Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Small ; 20(20): e2309200, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38295089

RESUMO

Self-assembled lipid nanoparticles (LNPs), serving as essential nanocarriers in recent COVID-19 mRNA vaccines, provide a stable and versatile platform for delivering a wide range of biological materials. Notably, LNPs with unique inverse mesostructures, such as cubosomes and hexosomes, are recognized as fusogenic nanocarriers in the drug delivery field. This study delves into the physicochemical properties, including size, lyotropic liquid crystalline mesophase, and apparent pKa of LNPs with various lipid components, consisting of two ionizable lipids (ALC-0315 and SM-102) used in commercial COVID-19 mRNA vaccines and a well-known inverse mesophase structure-forming helper lipid, phytantriol (PT). Two partial mesophase diagrams are generated for both ALC-0315/PT LNPs and SM-102/PT LNPs as a function of two factors, ionizable lipid ratio (α, 0-100 mol%) and pH condition (pH 3-11). Furthermore, the impact of different LNP stabilizers (Pluronic F127, Pluronic F108, and Tween 80) on their pH-dependent phase behavior is evaluated. The findings offer insights into the self-assembled mesostructure and ionization state of the studied LNPs with potentially enhanced endosomal escape ability. This research is relevant to developing innovative next-generation LNP systems for delivering various therapeutics.


Assuntos
Álcoois Graxos , Lipídeos , Cristais Líquidos , Nanopartículas , Nanopartículas/química , Álcoois Graxos/química , Cristais Líquidos/química , Concentração de Íons de Hidrogênio , Lipídeos/química , Íons/química , Lipossomos
2.
Drug Deliv Transl Res ; 10(3): 610-620, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31997254

RESUMO

Nonlamellar lipid-based liquid crystalline (LLC) nanoparticles possessing different internal nanostructures, specifically the 3D-ordered cubosomes (V2 phase) and the 2D-ordered hexosomes (H2 phase), are of increasing interest as drug delivery systems. To facilitate their development, it is important that we understand their interactions with healthy human umbilical vein endothelial cells (HUVECs). To this end, a 3D cells-in-a-tube model that recapitulates the basic morphology (i.e. tubular lumen) and in vivo microenvironment (i.e. physiological shear stress) of blood vessels was employed as a biomimetic testing platform, and the bio-nanoparticle interactions were compared with that of the conventional 2D planar cell culture. Confocal microscopy imaging revealed internalisation of the nanoparticles into HUVECs within 2 h and that the nanoparticle-cell interactions of cubosomes and hexosomes were not significantly different from one another. Low fluid shear stress conditions (i.e. venous simulation at 0.8 dynes/cm2) were shown to impose subtle effects on the degree of nanoparticle-cell interactions as compared with the static 2D culture. The unexpected similarity of cellular interactions between cubosomes and hexosomes was clarified via a real-time phase behaviour analysis using the synchrotron-based small-angle X-ray scattering (SAXS) technique. When the nanoparticles came into contact with HUVECs under circulating conditions, the cubosomes gradually evolved into hexosomes (within 16 min). In contrast, the hexosomes retained their original internal structure with minimal changes to the lattice parameters. This study highlights the need to couple cellular studies with high-resolution analytics such as time-resolved SAXS analysis to ensure that particle structures are verified in situ, enabling accurate interpretation of the dynamics of cellular interactions and potential bio-induced changes of particles intended for biomedical applications. Graphical abstract.


Assuntos
Células Endoteliais/ultraestrutura , Lipossomos/química , Cristais Líquidos/química , Nanopartículas/química , Células Endoteliais/química , Células Endoteliais/citologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Microscopia Confocal , Tamanho da Partícula , Espalhamento a Baixo Ângulo , Síncrotrons , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA