RESUMO
Exosomes, which are small membrane-encapsulated particles derived from all cell types, are emerging as important mechanisms for intercellular communication. In addition, exosomes are currently envisioned as potential carriers for the delivery of drugs to target tissues. The natural population of exosomes is very variable due to the limited amount of cargo components present in these small vesicles. Consequently, common components of exosomes may play a role in their function. We have proposed that membrane phospholipids could be a common denominator in the effect of exosomes on cellular functions. In this regard, we have previously shown that liposomes made of phosphatidylcholine (PC) or phosphatidylserine (PS) induced a robust alteration of macrophage (MÏ) gene expression. We herewith report that these two phospholipids modulate gene expression in MÏs by different mechanisms. PS alters cellular responses by the interaction with surface receptors, particularly CD36. In contrast, PC is captured by a receptor-independent process and likely triggers an activity within endocytic vesicles. Despite this difference in the capture mechanisms, both lipids mounted similar gene expression responses. This investigation suggests that multiple mechanisms mediated by membrane phospholipids could be participating in the alteration of cellular functions by exosomes.
Assuntos
Exossomos , Macrófagos , Fosfatidilserinas , Macrófagos/metabolismo , Animais , Camundongos , Fosfatidilserinas/metabolismo , Exossomos/metabolismo , Fosfatidilcolinas/metabolismo , Inflamação/metabolismo , Fosfolipídeos/metabolismo , Camundongos Endogâmicos C57BL , Antígenos CD36/metabolismo , Antígenos CD36/genética , LipossomosRESUMO
Phantom tooth pain (PTP) is one type of non-odontogenic neuropathic toothache, which rarely occurs after appropriate pulpectomy or tooth extraction. The cause of PTP is unknown. We investigated pain-related genetic factors that are associated with PTP. Four pain-associated genes, including G protein-coupled receptor 158 (GPR158) and phosphoribosyl transferase domain containing 1 (PRTFDC1), are adjacent to each other on the human genome. Some of these four genes or their genomic region may be related to PTP. We statistically analyzed associations between single-nucleotide polymorphisms (SNPs) in the genomic region and PTP in patients with PTP (PTP group), other orofacial pain (OFP group), and healthy control subjects. We then performed a database search of expression quantitative trait loci (eQTLs). For the seven SNPs that were significantly associated with PTP even after Bonferroni correction, we focused on the rs12411980 tag SNP (p = 9.42 × 10-4). Statistical analyses of the PTP group and healthy subject groups (group labels: NOC and TD) revealed that the rate of the GG genotype of the rs12411980 SNP was significantly higher in the PTP group than in the healthy subject groups (PTP group vs. NOC group: p = 2.92 × 10-4, PTP group vs. TD group: p = 5.46 × 10-4; percentage of GG: 30% in PTP group, 12% in NOC group, 11% in TD group). These results suggest that the GG genotype of the rs12411980 SNP is more susceptible to PTP. The rs2765697 SNP that is in strong linkage disequilibrium with the rs12411980 SNP is an eQTL that is associated with higher PRTFDC1 expression in the minor allele homozygotes in the healthy subject groups of the rs2765697 SNP. Thus, PRTFDC1 expression similarly increases in the minor allele homozygotes (GG genotype) in the healthy subject groups of the rs12411980 SNP, which would lead to greater susceptibility to PTP.
Assuntos
Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Odontalgia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos de Casos e Controles , Genótipo , Locos de Características Quantitativas , Receptores Acoplados a Proteínas G/genética , Odontalgia/genéticaRESUMO
Cis-regulatory changes are thought to play a major role in adaptation. Threespine sticklebacks have repeatedly colonized freshwater habitats in the Northern Hemisphere, where they have evolved a suite of phenotypes that distinguish them from marine populations, including changes in physiology, behavior, and morphology. To understand the role of gene regulatory evolution in adaptive divergence, here we investigate cis-regulatory changes in gene expression between marine and freshwater ecotypes through allele-specific expression (ASE) in F1 hybrids. Surveying seven ecologically relevant tissues, including three sampled across two developmental stages, we identified cis-regulatory divergence affecting a third of genes, nearly half of which were tissue-specific. Next, we compared allele-specific expression in dental tissues at two timepoints to characterize cis-regulatory changes during development between marine and freshwater fish. Applying a genome-wide test for selection on cis-regulatory changes, we find evidence for lineage-specific selection on several processes between ecotypes, including the Wnt signaling pathway in dental tissues. Finally, we show that genes with ASE, particularly those that are tissue-specific, are strongly enriched in genomic regions of repeated marine-freshwater divergence, supporting an important role for these cis-regulatory differences in parallel adaptive evolution of sticklebacks to freshwater habitats. Altogether, our results provide insight into the cis-regulatory landscape of divergence between stickleback ecotypes across tissues and during development, and support a fundamental role for tissue-specific cis-regulatory changes in rapid adaptation to new environments.
Assuntos
Smegmamorpha , Animais , Smegmamorpha/genética , Água Doce , Adaptação Fisiológica/genética , Genoma , AclimataçãoRESUMO
The present study investigates the impact of varying concentrations of PVC microplastics (PVC-MPs) - specifically 0 (no PVC-MPs), 2, and 4 mg L- 1 -alongside different arsenic (As) levels of 0 (no As), 150, and 300 mg kg- 1 in the soil, with the concurrent application of copper oxide-nanoparticles (CuO-NPs) at 0 (no CuO -NPs), 25 and 50 µg mL- 1 to barley (Hordeum vulgare L.) plants. This research primarily aims to assess plant growth and biomass, photosynthetic pigments and gas exchange characteristics, oxidative stress indicators, as well as the response of various antioxidants (both enzymatic and non-enzymatic) and their relevant genes expression, proline metabolism, the AsA-GSH cycle, and cellular fractionation within the plants. The findings showed that increased levels of PVC-MPs and As stress in the soil significantly reduced plant growth and biomass, photosynthetic pigments, and gas exchange characteristics. Additionally, PVC-MPs and As stress increased oxidative stress in the roots and shoots, as evidenced by elevated levels of malondialdehyde (MDA), hydrogen peroxide (H2O2), and electrolyte leakage (EL), which in turn stimulated the production of various enzymatic and non-enzymatic antioxidants, gene expression, and sugar content. Furthermore, a notable increase in proline metabolism, the AsA-GSH cycle, and cellular pigmentation was observed. Conversely, the application of CuO-NPs resulted in a substantial improvement in plant growth and biomass, gas exchange characteristics, and the activity of enzymatic and non-enzymatic antioxidants, along with a reduction in oxidative stress. Additionally, CuO-NPs enhanced cellular fractionation while decreasing proline metabolism and the AsA-GSH cycle in H. vulgare plants. These outcomes provide new insights into sustainable agricultural practices and offer significant potential in addressing the critical challenges of heavy metal contamination in agricultural soils.
Assuntos
Arsênio , Biodegradação Ambiental , Cobre , Hordeum , Microplásticos , Estresse Oxidativo , Cobre/metabolismo , Hordeum/efeitos dos fármacos , Hordeum/metabolismo , Hordeum/crescimento & desenvolvimento , Estresse Oxidativo/efeitos dos fármacos , Poluentes do Solo , Cloreto de Polivinila , Nanopartículas , Antioxidantes/metabolismo , Nanopartículas MetálicasRESUMO
The application of nano fertilizers is one of the hotspots in current agricultural production. In this study, nano silicon materials were mixed with compound fertilizers to make nano silicon fertilizer. The effects of different amounts of nano silicon application on the breaking-resistance strength, lodging-resistance index, lignin accumulation, lignin synthesis related enzymes, and the relative expression of lignin synthesis related genes in the second stem node of wheat were mainly studied. Four treatments were set up: CK (750 kg·ha-1 compound fertilizer), T1 (750 kg·ha-1 compound fertilizer + 0.9 kg·ha-1 nano silicon), T2 (750 kg·ha-1 compound fertilizer + 1.8 kg·ha-1 nano silicon), T3 (750 kg·ha-1 compound fertilizer + 2.7 kg·ha-1 nano silicon). The results of the two-year experiment showed that the breaking-resistance strength, lodging-resistance index, lignin accumulation in the second stem node of wheat treated with nano silicon fertilizer were higher than CK. In the first year of the experiment, the lignin accumulation of T2 was 130.73%, 5.14% and 7.25% higher than that of CK, T1 and T3 respectively at the maturity stage. In the second year of the experiment, the lignin accumulation of T2 was 20.33%, 11.19% and 9.89% higher than that of CK, T1 and T3 respectively at the maturity stage. And the activities of PAL, 4CL, CAD, and related gene expression levels were also higher than CK. And among them, T2 performed the best, indicating that the application of nano silicon fertilizer is beneficial for improving the lodging resistance of wheat stems and is of great significance for improving the quality of wheat.
Assuntos
Fertilizantes , Lignina , Lignina/metabolismo , Triticum/metabolismo , Silício/farmacologia , Silício/metabolismo , Agricultura/métodos , SoloRESUMO
MAIN CONCLUSION: Nine TkOSC genes have been identified by genome-wide screening. Among them, TkOSC4-6 might be more crucial for natural rubber biosynthesis in Taraxacum kok-saghyz roots. Taraxacum kok-saghyz Rodin (TKS) roots contain large amounts of natural rubber, inulin, and valuable metabolites. Oxidosqualene cyclase (OSC) is a key member for regulating natural rubber biosynthesis (NRB) via the triterpenoid biosynthesis pathway. To explore the functions of OSC on natural rubber producing in TKS, its gene family members were identified in TKS genome via genome-wide screening. Nine TkOSCs were identified, which were mainly distributed in the cytoplasm. Their family genes experienced a neutral selection during the evolution process. Overall sequence homology analysis OSC proteins revealed 80.23% similarity, indicating a highly degree of conservation. Pairwise comparisons showed a multiple sequence similarity ranging from 57% to 100%. Protein interaction prediction revealed that TkOSCs may interact with baruol synthase, sterol 1,4-demethylase, lupeol synthase and squalene epoxidase. Phylogenetic analysis showed that OSC family proteins belong to two branches. TkOSC promoter regions contain cis-acting elements related to plant growth, stress response, hormones response and light response. Protein accumulation analysis demonstrated that TkOSC4, TkOSC5 and TkOSC6 proteins had strong expression levels in the root, latex and plumular axis. Comparison of gene expression patterns showed TkOSC1, TkOSC4, TkOSC5, TkOSC6, TkOSC7, TkOSC8 and TkOSC9 might be important in regulating NRB. Combination of gene and protein results revealed TkOSC4-6 might be more crucial, and the data might contribute to a more profound understanding of the roles of OSCs for NRB in TKS roots.
Assuntos
Regulação da Expressão Gênica de Plantas , Transferases Intramoleculares , Filogenia , Borracha , Taraxacum , Taraxacum/genética , Taraxacum/metabolismo , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Borracha/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/enzimologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta/genéticaRESUMO
Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic gammaherpesvirus that can replicate in oral epithelial cells to promote viral transmission via saliva. To identify novel regulators of KSHV oral infection, we performed a transcriptome analysis of KSHV-infected primary human gingival epithelial (HGEP) cells, which identified the gene coding for the host transcription factor FOXQ1 as the top induced host gene. FOXQ1 is nearly undetectable in uninfected HGEP and telomerase-immortalized gingival keratinocytes (TIGK) cells but is highly expressed within hours of KSHV infection. We found that while the FOXQ1 promoter lacks activating histone acetylation marks in uninfected oral epithelial cells, these marks accumulate in the FOXQ1 promoter in infected cells, revealing a rapid epigenetic reprogramming event. To evaluate FOXQ1 function, we depleted FOXQ1 in KSHV-infected TIGK cells, which resulted in reduced accumulation of KSHV lytic proteins and viral DNA over the course of 4 days of infection, uncovering a novel lytic cycle-sustaining role of FOXQ1. A screen of KSHV lytic proteins demonstrated that the immediate early proteins ORF45 and replication and transcription activator (RTA) were both sufficient for FOXQ1 induction in oral epithelial cells, indicating active involvement of incoming and rapidly expressed factors in altering host gene expression. ORF45 is known to sustain extracellular signal-regulated kinase (ERK) p90 ribosomal s6 kinase (RSK) pathway activity to promote lytic infection. We found that an ORF45 mutant lacking RSK activation function failed to induce FOXQ1 in TIGK cells, revealing that ORF45 uses a shared mechanism to rapidly induce both host and viral genes to sustain lytic infection in oral epithelial cells. IMPORTANCE The oral cavity is a primary site of initial contact and entry for many viruses. Viral replication in the oral epithelium promotes viral shedding in saliva, allowing interpersonal transmission, as well as spread to other cell types, where chronic infection can be established. Understanding the regulation of KSHV infection in the oral epithelium would allow for the design of universal strategies to target the first stage of viral infection, thereby halting systemic viral pathogenesis. Overall, we uncover a novel positive feedback loop in which immediate early KSHV factors drive rapid host reprogramming of oral epithelial cells to sustain the lytic cycle in the oral cavity.
Assuntos
Retroalimentação Fisiológica , Fatores de Transcrição Forkhead , Regulação Viral da Expressão Gênica , Herpesvirus Humano 8 , Proteínas Imediatamente Precoces , Humanos , Células Epiteliais/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação Viral da Expressão Gênica/genética , Herpesvirus Humano 8/fisiologia , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Replicação Viral/fisiologia , Interações entre Hospedeiro e Microrganismos , Linhagem Celular , Regiões Promotoras GenéticasRESUMO
Dental caries is the most common chronic infectious disease around the world and disproportionately affects the marginalized socioeconomic group. Streptococcus mutans, considered a primary etiological agent of caries, depends on the coordinated physiological response to tolerate the oxidative stress generated by commensal species within dental plaque, which is a critical aspect of its pathogenicity. Here, we identified and characterized a novel tetracycline repressor family regulator, SMU_1361c, which appears to be acquired by the bacteria via horizontal gene transfer. Surprisingly, smu_1361c functions as a negative transcriptional regulator to regulate gene expression outside its operon and is involved in the oxidative stress response of S. mutans. The smu_1361c overexpression strain UA159/pDL278-1361c was more susceptible to oxidative stress and less competitive against hydrogen peroxide generated by commensal species Streptococcus gordonii and Streptococcus sanguinis. Transcriptomics analysis revealed that smu_1361c overexpression resulted in the significant downregulation of 22 genes, mainly belonging to three gene clusters responsible for the oxidative stress response. The conversed DNA binding motif of SMU_1361c was determined by electrophoretic mobility shift and DNase I footprinting assay with purified SMU_1361c protein; therefore, smu_1361c is directly involved in gene transcription related to the oxidative stress response. Crucially, our finding provides a new understanding of how S. mutans deals with the oxidative stress that is required for pathogenesis and will facilitate the development of new and improved therapeutic approaches for dental caries.IMPORTANCEStreptococcus mutans is the major organism associated with the development of dental caries, which globally is the most common chronic disease. To persist and survive in biofilms, S. mutans must compete with commensal species that occupy the same ecological niche. Here, we uncover a novel molecular mechanism of how tetracycline repressor family regulator smu_1361c is involved in the oxidative stress response through transcriptomics analysis, electrophoretic mobility shift assay, and DNase I footprinting assay. Furthermore, we demonstrated that smu_1361c mediates S. mutans sensitivity to oxidative stress and competitiveness with commensal streptococci. Therefore, this study has revealed a previously unknown regulation between smu_1361c and genes outside its operon and demonstrated the importance of smu_1361c in the oxidative stress response and the fitness of S. mutans within the plaque biofilms, which can be exploited as a new therapy to modulate ecological homeostasis and prevent dental caries.
Assuntos
Cárie Dentária , Streptococcus mutans , Humanos , Streptococcus mutans/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , Estresse Oxidativo , Tetraciclinas , Desoxirribonuclease I/metabolismoRESUMO
Immunoglobulin Mu-binding protein 2 (IGHMBP2) pathogenic variants result in the fatal, neurodegenerative disease spinal muscular atrophy with respiratory distress type 1 (SMARD1) and the milder, Charcot-Marie-Tooth (CMT) type 2S (CMT2S) neuropathy. More than 20 years after the link between IGHMBP2 and SMARD1 was revealed, and 10 years after the discovery of the association between IGHMBP2 and CMT2S, the pathogenic mechanism of these diseases is still not well defined. The discovery that IGHMBP2 functions as an RNA/DNA helicase was an important step, but it did not reveal the pathogenic mechanism. Helicases are enzymes that use ATP hydrolysis to catalyse the separation of nucleic acid strands. They are involved in numerous cellular processes, including DNA repair and transcription; RNA splicing, transport, editing and degradation; ribosome biogenesis; translation; telomere maintenance; and homologous recombination. IGHMBP2 appears to be a multifunctional factor involved in several cellular processes that regulate gene expression. It is difficult to determine which processes, when dysregulated, lead to pathology. Here, we summarise our current knowledge of the clinical presentation of IGHMBP2-related diseases. We also overview the available models, including yeast, mice and cells, which are used to study the function of IGHMBP2 and the pathogenesis of the related diseases. Further, we discuss the structure of the IGHMBP2 protein and its postulated roles in cellular functioning. Finally, we present potential anomalies that may result in the neurodegeneration observed in IGHMBP2-related disease and highlight the most prominent ones.
Assuntos
Proteínas de Ligação a DNA , Atrofia Muscular Espinal , Fatores de Transcrição , Humanos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patologia , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Síndrome do Desconforto Respiratório do Recém-Nascido/genéticaRESUMO
Bacterial biofilms are a consortium of bacteria that are strongly bound to each other and the surface on which they developed irreversibly. Bacteria can survive adverse environmental conditions and undergo changes when transitioning from a planktonic form to community cells. The process of mycobacteria adhesion is complex, involving characteristics and properties of bacteria, surfaces, and environmental factors; therefore, the formation of different biofilms is possible. Cell wall-, lipid-, and lipid transporter-related genes (glycopeptidolipids, GroEL1, protein kinase) are important in mycobacterial biofilm development. We investigated gene expression during in vitro development of Mycobacterium smegmatis biofilms on a hydroxyapatite (HAP) surface. Biofilm formation by M. smegmatis cells was induced for 1, 2, 3, and 5 days on the HAP surface. Mycobacteria on polystyrene generated an air-liquid interface biofilm, and on the fifth day, it increased by 35% in the presence of HAP. Six genes with key roles in biofilm formation were analyzed by real-time RTâqPCR during the biofilm formation of M. smegmatis on both abiotic surfaces. The expression of groEL1, lsr2, mmpL11, mps, pknF, and rpoZ genes during biofilm formation on the HAP surface did not exhibit significant changes compared to the polystyrene surface. These genes involved in biofilm formation are not affected by HAP.
Assuntos
Proteínas de Bactérias , Mycobacterium smegmatis , Mycobacterium smegmatis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Poliestirenos/metabolismo , Biofilmes , Expressão Gênica , Hidroxiapatitas/metabolismo , LipídeosRESUMO
Microplastics are routinely ingested and inhaled by humans and other organisms. Despite the frequency of plastic exposure, little is known about its health consequences. Of particular concern are plastic additivesâchemical compounds that are intentionally or unintentionally added to plastics to improve functionality or as residual components of plastic production. Additives are often loosely bound to the plastic polymer and may be released during plastic exposures. To better understand the health effects of plastic additives, we performed a comprehensive literature search to compile a list of 2,712 known plastic additives. Then, we performed an integrated toxicogenomic analysis of these additives, utilizing cancer classifications and carcinogenic expression pathways as a primary focus. Screening these substances across two chemical databases revealed two key observations: (1) over 150 plastic additives have known carcinogenicity and (2) the majority (â¼90%) of plastic additives lack data on carcinogenic end points. Analyses of additive usage patterns pinpointed specific polymers, functions, and products in which carcinogenic additives reside. Based on published chemical-gene interactions, both carcinogenic additives and additives with unknown carcinogenicity impacted similar biological pathways. The predominant pathways involved DNA damage, apoptosis, the immune response, viral diseases, and cancer. This study underscores the urgent need for a systematic and comprehensive carcinogenicity assessment of plastic additives and regulatory responses to mitigate the potential health risks of plastic exposure.
Assuntos
Carcinógenos , Plásticos , Plásticos/toxicidade , Carcinógenos/toxicidade , Humanos , Microplásticos/toxicidadeRESUMO
AIMS: Orthodontic force (OF) induces a variety of reactions in the periodontal ligament (PDL) that could potentially account for individual variability regarding orthodontic tooth movement (OTM). This study investigates the transcriptomic profile of human PDL tissue subjected to OF in vivo for 7 and 28 days, additionally comparing the differences between maxillary and mandibular PDL. METHODS: Healthy patients requiring orthodontic premolar extractions were randomly assigned to one of three groups: control (CG) where no OF was applied, 7 days and 28 days, where premolars were extracted either 7 or 28 days after the application of a 50-100 g OF. Total RNA was extracted from the PDL tissue and analyzed via RNA-seq. Differentially expressed genes (DEGs) were identified using a false discovery rate and fold change threshold of < 0.05 and ≥ 1.5 respectively. Functional and Protein-Protein Interaction analysis were performed. RESULTS: After 7 days of OF, the reaction of PDL to OF is characterized by cell responses to stress, increased bone resorption, inflammation and immune response, and decreased bone formation. In contrast, after 28 days, bone regeneration is more prominent, and processes of bone homeostasis, immune response, and cell migration are present. The response of maxillary and mandibular PDL was different. Bone resorption was observed in the maxilla at 7 and 28 days, while in the mandible expression of cell proliferation and transcriptional activity were predominant after 28 days of OF. CONCLUSIONS: The early reaction of the PDL to OF corresponds with increased bone resorption and decreased bone formation. After 28 days, bone formation became more prominent. The maxillary and mandibular PDL present asynchronous responses during OTM. These findings enhance our comprehension of the mechanisms underlying the origin-specific responses of PDL to different lengths of OF, which is potentially relevant in the development of personalized therapeutic strategies.
RESUMO
OBJECTIVE: This study aims to investigate the mechanisms underlying the impaired healing response by diabetes after periodontal therapy. BACKGROUND: Outcomes of periodontal therapy in patients with diabetes are impaired compared with those in patients without diabetes. However, the mechanisms underlying impaired healing response to periodontal therapy have not been sufficiently investigated. MATERIALS AND METHODS: Zucker diabetic fatty (ZDF) and lean (ZL) rats underwent experimental periodontitis by ligating the mandibular molars for one week. The gingiva at the ligated sites was harvested one day after ligature removal, and gene expression was comprehensively analyzed using RNA-Seq. In patients with and without type 2 diabetes (T2D), the corresponding gene expression was quantified in the gingiva of the shallow sulcus and residual periodontal pocket after non-surgical periodontal therapy. RESULTS: Ligation-induced bone resorption and its recovery after ligature removal were significantly impaired in the ZDF group than in the ZL group. The RNA-Seq analysis revealed 252 differentially expressed genes. Pathway analysis demonstrated the enrichment of downregulated genes involved in the peroxisome proliferator-activated receptor (PPAR) signaling pathway. PPARα and PPARγ were decreased in mRNA level and immunohistochemistry in the ZDF group than in the ZL group. In clinical, probing depth reduction was significantly less in the T2D group than control. Significantly downregulated expression of PPARα and PPARγ were detected in the residual periodontal pocket of the T2D group compared with those of the control group, but not in the shallow sulcus between the groups. CONCLUSIONS: Downregulated PPAR subtypes expression may involve the impaired healing of periodontal tissues by diabetes.
Assuntos
Diabetes Mellitus Tipo 2 , Periodontite , Ratos Zucker , Cicatrização , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Animais , Ratos , Periodontite/terapia , Periodontite/genética , Cicatrização/genética , Masculino , Humanos , Gengiva/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Perda do Osso Alveolar/terapia , Modelos Animais de Doenças , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/terapia , Pessoa de Meia-IdadeRESUMO
BACKGROUND: Circular RNA (circRNA) is a key player in regulating the multidirectional differentiation of stem cells. Previous research by our group found that the blue light-emitting diode (LED) had a promoting effect on the osteogenic/odontogenic differentiation of human stem cells from apical papilla (SCAPs). This research aimed to investigate the differential expression of circRNAs during the osteogenic/odontogenic differentiation of SCAPs regulated by blue LED. MATERIALS AND METHODS: SCAPs were divided into the irradiation group (4 J/cm2) and the control group (0 J/cm2), and cultivated in an osteogenic/odontogenic environment. The differentially expressed circRNAs during osteogenic/odontogenic differentiation of SCAPs promoted by blue LED were detected by high-throughput sequencing, and preliminarily verified by qRT-PCR. Functional prediction of these circRNAs was performed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the circRNA-miRNA-mRNA networks were also constructed. RESULTS: It showed 301 circRNAs were differentially expressed. GO and KEGG analyses suggested that these circRNAs were associated with some signaling pathways related to osteogenic/odontogenic differentiation. And the circRNA-miRNA-mRNA networks were also successfully constructed. CONCLUSION: CircRNAs were involved in the osteogenic/odontogenic differentiation of SCAPs promoted by blue LED. In this biological process, circRNA-miRNA-mRNA networks served an important purpose, and circRNAs regulated this process through certain signaling pathways.
Assuntos
Diferenciação Celular , Papila Dentária , Luz , Odontogênese , Osteogênese , RNA Circular , Células-Tronco , RNA Circular/genética , RNA Circular/metabolismo , Humanos , Osteogênese/genética , Diferenciação Celular/genética , Células-Tronco/metabolismo , Células-Tronco/citologia , Odontogênese/genética , Papila Dentária/citologia , Papila Dentária/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Ontologia Genética , Células Cultivadas , Perfilação da Expressão Gênica/métodos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Regulação da Expressão Gênica/efeitos da radiação , Luz AzulRESUMO
AIM: Radiotherapy is associated with cell depletion and loss of blood supply, which are linked to compromised bone healing. However, the molecular events underlying these effects at the tissue-implant interface have not been fully elucidated. This study aimed to determine the major molecular mediators associated with compromised osseointegration due to previous exposure to radiation. MATERIALS AND METHODS: Titanium implants were placed in rat tibiae with or without pre-exposure to 20 Gy irradiation. Histomorphometric, biomechanical, quantitative polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assay analyses were performed at 1 and 4 weeks after implantation. RESULTS: The detrimental effects of irradiation were characterized by reduced bone-implant contact and removal torque. Furthermore, pre-exposure to radiation induced different molecular dysfunctions such as (i) increased expression of pro-inflammatory (Tnf) and osteoclastic (Ctsk) genes and decreased expression of the bone formation (Alpl) gene in implant-adherent cells; (ii) increased expression of bone formation (Alpl and Bglap) genes in peri-implant bone; and (iii) increased expression of pro-inflammatory (Tnf) and pro-fibrotic (Tgfb1) genes in peri-implant soft tissue. The serum levels of pro-inflammatory, bone formation and bone resorption proteins were greater in the irradiated rats. CONCLUSIONS: Irradiation causes the dysregulation of multiple biological activities, among which perturbed inflammation seems to play a common role in hindering osseointegration.
Assuntos
Osseointegração , Tíbia , Animais , Osseointegração/efeitos da radiação , Ratos , Tíbia/efeitos da radiação , Masculino , Implantes Dentários , Titânio , Interface Osso-Implante , Ratos Wistar , Implantação Dentária Endóssea , Osteogênese/efeitos da radiaçãoRESUMO
Transient gene expression (TGE) in mammalian cells is a well-known approach to the fast expression of recombinant proteins. The human cell line HEK (human embryonic kidney) 293F is widely used in this field, due to its adaptability to grow in suspension to high cell densities in serum-free media, amenability to transfection, and production of recombinant proteins in satisfactory quantities for functional and structural analysis. Amounts of plasmid DNA (pDNA) required in transfections for TGE remain high (usually 1 µg pDNA/mL, or even higher), representing a noticeable proportion of the overall cost. Thus, there is an economic need to reduce amounts of coding pDNA in TGE processes. In this work, amounts of both pDNA and transfecting agent used for TGE in HEK 293F cells have been explored in order to reduce them without compromising (or even improving) the productivity of the process in terms of protein yield. In our hands, minimal polyethyleneimine (PEI) cytotoxicity and optimum protein yields were obtained when transfecting at 0.5 µg pDNA/mL (equal to 0.5 µg pDNA/million cells) and a DNA-to-PEI ratio of 1:3, a trend confirmed for several unrelated recombinant proteins. Thus, carefully tuning pDNA and transfecting agent amounts not only reduces the economic costs but also results in higher recombinant protein yields. These results surely have a direct application and interest for the biopharmaceutical industry, always concerned in increasing productivity while decreasing economic costs. KEY POINTS: ⢠Mammalian cells are widely used to produce recombinant proteins in short times. ⢠Tuning DNA and transfecting agent are of great interest to optimize economic costs. ⢠Reducing DNA and transfecting agent amounts result in higher protein yields.
Assuntos
DNA , Polietilenoimina , Animais , Humanos , Análise Custo-Benefício , Plasmídeos , DNA/metabolismo , Transfecção , Polietilenoimina/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Mamíferos/genética , Mamíferos/metabolismoRESUMO
The deadliest type of skin cancer, malignant melanoma, is also the reason for the majority of skin cancer-related deaths. The objective of this article was to investigate the efficiency of free caffeic acid phenethyl ester (CAPE) and liposomal CAPE in inducing apoptosis in melanoma cells (A375) in in vitro. CAPE was loaded into liposomes made up of hydrogenated soybean phosphatidylcholine, cholesterol, and 1,2-distearoyl-sn-glycero-3 phosphoethanolamine-N-[methoxy (polyethylene glycol)-2000], and their physicochemical properties were assessed. (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test was performed for comparing the cytotoxicity of free CAPE and liposomal CAPE at dosages of 10, 15, 25, 50, 75 and the highest dose of 100 µg/mL for period of 24 and 48 h on A375 cell line to calculate IC50. Apoptosis and necrosis were evaluated in A375 melanoma cancer cells using flow cytometry. Atomic force microscopy was utilized to determine the nanomechanical attributes of the membrane structure of A375 cells. To determine whether there were any effects on apoptosis, the expression of PI3K/AKT1 and BAX/BCL2 genes was analyzed using the real-time polymerase chain reaction technique. According to our results, the maximum amount of drug release from nanoliposomes was determined to be 91% and the encapsulation efficiency of CAPE in liposomes was 85.24%. Also, the release of free CAPE was assessed to be 97%. Compared with liposomal CAPE, free CAPE showed a greater effect on reducing the cancer cell survival after 24 and 48 h. Therefore, IC50 values of A375 cells treated with free and liposomal CAPE were calculated as 47.34 and 63.39 µg/mL for 24 h. After 48 h of incubation of A375 cells with free and liposomal CAPE, IC50 values were determined as 30.55 and 44.83 µg/mL, respectively. The flow cytometry analysis revealed that the apoptosis induced in A375 cancer cells was greater when treated with free CAPE than when treated with liposomal CAPE. The highest nanomechanical changes in the amount of cell adhesion forces, and elastic modulus value were seen in free CAPE. Subsequently, the greatest decrease in PI3K/AKT1 gene expression ratio occurred in free CAPE.
Assuntos
Melanoma , Álcool Feniletílico , Neoplasias Cutâneas , Humanos , Melanoma/tratamento farmacológico , Melanoma/patologia , Linhagem Celular Tumoral , Lipossomos , Álcool Feniletílico/farmacologia , Álcool Feniletílico/uso terapêutico , Neoplasias Cutâneas/patologia , Ácidos Cafeicos/farmacologia , Ácidos Cafeicos/química , Ácidos Cafeicos/uso terapêutico , Apoptose , Fosfatidilinositol 3-Quinases/metabolismoRESUMO
In recent years micro- and nanoplastics and metal-oxide nanomaterials have been found in several environmental compartments. The Antarctic soft clam Laternula elliptica is an endemic Antarctic species having a wide distribution in the Southern Ocean. Being a filter-feeder, it could act as suitable bioindicator of pollution from nanoparticles also considering its sensitivity to various sources of stress. The present study aims to assess the impact of polystyrene nanoparticles (PS-NP) and the nanometal titanium-dioxide (n-TiO2) on genome-wide transcript expression of L. elliptica either alone and in combination and at two toxicological relevant concentrations (5 and 50⯵g/L) during 96â¯h exposure. Transcript-target qRT-PCR was performed with the aim to identify suitable biomarkers of exposure and effects. As expected, at the highest concentration tested, the clustering was clearer between control and exposed clams. A total of 221 genes resulted differentially expressed in exposed clams and control ones, and 21 of them had functional annotation such as ribosomal proteins, antioxidant, ion transport (osmoregulation), acid-base balance, immunity, lipid metabolism, cell adhesion, cytoskeleton, apoptosis, chromatin condensation and cell signaling. At functional level, relevant transcripts were shared among some treatments and could be considered as general stress due to nanoparticle exposure. After applying transcript-target approach duplicating the number of clam samples, four ecologically relevant transcripts were revealed as biomarkers for PS-NP, n-TiO2 and their combination at 50⯵g/L, that could be used for monitoring clams' health status in different Antarctic localities.
Assuntos
Bivalves , Nanopartículas , Titânio , Transcriptoma , Poluentes Químicos da Água , Animais , Bivalves/efeitos dos fármacos , Bivalves/genética , Titânio/toxicidade , Regiões Antárticas , Nanopartículas/toxicidade , Transcriptoma/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Biomarcadores/metabolismo , Poliestirenos/toxicidade , Monitoramento Ambiental/métodosRESUMO
AIM: The aim of this study is to investigate the expression of inflammatory biomarkers (TNF-α, IL-10, IL-1ß) and the pulpitis-associated miRNA (miR-30a-5p and miR-128-3p) in pulp tissue samples from unrestored teeth with a vital normal pulp (NP), teeth with symptomatic irreversible pulpitis (IP) and in unrestored teeth with periodontal disease, unresponsive to periodontal therapy, and a vital pulp (EP). METHODOLOGY: Thirty patients were included in this observational study (10 teeth with NP, 10 teeth with IP, 10 teeth with EP). Dental pulp tissues samples were collected from patients during root canal treatment (RCT). RNA was extracted and qRT-PCR of target genes (tumour necrosis factor [TNF]-α, interleukin [IL]-1ß, IL-10) and miRNAs (has-miR-30a-5p, has-miR-128-3p) performed to assess the expression profile. Fold-change in expression was calculated using the formula 2-(ΔCt(Exp)-ΔCt(Ctrl)). One-way anova with post-hoc Tukey's was used to determine significant differences between groups. The significance level was set at 5% (p < .05). All teeth were also followed up clinically for 1 year and evaluated for a range of endodontic and periodontal-related outcomes. RESULTS: All investigated genes significantly increased in expression and miRNAs significantly decreased in expression in the IP and EP groups compared with the NP group (p < .05). With regards to TNF-α and IL-1ß there were no significant differences in expression between the IP and EP groups (p > .05), whereas IL-10 expression levels were significantly reduced in the EP compared with the IP group (p < .05). Both miR-30a-5p and miR-128-3p showed significantly reduced expression in both IP and EP lesions, compared with NP (p < .05); however, no significant differences in miRNA expression were observed between IP and EP groups (p > .05). One year after root canal treatment and periodontal maintenance, tooth mobility and probing depth were significantly reduced in the EP group (p < .05). CONCLUSION: Pulp tissues from teeth with IP and EP presented similar levels of altered inflammatory markers compared with NP. TNF-α, IL-10, IL-1ß cytokines and miRNAs (miR-30a-5p and miR-128-3p) are potential objective biomarkers to indicate pulpal inflammatory status, aiding diagnosis and directing clinical decision-making. RCT may be beneficial to improve stage III periodontitis unresponsive to non-surgical periodontal treatment, but further research is required.
RESUMO
OBJECTIVE: To investigate how delayed blood centrifugation affects the composition of the resultant platelet rich fibrin membrane (PRF, a concentrated growth factor preparation) and its biological effects towards gingival fibroblasts. MATERIALS AND METHODS: Blood samples were collected from 18 healthy individuals and centrifuged immediately (T-0), or after a 1-6-minute delay (T-1-6, respectively), to generate PRF. Each PRF membrane was weighed. T-0 and T-6 membranes were incubated for 48 h in cell culture medium at 37 °C to create PRF "releasates" (soluble factors released from the PRF). Human gingival fibroblasts were incubated for 48 h with or without the releasates, followed by RNA isolation and real-time polymerase chain reaction to measure expression of select genes associated with granulation tissue formation, angiogenesis and wound contraction. Additional T-0 and T-6 membranes were used for visualization of leucocyte nuclei and platelets by immunostaining. RESULTS: Immediate centrifugation (T-0) resulted in the largest membranes, T-6 membranes being on average 29% smaller. Leucocytes and platelets were significantly more abundant in T-0 than in T-6 samples. Majority of the fibroblast genes studied were consistently either upregulated or downregulated by the T-0 PRF releasates. However, centrifugation after a 6-minute delay significantly weakened the fibroblast responses. CONCLUSIONS: Delayed centrifugation resulted in smaller PRF membranes with fewer leucocytes and platelets and also significantly reduced on the expression of a set of healing-related gingival fibroblast genes. CLINICAL RELEVANCE: The higher expression of wound healing-related genes in gingival fibroblasts by the immediately-centrifuged PRF membranes may increase their biological properties in clinical use.