Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 553
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(20): 5540-5553.e10, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39236707

RESUMO

In 2022, mpox virus (MPXV) spread worldwide, causing 99,581 mpox cases in 121 countries. Modified vaccinia Ankara (MVA) vaccine use reduced disease in at-risk populations but failed to deliver complete protection. Lag in manufacturing and distribution of MVA resulted in additional MPXV spread, with 12,000 reported cases in 2023 and an additional outbreak in Central Africa of clade I virus. These outbreaks highlight the threat of zoonotic spillover by Orthopoxviruses. mRNA-1769, an mRNA-lipid nanoparticle (LNP) vaccine expressing MPXV surface proteins, was tested in a lethal MPXV primate model. Similar to MVA, mRNA-1769 conferred protection against challenge and further mitigated symptoms and disease duration. Antibody profiling revealed a collaborative role between neutralizing and Fc-functional extracellular virion (EV)-specific antibodies in viral restriction and ospinophagocytic and cytotoxic antibody functions in protection against lesions. mRNA-1769 enhanced viral control and disease attenuation compared with MVA, highlighting the potential for mRNA vaccines to mitigate future pandemic threats.


Assuntos
Anticorpos Antivirais , Vacinação , Vaccinia virus , Animais , Vaccinia virus/imunologia , Vaccinia virus/genética , Anticorpos Antivirais/imunologia , Vacinas de mRNA , Mpox/prevenção & controle , Mpox/imunologia , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Anticorpos Neutralizantes/imunologia , Nanopartículas/química , Feminino , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Macaca mulatta , Macaca fascicularis , Lipossomos
2.
Cell ; 176(1-2): 56-72.e15, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30612743

RESUMO

Local translation regulates the axonal proteome, playing an important role in neuronal wiring and axon maintenance. How axonal mRNAs are localized to specific subcellular sites for translation, however, is not understood. Here we report that RNA granules associate with endosomes along the axons of retinal ganglion cells. RNA-bearing Rab7a late endosomes also associate with ribosomes, and real-time translation imaging reveals that they are sites of local protein synthesis. We show that RNA-bearing late endosomes often pause on mitochondria and that mRNAs encoding proteins for mitochondrial function are translated on Rab7a endosomes. Disruption of Rab7a function with Rab7a mutants, including those associated with Charcot-Marie-Tooth type 2B neuropathy, markedly decreases axonal protein synthesis, impairs mitochondrial function, and compromises axonal viability. Our findings thus reveal that late endosomes interact with RNA granules, translation machinery, and mitochondria and suggest that they serve as sites for regulating the supply of nascent pro-survival proteins in axons.


Assuntos
Endossomos/fisiologia , Biossíntese de Proteínas/fisiologia , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Axônios/metabolismo , Endossomos/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , RNA/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/fisiologia , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/fisiologia , Ribossomos/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/fisiologia , proteínas de unión al GTP Rab7
3.
Immunity ; 53(6): 1281-1295.e5, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33296685

RESUMO

The deployment of effective vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical to eradicate the coronavirus disease 2019 (COVID-19) pandemic. Many licensed vaccines confer protection by inducing long-lived plasma cells (LLPCs) and memory B cells (MBCs), cell types canonically generated during germinal center (GC) reactions. Here, we directly compared two vaccine platforms-mRNA vaccines and a recombinant protein formulated with an MF59-like adjuvant-looking for their abilities to quantitatively and qualitatively shape SARS-CoV-2-specific primary GC responses over time. We demonstrated that a single immunization with SARS-CoV-2 mRNA, but not with the recombinant protein vaccine, elicited potent SARS-CoV-2-specific GC B and T follicular helper (Tfh) cell responses as well as LLPCs and MBCs. Importantly, GC responses strongly correlated with neutralizing antibody production. mRNA vaccines more efficiently induced key regulators of the Tfh cell program and influenced the functional properties of Tfh cells. Overall, this study identifies SARS-CoV-2 mRNA vaccines as strong candidates for promoting robust GC-derived immune responses.


Assuntos
Anticorpos Neutralizantes/metabolismo , Linfócitos B/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Centro Germinativo/imunologia , SARS-CoV-2/fisiologia , Linfócitos T Auxiliares-Indutores/imunologia , Vacinas Sintéticas/imunologia , Antígenos Virais/genética , Antígenos Virais/imunologia , Células Cultivadas , Epitopos , Humanos , Ativação Linfocitária , Polissorbatos , RNA Viral/imunologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Esqualeno , Vacinação , Vacinas de mRNA
4.
Proc Natl Acad Sci U S A ; 121(22): e2322935121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38771877

RESUMO

Current treatment options for diabetic wounds face challenges due to low efficacy, as well as potential side effects and the necessity for repetitive treatments. To address these issues, we report a formulation utilizing trisulfide-derived lipid nanoparticle (TS LNP)-mRNA therapy to accelerate diabetic wound healing by repairing and reprogramming the microenvironment of the wounds. A library of reactive oxygen species (ROS)-responsive TS LNPs was designed and developed to encapsulate interleukin-4 (IL4) mRNA. TS2-IL4 LNP-mRNA effectively scavenges excess ROS at the wound site and induces the expression of IL4 in macrophages, promoting the polarization from the proinflammatory M1 to the anti-inflammatory M2 phenotype at the wound site. In a diabetic wound model of db/db mice, treatment with this formulation significantly accelerates wound healing by enhancing the formation of an intact epidermis, angiogenesis, and myofibroblasts. Overall, this TS LNP-mRNA platform not only provides a safe, effective, and convenient therapeutic strategy for diabetic wound healing but also holds great potential for clinical translation in both acute and chronic wound care.


Assuntos
Nanopartículas , RNA Mensageiro , Espécies Reativas de Oxigênio , Cicatrização , Cicatrização/efeitos dos fármacos , Animais , Nanopartículas/química , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Interleucina-4/metabolismo , Diabetes Mellitus Experimental , Humanos , Lipídeos/química , Modelos Animais de Doenças , Masculino , Lipossomos
5.
Proc Natl Acad Sci U S A ; 121(32): e2400783121, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39078677

RESUMO

Monogenic blood diseases are among the most common genetic disorders worldwide. These diseases result in significant pediatric and adult morbidity, and some can result in death prior to birth. Novel ex vivo hematopoietic stem cell (HSC) gene editing therapies hold tremendous promise to alter the therapeutic landscape but are not without potential limitations. In vivo gene editing therapies offer a potentially safer and more accessible treatment for these diseases but are hindered by a lack of delivery vectors targeting HSCs, which reside in the difficult-to-access bone marrow niche. Here, we propose that this biological barrier can be overcome by taking advantage of HSC residence in the easily accessible liver during fetal development. To facilitate the delivery of gene editing cargo to fetal HSCs, we developed an ionizable lipid nanoparticle (LNP) platform targeting the CD45 receptor on the surface of HSCs. After validating that targeted LNPs improved messenger ribonucleic acid (mRNA) delivery to hematopoietic lineage cells via a CD45-specific mechanism in vitro, we demonstrated that this platform mediated safe, potent, and long-term gene modulation of HSCs in vivo in multiple mouse models. We further optimized this LNP platform in vitro to encapsulate and deliver CRISPR-based nucleic acid cargos. Finally, we showed that optimized and targeted LNPs enhanced gene editing at a proof-of-concept locus in fetal HSCs after a single in utero intravenous injection. By targeting HSCs in vivo during fetal development, our Systematically optimized Targeted Editing Machinery (STEM) LNPs may provide a translatable strategy to treat monogenic blood diseases before birth.


Assuntos
Edição de Genes , Células-Tronco Hematopoéticas , Nanopartículas , Animais , Células-Tronco Hematopoéticas/metabolismo , Edição de Genes/métodos , Nanopartículas/química , Camundongos , Feminino , Gravidez , Lipídeos/química , Antígenos Comuns de Leucócito/metabolismo , Antígenos Comuns de Leucócito/genética , Humanos , Terapia Genética/métodos , Sistemas CRISPR-Cas , Lipossomos
6.
Proc Natl Acad Sci U S A ; 121(11): e2307810121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38437545

RESUMO

Treating pregnancy-related disorders is exceptionally challenging because the threat of maternal and/or fetal toxicity discourages the use of existing medications and hinders new drug development. One potential solution is the use of lipid nanoparticle (LNP) RNA therapies, given their proven efficacy, tolerability, and lack of fetal accumulation. Here, we describe LNPs for efficacious mRNA delivery to maternal organs in pregnant mice via several routes of administration. In the placenta, our lead LNP transfected trophoblasts, endothelial cells, and immune cells, with efficacy being structurally dependent on the ionizable lipid polyamine headgroup. Next, we show that LNP-induced maternal inflammatory responses affect mRNA expression in the maternal compartment and hinder neonatal development. Specifically, pro-inflammatory LNP structures and routes of administration curtailed efficacy in maternal lymphoid organs in an IL-1ß-dependent manner. Further, immunogenic LNPs provoked the infiltration of adaptive immune cells into the placenta and restricted pup growth after birth. Together, our results provide mechanism-based structural guidance on the design of potent LNPs for safe use during pregnancy.


Assuntos
Células Endoteliais , Feto , Lipossomos , Nanopartículas , Feminino , Gravidez , Humanos , Animais , Camundongos , RNA Mensageiro/genética , Cuidado Pré-Natal
7.
Proc Natl Acad Sci U S A ; 121(45): e2404555121, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39475644

RESUMO

The use of lipid nanoparticles (LNPs) for therapeutic RNA delivery has gained significant interest, particularly highlighted by recent milestones such as the approval of Onpattro and two mRNA-based SARS-CoV-2 vaccines. However, despite substantial advancements in this field, our understanding of the structure and internal organization of RNA-LNPs -and their relationship to efficacy, both in vitro and in vivo- remains limited. In this study, we present a coarse-grained molecular dynamics (MD) approach that allows for the simulations of full-size LNPs. By analyzing MD-derived structural characteristics in conjunction with cellular experiments, we investigate the effect of critical parameters, such as pH and composition, on LNP structure and potency. Additionally, we examine the mobility and chemical environment within LNPs at a molecular level. Our findings highlight the significant impact that LNP composition and internal molecular mobility can have on key stages of LNP-based intracellular RNA delivery.


Assuntos
Lipídeos , Simulação de Dinâmica Molecular , Nanopartículas , SARS-CoV-2 , Nanopartículas/química , Concentração de Íons de Hidrogênio , Lipídeos/química , Humanos , RNA/química , COVID-19/virologia , Lipossomos
8.
Proc Natl Acad Sci U S A ; 121(35): e2400194121, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39172792

RESUMO

Size-dependent phagocytosis is a well-characterized phenomenon in monocytes and macrophages. However, this size effect for preferential gene delivery to these important cell targets has not been fully exploited because commonly adopted stabilization methods for electrostatically complexed nucleic acid nanoparticles, such as PEGylation and charge repulsion, typically arrest the vehicle size below 200 nm. Here, we bridge the technical gap in scalable synthesis of larger submicron gene delivery vehicles by electrostatic self-assembly of charged nanoparticles, facilitated by a polymer structurally designed to modulate internanoparticle Coulombic and van der Waals forces. Specifically, our strategy permits controlled assembly of small poly(ß-amino ester)/messenger ribonucleic acid (mRNA) nanoparticles into particles with a size that is kinetically tunable between 200 and 1,000 nm with high colloidal stability in physiological media. We found that assembled particles with an average size of 400 nm safely and most efficiently transfect monocytes following intravenous administration and mediate their differentiation into macrophages in the periphery. When a CpG adjuvant is co-loaded into the particles with an antigen mRNA, the monocytes differentiate into inflammatory dendritic cells and prime adaptive anticancer immunity in the tumor-draining lymph node. This platform technology offers a unique ligand-independent, particle-size-mediated strategy for preferential mRNA delivery and enables therapeutic paradigms via monocyte programming.


Assuntos
Monócitos , Nanopartículas , RNA Mensageiro , Monócitos/metabolismo , Nanopartículas/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Animais , Camundongos , Humanos , Polieletrólitos/química , Macrófagos/metabolismo , Poliaminas/química , Tamanho da Partícula , Diferenciação Celular , Técnicas de Transferência de Genes , Células Dendríticas/metabolismo , Eletricidade Estática , Polímeros
9.
Proc Natl Acad Sci U S A ; 120(26): e2301606120, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37339211

RESUMO

Nanoparticle (NP)-based mRNA cancer vaccines hold great promise to realize personalized cancer treatments. To advance this technology requires delivery formulations for efficient intracellular delivery to antigen-presenting cells. We developed a class of bioreducible lipophilic poly(beta-amino ester) nanocarriers with quadpolymer architecture. The platform is agnostic to the mRNA sequence, with one-step self-assembly allowing for delivery of multiple antigen-encoding mRNAs as well as codelivery of nucleic acid-based adjuvants. We examined structure-function relationships for NP-mediated mRNA delivery to dendritic cells (DCs) and identified that a lipid subunit of the polymer structure was critical. Following intravenous administration, the engineered NP design facilitated targeted delivery to the spleen and preferential transfection of DCs without the need for surface functionalization with targeting ligands. Treatment with engineered NPs codelivering antigen-encoding mRNA and toll-like receptor agonist adjuvants led to robust antigen-specific CD8+ T cell responses, resulting in efficient antitumor therapy in in vivo models of murine melanoma and colon adenocarcinoma.


Assuntos
Adenocarcinoma , Vacinas Anticâncer , Neoplasias do Colo , Nanopartículas , Animais , Camundongos , Humanos , Células Dendríticas , Baço , Ligantes , RNA Mensageiro/genética , Adenocarcinoma/patologia , Neoplasias do Colo/terapia , Neoplasias do Colo/patologia , Antígenos , Adjuvantes Imunológicos , Vacinação , Nanopartículas/química , Polímeros/química
10.
Proc Natl Acad Sci U S A ; 120(33): e2303567120, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37556502

RESUMO

Lipid nanoparticles (LNPs) are a potent delivery technology that have made it possible for the recent clinical breakthroughs in mRNA therapeutics and vaccines. A key challenge to the broader implementation of mRNA therapeutics and vaccines is the development of technology to produce precisely defined LNP formulations, with throughput that can scale from discovery to commercial manufacturing and meet the stringent manufacturing standards of the pharmaceutical industry. To address these challenges, we have developed a microfluidic chip that incorporates 1×, 10×, or 256× LNP-generating units that achieve scalable production rates of up to 17 L/h of precisely defined LNPs. Using these chips, we demonstrate that LNP physical properties and potency in vivo are unchanged as throughput is scaled. Our chips are fabricated out of silicon and glass substrates, which have excellent solvent compatibility, compatibility with pharmaceutical manufacturing, and can be fully reset and reused. SARS-CoV-2 mRNA-LNP vaccines formulated by our chips triggered potent antibody responses in a preclinical study. These results demonstrate the feasibility of directly translating microfluidic-generated LNPs to the scale necessary for commercial production.


Assuntos
COVID-19 , Nanopartículas , Humanos , SARS-CoV-2/genética , COVID-19/prevenção & controle , Lipossomos , RNA Mensageiro/genética
11.
Proc Natl Acad Sci U S A ; 120(50): e2309472120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38060560

RESUMO

Ionizable lipid nanoparticles (LNPs) pivotal to the success of COVID-19 mRNA (messenger RNA) vaccines hold substantial promise for expanding the landscape of mRNA-based therapies. Nevertheless, the risk of mRNA delivery to off-target tissues highlights the necessity for LNPs with enhanced tissue selectivity. The intricate nature of biological systems and inadequate knowledge of lipid structure-activity relationships emphasize the significance of high-throughput methods to produce chemically diverse lipid libraries for mRNA delivery screening. Here, we introduce a streamlined approach for the rapid design and synthesis of combinatorial libraries of biodegradable ionizable lipids. This led to the identification of iso-A11B5C1, an ionizable lipid uniquely apt for muscle-specific mRNA delivery. It manifested high transfection efficiencies in muscle tissues, while significantly diminishing off-targeting in organs like the liver and spleen. Moreover, iso-A11B5C1 also exhibited reduced mRNA transfection potency in lymph nodes and antigen-presenting cells, prompting investigation into the influence of direct immune cell transfection via LNPs on mRNA vaccine effectiveness. In comparison with SM-102, while iso-A11B5C1's limited immune transfection attenuated its ability to elicit humoral immunity, it remained highly effective in triggering cellular immune responses after intramuscular administration, which is further corroborated by its strong therapeutic performance as cancer vaccine in a melanoma model. Collectively, our study not only enriches the high-throughput toolkit for generating tissue-specific ionizable lipids but also encourages a reassessment of prevailing paradigms in mRNA vaccine design. This study encourages rethinking of mRNA vaccine design principles, suggesting that achieving high immune cell transfection might not be the sole criterion for developing effective mRNA vaccines.


Assuntos
Nanopartículas , Vacinas de mRNA , Músculos , Lipossomos , Transfecção
12.
Proc Natl Acad Sci U S A ; 120(50): e2310491120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38055742

RESUMO

Lipid nanoparticles (LNPs) are advanced core-shell particles for messenger RNA (mRNA) based therapies that are made of polyethylene glycol (PEG) lipid, distearoylphosphatidylcholine (DSPC), cationic ionizable lipid (CIL), cholesterol (chol), and mRNA. Yet the mechanism of pH-dependent response that is believed to cause endosomal release of LNPs is not well understood. Here, we show that eGFP (enhanced green fluorescent protein) protein expression in the mouse liver mediated by the ionizable lipids DLin-MC3-DMA (MC3), DLin-KC2-DMA (KC2), and DLinDMA (DD) ranks MC3 ≥ KC2 > DD despite similar delivery of mRNA per cell in all cell fractions isolated. We hypothesize that the three CIL-LNPs react differently to pH changes and hence study the structure of CIL/chol bulk phases in water. Using synchrotron X-ray scattering a sequence of ordered CIL/chol mesophases with lowering pH values are observed. These phases show isotropic inverse micellar, cubic Fd3m inverse micellar, inverse hexagonal [Formula: see text] and bicontinuous cubic Pn3m symmetry. If polyadenylic acid, as mRNA surrogate, is added to CIL/chol, excess lipid coexists with a condensed nucleic acid lipid [Formula: see text] phase. The next-neighbor distance in the excess phase shows a discontinuity at the Fd3m inverse micellar to inverse hexagonal [Formula: see text] transition occurring at pH 6 with distinctly larger spacing and hydration for DD vs. MC3 and KC2. In mRNA LNPs, DD showed larger internal spacing, as well as retarded onset and reduced level of DD-LNP-mediated eGFP expression in vitro compared to MC3 and KC2. Our data suggest that the pH-driven Fd3m-[Formula: see text] transition in bulk phases is a hallmark of CIL-specific differences in mRNA LNP efficacy.


Assuntos
Lipossomos , Nanopartículas , Animais , Camundongos , Nanopartículas/química , Micelas , Concentração de Íons de Hidrogênio , RNA Mensageiro/genética , RNA Mensageiro/química , RNA Interferente Pequeno/genética
13.
J Virol ; 98(9): e0053524, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39158273

RESUMO

Coronaviruses (CoVs) are important pathogens for humans and other vertebrates, causing severe respiratory and intestinal infections that have become a threat to public health because of the potential for interspecies transmission between animals and humans. Therefore, the development of safe, effective vaccines remains a top priority for the control of CoV infection. The unique immunological characteristics of vaccines featuring messenger RNA (mRNA) present an advantageous tool for coronavirus vaccine development. Here, we designed two lipid nanoparticle (LNP)-encapsulated mRNA (mRNA-LNP) vaccines: one encoding full-length spike (S) protein and the other encoding the spike ectodomain (Se) from porcine deltacoronavirus (PDCoV). Fourteen days after primary immunization, both mRNA vaccines induced high levels of immunoglobulin G and neutralizing antibodies in mice, with the S vaccine showing better performance than the Se vaccine. Passive immune protection of the S mRNA vaccine in suckling piglets was confirmed by the induction of robust PDCoV-specific humoral and cellular immune responses. The S mRNA vaccine also showed better protective effects than the inactivated vaccine. Our results suggest that the novel PDCoV-S mRNA-LNP vaccine may have the potential to combat PDCoV infection. IMPORTANCE: As an emerging porcine enteropathogenic coronavirus, porcine deltacoronavirus (PDCoV) has the potential for cross-species transmission, attracting extensive attention. Messenger RNA (mRNA) vaccines are a promising option for combating emerging and re-emerging infectious diseases, as evidenced by the demonstrated efficacy of the COVID-19 mRNA vaccine. Here, we first demonstrated that PDCoV-S mRNA-lipid nanoparticle (LNP) vaccines could induce potent humoral and cellular immune responses in mice. An evaluation of passive immune protection of S mRNA vaccines in suckling piglets confirmed that the protective effect of mRNA vaccine was better than that of inactivated vaccine. This study suggests that the PDCoV-S mRNA-LNP vaccine may serve as a potential and novel vaccine candidate for combating PDCoV infection.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Infecções por Coronavirus , Glicoproteína da Espícula de Coronavírus , Doenças dos Suínos , Vacinas Virais , Animais , Suínos , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Camundongos , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/virologia , Doenças dos Suínos/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Vacinas de mRNA , Deltacoronavirus/imunologia , Deltacoronavirus/genética , Nanopartículas , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Camundongos Endogâmicos BALB C , Feminino , Imunidade Humoral , Lipossomos
14.
J Virol ; 98(6): e0057824, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38767352

RESUMO

The mammarenavirus Lassa virus (LASV) causes the life-threatening hemorrhagic fever disease, Lassa fever. The lack of licensed medical countermeasures against LASV underscores the urgent need for the development of novel LASV vaccines, which has been hampered by the requirement for a biosafety level 4 facility to handle live LASV. Here, we investigated the efficacy of mRNA-lipid nanoparticle (mRNA-LNP)-based vaccines expressing the LASV glycoprotein precursor (LASgpc) or nucleoprotein (LCMnp) of the prototypic mammarenavirus, lymphocytic choriomeningitis virus (LCMV), in mice. Two doses of LASgpc- or LCMnp-mRNA-LNP administered intravenously (i.v.) protected C57BL/6 mice from a lethal challenge with a recombinant (r) LCMV expressing a modified LASgpc (rLCMV/LASgpc2m) inoculated intracranially. Intramuscular (i.m.) immunization with two doses of LASgpc- or LCMnp-mRNA-LNP significantly reduced the viral load in C57BL/6 mice inoculated i.v. with rLCMV/LASgpc2m. High levels of viremia and lethality were observed in CBA mice inoculated i.v. with rLCMV/LASgpc2m, which were abrogated by i.m. immunization with two doses of LASgpc-mRNA-LNP. The protective efficacy of two i.m. doses of LCMnp-mRNA-LNP was confirmed in a lethal hemorrhagic disease model of FVB mice i.v. inoculated with wild-type rLCMV. In all conditions tested, negligible and high levels of LASgpc- and LCMnp-specific antibodies were detected in mRNA-LNP-immunized mice, respectively, but robust LASgpc- and LCMnp-specific CD8+ T cell responses were induced. Accordingly, plasma from LASgpc-mRNA-LNP-immunized mice did not exhibit neutralizing activity. Our findings and surrogate mouse models of LASV infection, which can be studied at a reduced biocontainment level, provide a critical foundation for the rapid development of mRNA-LNP-based LASV vaccines.IMPORTANCELassa virus (LASV) is a highly pathogenic mammarenavirus responsible for several hundred thousand infections annually in West African countries, causing a high number of lethal Lassa fever (LF) cases. Despite its significant impact on human health, clinically approved, safe, and effective medical countermeasures against LF are not available. The requirement of a biosafety level 4 facility to handle live LASV has been one of the main obstacles to the research and development of LASV countermeasures. Here, we report that two doses of mRNA-lipid nanoparticle-based vaccines expressing the LASV glycoprotein precursor (LASgpc) or nucleoprotein (LCMnp) of lymphocytic choriomeningitis virus (LCMV), a mammarenavirus genetically closely related to LASV, conferred protection to recombinant LCMV-based surrogate mouse models of lethal LASV infection. Notably, robust LASgpc- and LCMnp-specific CD8+ T cell responses were detected in mRNA-LNP-immunized mice, whereas no virus-neutralizing activity was observed.


Assuntos
Febre Lassa , Vírus Lassa , Vírus da Coriomeningite Linfocítica , Nanopartículas , Vacinas Virais , Animais , Feminino , Camundongos , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Modelos Animais de Doenças , Glicoproteínas/imunologia , Glicoproteínas/genética , Febre Lassa/prevenção & controle , Febre Lassa/imunologia , Vírus Lassa/imunologia , Vírus Lassa/genética , Lipossomos , Vírus da Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/genética , Camundongos Endogâmicos C57BL , Nanopartículas/administração & dosagem , Nucleoproteínas/imunologia , Nucleoproteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Carga Viral , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
15.
Mol Ther ; 32(7): 2340-2356, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38715363

RESUMO

Human papillomavirus (HPV) 16 and 18 infections are related to many human cancers. Despite several preventive vaccines for high-risk (hr) HPVs, there is still an urgent need to develop therapeutic HPV vaccines for targeting pre-existing hrHPV infections and lesions. In this study, we developed a lipid nanoparticle (LNP)-formulated mRNA-based HPV therapeutic vaccine (mHTV)-03E2, simultaneously targeting the E2/E6/E7 of both HPV16 and HPV18. mHTV-03E2 dramatically induced antigen-specific cellular immune responses, leading to significant CD8+ T cell infiltration and cytotoxicity in TC-1 tumors derived from primary lung epithelial cells of C57BL/6 mice expressing HPV E6/E7 antigens, mediated significant tumor regression, and prolonged animal survival, in a dose-dependent manner. We further demonstrated significant T cell immunity against HPV16/18 E6/E7 antigens for up to 4 months post-vaccination in immunological and distant tumor rechallenging experiments, suggesting robust memory T cell immunity against relapse. Finally, mHTV-03E2 synergized with immune checkpoint blockade to inhibit tumor growth and extend animal survival, indicating the potential in combination therapy. We conclude that mHTV-03E2 is an excellent candidate therapeutic mRNA vaccine for treating malignancies caused by HPV16 or HPV18 infections.


Assuntos
Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Vacinas contra Papillomavirus , RNA Mensageiro , Animais , Camundongos , Vacinas contra Papillomavirus/imunologia , Humanos , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/virologia , Infecções por Papillomavirus/terapia , Infecções por Papillomavirus/prevenção & controle , Feminino , Proteínas Oncogênicas Virais/imunologia , Proteínas Oncogênicas Virais/genética , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Nanopartículas/química , Papillomavirus Humano 16/imunologia , Papillomavirus Humano 16/genética , Camundongos Endogâmicos C57BL , Papillomavirus Humano 18/imunologia , Papillomavirus Humano 18/genética , Proteínas E7 de Papillomavirus/imunologia , Proteínas E7 de Papillomavirus/genética , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/administração & dosagem , Linhagem Celular Tumoral , Modelos Animais de Doenças , Linfócitos T CD8-Positivos/imunologia , Proteínas Repressoras/imunologia , Proteínas Repressoras/genética , Proteínas de Ligação a DNA , Lipossomos
16.
Mol Ther ; 32(5): 1284-1297, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38414245

RESUMO

The continual emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has necessitated the development of broad cross-reactive vaccines. Recent findings suggest that enhanced antigen presentation could lead to cross-reactive humoral responses against the emerging variants. Toward enhancing the antigen presentation to dendritic cells (DCs), we developed a novel shikimoylated mannose receptor targeting lipid nanoparticle (SMART-LNP) system that could effectively deliver mRNAs into DCs. To improve the translation of mRNA, we developed spike domain-based trimeric S1 (TS1) mRNA with optimized codon sequence, base modification, and engineered 5' and 3' UTRs. In a mouse model, SMART-LNP-TS1 vaccine could elicit robust broad cross-reactive IgGs against Omicron sub-variants, and induced interferon-γ-producing T cells against SARS-CoV-2 virus compared with non-targeted LNP-TS1 vaccine. Further, T cells analysis revealed that SMART-LNP-TS1 vaccine induced long-lived memory T cell subsets, T helper 1 (Th1)-dominant and cytotoxic T cells immune responses against the SARS-CoV-2 virus. Importantly, SMART-LNP-TS1 vaccine produced strong Th1-predominant humoral and cellular immune responses. Overall, SMART-LNPs can be explored for precise antigenic mRNA delivery and robust immune responses. This platform technology can be explored further as a next-generation delivery system for mRNA-based immune therapies.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Células Dendríticas , Imunidade Humoral , Lipossomos , Nanopartículas , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinas de mRNA , Animais , Nanopartículas/química , Camundongos , SARS-CoV-2/imunologia , COVID-19/prevenção & controle , COVID-19/imunologia , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Humanos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas de mRNA/imunologia , Reações Cruzadas/imunologia , Anticorpos Antivirais/imunologia , Lipídeos/química , Lipídeos/imunologia , Feminino , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo
17.
Mol Ther ; 32(10): 3356-3371, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-38981468

RESUMO

Recombinant adeno-associated virus (rAAV) vector gene delivery systems have demonstrated great promise in clinical trials but continue to face durability and dose-related challenges. Unlike rAAV gene therapy, integrating gene addition approaches can provide curative expression in mitotically active cells and pediatric populations. We explored a novel in vivo delivery approach based on an engineered transposase, Sleeping Beauty (SB100X), delivered as an mRNA within a lipid nanoparticle (LNP), in combination with an rAAV-delivered transposable transgene. This combinatorial approach achieved correction of ornithine transcarbamylase deficiency in the neonatal Spfash mouse model following a single delivery to dividing hepatocytes in the newborn liver. Correction remained stable into adulthood, while a conventional rAAV approach resulted in a return to the disease state. In non-human primates, integration by transposition, mediated by this technology, improved gene expression 10-fold over conventional rAAV-mediated gene transfer while requiring 5-fold less vector. Additionally, integration site analysis confirmed a random profile while specifically targeting TA dinucleotides across the genome. Together, these findings demonstrate that transposable elements can improve rAAV-delivered therapies by lowering the vector dose requirement and associated toxicity while expanding target cell types.


Assuntos
Dependovirus , Vetores Genéticos , Hepatócitos , Nanopartículas , RNA Mensageiro , Transgenes , Transposases , Animais , Dependovirus/genética , Camundongos , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Hepatócitos/metabolismo , Transposases/genética , Transposases/metabolismo , Nanopartículas/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Terapia Genética/métodos , Humanos , Expressão Gênica , Lipídeos/química , Modelos Animais de Doenças , Técnicas de Transferência de Genes , Ornitina Carbamoiltransferase/genética , Ornitina Carbamoiltransferase/metabolismo , Lipossomos
18.
Mol Ther ; 32(8): 2505-2518, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38822525

RESUMO

Single monoclonal antibodies (mAbs) can be expressed in vivo through gene delivery of their mRNA formulated with lipid nanoparticles (LNPs). However, delivery of a mAb combination could be challenging due to the risk of heavy and light variable chain mispairing. We evaluated the pharmacokinetics of a three mAb combination against Staphylococcus aureus first in single chain variable fragment scFv-Fc and then in immunoglobulin G 1 (IgG1) format in mice. Intravenous delivery of each mRNA/LNP or the trio (1 mg/kg each) induced functional antibody expression after 24 h (10-100 µg/mL) with 64%-78% cognate-chain paired IgG expression after 3 days, and an absence of non-cognate chain pairing for scFv-Fc. We did not observe reduced neutralizing activity for each mAb compared with the level of expression of chain-paired mAbs. Delivery of the trio mRNA protected mice in an S. aureus-induced dermonecrosis model. Intravenous administration of the three mRNA in non-human primates achieved peak serum IgG levels ranging between 2.9 and 13.7 µg/mL with a half-life of 11.8-15.4 days. These results suggest nucleic acid delivery of mAb combinations holds promise and may be a viable option to streamline the development of therapeutic antibodies.


Assuntos
Anticorpos Monoclonais , Imunoglobulina G , RNA Mensageiro , Infecções Estafilocócicas , Staphylococcus aureus , Animais , Camundongos , Staphylococcus aureus/imunologia , RNA Mensageiro/genética , Infecções Estafilocócicas/prevenção & controle , Imunoglobulina G/imunologia , Nanopartículas/química , Modelos Animais de Doenças , Feminino , Anticorpos de Cadeia Única/genética , Humanos , Lipossomos
19.
Proc Natl Acad Sci U S A ; 119(34): e2207841119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35969778

RESUMO

The targeted delivery of messenger RNA (mRNA) to desired organs remains a great challenge for in vivo applications of mRNA technology. For mRNA vaccines, the targeted delivery to the lymph node (LN) is predicted to reduce side effects and increase the immune response. In this study, we explored an endogenously LN-targeting lipid nanoparticle (LNP) without the modification of any active targeting ligands for developing an mRNA cancer vaccine. The LNP named 113-O12B showed increased and specific expression in the LN compared with LNP formulated with ALC-0315, a synthetic lipid used in the COVID-19 vaccine Comirnaty. The targeted delivery of mRNA to the LN increased the CD8+ T cell response to the encoded full-length ovalbumin (OVA) model antigen. As a result, the protective and therapeutic effect of the OVA-encoding mRNA vaccine on the OVA-antigen-bearing B16F10 melanoma model was also improved. Moreover, 113-O12B encapsulated with TRP-2 peptide (TRP2180-188)-encoding mRNA also exhibited excellent tumor inhibition, with the complete response of 40% in the regular B16F10 tumor model when combined with anti-programmed death-1 (PD-1) therapy, revealing broad application of 113-O12B from protein to peptide antigens. All the treated mice showed long-term immune memory, hindering the occurrence of tumor metastatic nodules in the lung in the rechallenging experiments that followed. The enhanced antitumor efficacy of the LN-targeting LNP system shows great potential as a universal platform for the next generation of mRNA vaccines.


Assuntos
Vacinas Anticâncer , Nanopartículas , Neoplasias , Vacinas de mRNA , Amino Álcoois , Animais , Antígenos/metabolismo , Linfócitos T CD8-Positivos , Vacinas Anticâncer/uso terapêutico , Decanoatos , Memória Imunológica , Lipossomos , Linfonodos , Camundongos , Metástase Neoplásica/prevenção & controle , Neoplasias/terapia , Ovalbumina , Vacinas de mRNA/uso terapêutico
20.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35173043

RESUMO

Safe and efficacious systemic delivery of messenger RNA (mRNA) to specific organs and cells in vivo remains the major challenge in the development of mRNA-based therapeutics. Targeting of systemically administered lipid nanoparticles (LNPs) coformulated with mRNA has largely been confined to the liver and spleen. Using a library screening approach, we identified that N-series LNPs (containing an amide bond in the tail) are capable of selectively delivering mRNA to the mouse lung, in contrast to our previous discovery that O-series LNPs (containing an ester bond in the tail) that tend to deliver mRNA to the liver. We analyzed the protein corona on the liver- and lung-targeted LNPs using liquid chromatography-mass spectrometry and identified a group of unique plasma proteins specifically absorbed onto the surface that may contribute to the targetability of these LNPs. Different pulmonary cell types can also be targeted by simply tuning the headgroup structure of N-series LNPs. Importantly, we demonstrate here the success of LNP-based RNA therapy in a preclinical model of lymphangioleiomyomatosis (LAM), a destructive lung disease caused by loss-of-function mutations in the Tsc2 gene. Our lung-targeting LNP exhibited highly efficient delivery of the mouse tuberous sclerosis complex 2 (Tsc2) mRNA for the restoration of TSC2 tumor suppressor in tumor and achieved remarkable therapeutic effect in reducing tumor burden. This research establishes mRNA LNPs as a promising therapeutic intervention for the treatment of LAM.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Linfangioleiomiomatose/tratamento farmacológico , RNA Mensageiro/administração & dosagem , Animais , Feminino , Técnicas de Transferência de Genes , Engenharia Genética/métodos , Lipossomos/química , Lipossomos/farmacologia , Pulmão/citologia , Pulmão/patologia , Pneumopatias/tratamento farmacológico , Pneumopatias/metabolismo , Linfangioleiomiomatose/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Nanopartículas/química , Coroa de Proteína/química , Coroa de Proteína/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/farmacologia , RNA Interferente Pequeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA