and another one for the irrigant flow inside the root canal around the file, were created and coupled in order to take into account the two-way coupled fluid-structure interaction. Simulations were carried out for ultrasonic K-files and for smooth wires driven at four different amplitudes in air or inside an irrigant-filled straight root canal. The oscillation pattern of the K-files was determined experimentally by Scanning Laser Vibrometry, and the flow pattern inside an artificial root canal was analysed using high-speed imaging together with Particle Image Velocimetry. Analytical solutions were obtained from an earlier study. Numerical, experimental and analytical results were compared to assess the validity of the model. RESULTS: The comparison of the oscillation amplitude and node location of the ultrasonic files and of the irrigant flow field showed a close agreement between the simulations, experiments and theoretical solutions. CONCLUSIONS: The model is able to predict reliably the file oscillation and irrigant flow inside root canals during ultrasonic activation under similar conditions.


Assuntos
Cavidade Pulpar , Preparo de Canal Radicular , Irrigantes do Canal Radicular , Preparo de Canal Radicular/métodos , Irrigação Terapêutica/métodos , Ultrassom
10.
Int Endod J ; 55(12): 1394-1403, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36040378

RESUMO

AIM: This study aimed to experimentally validate a computational fluid dynamics (CFD) model, using micro-particle image velocimetry (micro-PIV) measurements of the irrigation flow velocity field developed in confluent canals during irrigation with a side-vented needle. METHODOLOGY: A microchip with confluent canals, manufactured in polydimethylsiloxane was used in a micro-PIV analysis of the irrigation flow using a side-vented needle placed 3 mm from the end of the confluence of the canals. Velocity fields and profiles were recorded for flow rates of 0.017 and 0.1 ml/s and compared with those predicted in CFD numerical simulations (using a finite volume commercial code - FLUENT) for both laminar and turbulent regimes. RESULTS: The overall flow pattern, isovelocity and vector maps as well as velocity profiles showed a close agreement between the micro-PIV experimental and CFD predicted data. No relevant differences were observed between the results obtained with the laminar and turbulent flow models used. CONCLUSIONS: Results showed that the laminar CFD modelling is reliable to predict the flow in similar domains.


Assuntos
Hidrodinâmica , Agulhas , Simulação por Computador , Reologia , Endodontia
11.
Odontology ; 110(4): 769-776, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35218447

RESUMO

Irrigation dynamics of syringe irrigation with different needle designs (side-vented, double side-vented, notched) and ultrasonic irrigation in the root canal with internal root resorption were evaluated using a computational fluid dynamics model. A micro-CT scanned mandibular premolar was used for modeling internal root resorption. The needles and the ultrasonic tip were positioned at 2, 4, and 5 mm from the working length. The insertion depth and the irrigation model were found influential on the shear stress and the irrigant extension. The extension of the irrigant increased toward 2-5 mm from the working length. Ultrasonic irrigation revealed the highest shear stress values regardless of the insertion depth. The shear stress distribution on the resorption cavity walls gradually increased when the needles were positioned coronally. The residence time of the irrigant in the canal was affected by the needle position relative to the internal root resorption cavity and the needle type.


Assuntos
Hidrodinâmica , Reabsorção da Raiz , Cavidade Pulpar , Humanos , Irrigantes do Canal Radicular , Preparo de Canal Radicular , Irrigação Terapêutica
12.
BMC Oral Health ; 22(1): 179, 2022 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-35568838

RESUMO

BACKGROUNDS: To compare the irrigation efficiency with different needle working length and different root canal curvature based on a real unshaped root canal using computational fluid dynamics (CFD) method. METHODS: Images of the root canal of the maxillary first molar after being prepared to .04/15 were scanned using micro-CT, and then imported into the software for three-dimensional reconstruction. A palatal root canal with a curvature of 23.4° was selected as the experiment canal. The needle working length of the 30-G flat needle was 4.75 mm, 5 mm, 5.25 mm and 5.5 mm short of apical foramen respectively, the flow pattern, irrigation velocity, shear stress were compared. The modified curved canals with a curvature of 0°, 5°, 10°, 20° and 30°were reconstructed via software. The flat needle was replaced at the optical inserted depth, and key parameters of irrigation efficiency were analyzed. RESULTS: Decreased needle working length had a positive impact on irrigation efficiency. With the optimal needle working length, the replacement of the apical irrigation fluid, the effective velocity, and wall shear stress were significantly improved in more severely curved root canals. With the same needle working depth and analogous canal curvature, irrigation efficiency is higher in real canal than that of modified canal. CONCLUSIONS: Short needle working depth, large curvature and the anomalous inner wall of canals help to improve irrigation efficiency.


Assuntos
Cavidade Pulpar , Hidrodinâmica , Cavidade Pulpar/diagnóstico por imagem , Humanos , Agulhas , Irrigantes do Canal Radicular , Preparo de Canal Radicular/métodos , Irrigação Terapêutica
13.
Proc Biol Sci ; 288(1943): 20202719, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33467997

RESUMO

Osteostraci and Galeaspida are stem-gnathostomes, occupying a key phylogenetic position for resolving the nature of the jawless ancestor from which jawed vertebrates evolved more than 400 million years ago. Both groups are characterized by the presence of rigid headshields that share a number of common morphological traits, in some cases hindering the resolution of their interrelationships and the exact nature of their affinities with jawed vertebrates. Here, we explore the morphological and functional diversity of osteostracan and galeaspid headshields using geometric morphometrics and computational fluid dynamics to constrain the factors that promoted the evolution of their similar morphologies and informing on the ecological scenario under which jawed vertebrates emerged. Phylomorphospace, Mantel analysis and Stayton metrics demonstrate a high degree of homoplasy. Computational fluid dynamics reveals similar hydrodynamic performance among morphologically convergent species, indicating the independent acquisition of the same morphofunctional traits and, potentially, equivalent lifestyles. These results confirm that a number of the characters typically used to infer the evolutionary relationships among galeaspids, osteostracans and jawed vertebrates are convergent in nature, potentially obscuring understanding of the assembly of the gnathostome bodyplan. Ultimately, our results reveal that while the jawless relatives of the earliest jawed vertebrates were ecologically diverse, widespread convergence on the same hydrodynamic adaptations suggests they had reached the limits of their potential ecological diversity-overcome by jawed vertebrates and their later innovations.


Assuntos
Arcada Osseodentária , Vertebrados , Animais , Evolução Biológica , Filogenia
14.
Catheter Cardiovasc Interv ; 97 Suppl 2: 1048-1054, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33742738

RESUMO

OBJECTIVES: This study aimed to evaluate prognostic value of quantitative flow ratio (QFR) in drug-coated balloon (DCB) angioplasty for in-stent restenosis (ISR). BACKGROUND: There is a high incidence of recurrent ISR after DCB angioplasty. QFR is a novel method for fast computation of fractional flow reserve for the target vessel based on quantitative coronary angiography (QCA) and fluid dynamics algorithms. METHODS: Patients participating in the RESTORE ISR China randomized trial were enrolled and classified into the recurrent restenosis group and the non-recurrent restenosis group. The binary classifications followed the QCA standards of ISR. Clinical and angiographic characteristics of the groups were analyzed, and the QFRs before and after lesion preparation and after final DCB angioplasty were measured and compared. RESULTS: A total of 208 patients who underwent follow-up angiography were enrolled in the study, with 226 lesions measured in total. QFR value after DCB angioplasty (odds ratio [OR] 0.88; 95% confidence interval [CI] 0.83-0.93; p < .0001 for 1 mm increase), lesion length (OR: 1.08; 95% CI: 1.01-1.15; p = .017), and vessel caliber lumen diameter (OR: 0.35; 95% CI 0.13-0.89; p = .027) were independently associated with recurrent restenosis after DCB angioplasty. The optimal QFR cut-off value was determined to be 0.90 with a sensitivity of 0.94, specificity of 0.56, and accuracy of 0.79 in predicting recurrent restenosis. CONCLUSIONS: The QFR value after DCB angioplasty is a promising predictor of DES ISR.


Assuntos
Angioplastia Coronária com Balão , Reestenose Coronária , Stents Farmacológicos , Reserva Fracionada de Fluxo Miocárdico , Preparações Farmacêuticas , Angioplastia Coronária com Balão/efeitos adversos , Materiais Revestidos Biocompatíveis , Angiografia Coronária , Reestenose Coronária/diagnóstico por imagem , Reestenose Coronária/etiologia , Reestenose Coronária/terapia , Humanos , Paclitaxel , Prognóstico , Resultado do Tratamento
15.
Environ Res ; 193: 110343, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33068577

RESUMO

BACKGROUND: About 15 million people worldwide were affected by the Sars-Cov-2 infection, which already caused 600,000 deaths. This virus is mainly transmitted through exhalations from the airways of infected persons, so that Heating, Ventilation and Air Conditioning (HVAC) systems might play a role in increasing or reducing the spreading of the infection in indoor environments. METHODS: We modeled the role of HVAC systems in the diffusion of the contagion through Computational Fluid Dynamics (CFD) simulations of cough at the "Bambino Gesù" Vatican State Children's Hospital. Both waiting and hospital rooms were modeled as indoor scenarios. A specific Infection-Index (η) parameter was used to estimate the amount of contaminated air inhaled by each person present in the simulated indoor scenarios. The potential role of exhaust air ventilation systems placed above the coughing patient's mouth was also assessed. RESULTS: Our CFD-based simulations of the waiting room show that HVAC air-flow remarkably enhances infected droplets diffusion in the whole indoor environment within 25 s from the cough event, despite the observed dilution of saliva particles containing the virus. At the same time also their number is reduced due to removal through the HVAC system or deposition on the surfaces. The proper use of Local Exhaust Ventilation systems (LEV) simulated in the hospital room was associated to a complete reduction of infected droplets spreading from the patient's mouth in the first 0.5 s following the cough event. In the hospital room, the use of LEV system completely reduced the η index computed for the patient hospitalized at the bed next to the spreader, with a decreased possibility of contagion. CONCLUSIONS: CFD-based simulations for indoor environment can be useful to optimize air conditioning flow and to predict the contagion risk both in hospitals/ambulatories and in other public/private settings.


Assuntos
Poluição do Ar em Ambientes Fechados , COVID-19 , Ar Condicionado , Criança , Hospitais , Humanos , Hidrodinâmica , SARS-CoV-2 , Ventilação
16.
BMC Med Imaging ; 21(1): 127, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34425762

RESUMO

BACKGROUND: Adenoid hypertrophy among orthodontic patients may be detected in lateral cephalograms. The study investigates the aerodynamic characteristics within the upper airway (UA) by means of computational fluid dynamics (CFD) simulation. Furthermore, airflow features are compared between subgroups according to the adenoidal nasopharyngeal (AN) ratios. METHODS: This retrospective study included thirty-five patients aged 9-15 years having both lateral cephalogram and cone beam computed tomography (CBCT) imaging that covered the UA region. The cases were divided into two subgroups according to the AN ratios measured on the lateral cephalograms: Group 1 with an AN ratio < 0.6 and Group 2 with an AN ratio ≥ 0.6. Based on the CBCT images, segmented UA models were created and the aerodynamic characteristics at inspiration and expiration were simulated by the CFD method for the two groups. The studied aerodynamic parameters were pressure drop (ΔP), maximum midsagittal velocity (Vms), maximum wall shear stress (Pws), and minimum wall static pressure (Pw). RESULTS: The maximum Vms exhibits nearly 30% increases in Group 2 at both inspiration (p = 0.013) and expiration (p = 0.045) compared to Group 1. For the other aerodynamic parameters such as ΔP, the maximum Pws, and minimum Pw, no significant difference is found between the two groups. CONCLUSIONS: The maximum Vms seems to be the most sensitive aerodynamic parameter for the groups of cases. An AN ratio of more than 0.6 measured on a lateral cephalogram may associate with a noticeably increased maximum Vms, which could assist clinicians in estimating the airflow features in the UA.


Assuntos
Tonsila Faríngea/anatomia & histologia , Cefalometria/métodos , Nasofaringe/anatomia & histologia , Adolescente , Criança , Tomografia Computadorizada de Feixe Cônico , Estudos Transversais , Feminino , Humanos , Masculino , Nasofaringe/diagnóstico por imagem , Nasofaringe/fisiologia , Radiografia Panorâmica , Estudos Retrospectivos
17.
J Environ Manage ; 299: 113591, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34455350

RESUMO

An annular bioreactor (ABR) with wide gap was used for PHB production from Ralstonia eutropha. Hydrodynamic studies demonstrated the uniform distribution of fluid in the ABR due to the Taylor-Couette flow. Thereafter, the ABR was operated at different agitation and sparging rates to study its effect on R. eutropha growth and PHB production. The ABR operated at 500 rpm with air sparge rate of 0.8 vvm yielded a maximum PHB concentration of 14.89 g/L, which was nearly 1.4 times that obtained using a conventional stirred-tank bioreactor (STBR). Furthermore, performances of the bioreactors were compared by operating the reactors under fed-batch mode. At the end of 90 h of operation, the ABR resulted in a very high PHB production of 70.8 g/L. But STBR resulted in a low PHB concentration of 44.2 g/L. The superior performance was due to enhanced oxygen and nutrient mass transfer in the ABR.


Assuntos
Cupriavidus necator , Reatores Biológicos , Galactanos , Hidroxibutiratos , Mananas , Extratos Vegetais , Gomas Vegetais , Poliésteres
18.
AAPS PharmSciTech ; 22(3): 99, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33709248

RESUMO

The objective of this work was to investigate the influence of tablet location along the bottom of a USP apparatus II vessel on polymer erosion and drug release of surface-erodible sustained-release tablets using computational simulation methods. Computational fluid dynamics (CFD) methods were performed to simulate the velocity distribution. A mathematical model was developed to describe polymer erosion and tablet deformation according to the mass transfer coefficient. Numerical analysis was used to simulate drug release controlled by drug diffusion and polymer erosion. The results indicated that tablets located at the off-center position deformed faster than the tablets located at the center position. However, tablet location had no profound impact on drug release rate since all drug release profiles were "similar" according to the f2 similarity values which were above 50. Hence, our simulation supported that the USP apparatus II was a reliable and robust device for the dissolution testing of surface-erodible sustained-release tablets.


Assuntos
Simulação por Computador , Liberação Controlada de Fármacos , Polímeros/química , Polímeros/farmacocinética , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Hidrodinâmica , Solubilidade , Comprimidos
19.
BMC Oral Health ; 21(1): 123, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731068

RESUMO

BACKGROUND: The effect of rapid maxillary expansion (RME) on the upper airway (UA) has been studied earlier but without a consistent conclusion. This study aims to evaluate the outcome of RME on the UA function in terms of aerodynamic characteristics by applying a computational fluid dynamics (CFD) simulation. METHODS: This retrospective cohort study consists of seventeen cases with two consecutive CBCT scans obtained before (T0) and after (T1) RME. Patients were divided into two groups with respect to patency of the nasopharyngeal airway as expressed in the adenoidal nasopharyngeal ratio (AN): group 1 was comprised of patients with an AN ratio < 0.6 and group 2 encompassing those with an AN ratio ≥ 0.6. CFD simulation at inspiration and expiration were performed based on the three-dimensional (3D) models of the UA segmented from the CBCT images. The aerodynamic characteristics in terms of pressure drop (ΔP), maximum midsagittal velocity (Vms), and maximum wall shear stress (Pws) were compared by paired t-test and Wilcoxon test according to the normality test at T0 and T1. RESULTS: The aerodynamic characteristics in UA revealed no statistically significant difference after RME. The maximum Vms (m/s) decreased from 2.79 to 2.28 at expiration after RME (P = 0.057). CONCLUSION: The aerodynamic characteristics were not significantly changed after RME. Further CFD studies with more cases are warranted.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Técnica de Expansão Palatina , Humanos , Maxila , Nariz , Estudos Retrospectivos
20.
Artif Organs ; 44(8): E337-E347, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32216111

RESUMO

Limited donor organs and alternative therapies have led to a growing interest in the use of blood pumps as a treatment strategy for patients with single functional ventricle. The present study examines the use of collapsible and flexible impeller, cage, and diffuser designs of an axial blood pump for Fontan patients. Using one-way fluid-structure interaction (FSI) studies, the impact of blade deformation on blood damage and pump performance was investigated for flexible impellers. We evaluated biocompatible materials, including Nitinol, Bionate 80A polyurethane, and silicone for flow rates between 2.0-4.0 L/min and rotational speeds of 3000-9000 rpm. The level of deformation experienced by a cage and diffuser made of surgical stainless steel (control), Nitinol, and Bionate 80A polyurethane was also predicted using one-way FSI. The fluid pressure on the surface of the impeller, cage, and diffuser was determined using computational fluid dynamics (CFD), and then, the surface pressure was exported and used to investigate the impeller, cage, and diffuser deformation using finite element analysis. Finally, deformed impeller geometries were imported into the CFD software to determine the implication of deformation on pressure generation, blood damage index, and fluid streamlines. It was found that rotational speed, and not flow rate, is the largest determinant of impeller deformation, occurring at the blade trailing edges. The models predicted the maximum impeller deformation for Nitinol to be 40 nm, Bionate 80A polyurethane to be 106 µm, and silicone to be 2.8 mm, all occurring at 9000 rpm. The effects of silicone deformation on performance were significant, particularly at speeds above 5000 rpm where a decrease in pressure generation of more than 10% was observed. Despite this loss, the pressure generation at 5000 rpm exceeded the level required to alleviate Fontan complications. A blood damage estimation was performed and levels remained low. The effect of significant impeller deformation on blood damage was inconsistent and requires additional investigation. Cage and diffuser geometries made of steel and Nitinol deformed minimally but Bionate 80A experienced unacceptable levels of deformation, particularly in the free-flow case without a spinning impeller. These results support the continued evaluation of a flexible, pitch-adjusting, axial-flow, mechanical assist device as a clinical therapeutic option for patients with dysfunctional Fontan physiology.


Assuntos
Técnica de Fontan/instrumentação , Coração Auxiliar , Materiais Biocompatíveis , Humanos , Modelos Cardiovasculares , Desenho de Prótese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA