Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36834746

RESUMO

Peri-implantitis is an inflammatory disease similar to periodontitis, caused by biofilms formed on the surface of dental implants. This inflammation can spread to bone tissues and result in bone loss. Therefore, it is essential to inhibit the formation of biofilms on the surface of dental implants. Thus, this study examined the inhibition of biofilm formation by treating TiO2 nanotubes with heat and plasma. Commercially pure titanium specimens were anodized to form TiO2 nanotubes. Heat treatment was performed at 400 and 600 °C, and atmospheric pressure plasma was applied using a plasma generator (PGS-200, Expantech, Suwon, Republic of Korea). Contact angles, surface roughness, surface structure, crystal structure, and chemical compositions were measured to analyze the surface properties of the specimens. The inhibition of biofilm formation was assessed using two methods. The results of this study showed that the heat treatment of TiO2 nanotubes at 400 °C inhibited the adhesion of Streptococcus mutans (S. mutans), associated with initial biofilm formation, and that heat treatment of TiO2 nanotubes at 600 °C inhibited the adhesion of Porphyromonas gingivalis (P. gingivalis), which causes peri-implantitis. Applying plasma to the TiO2 nanotubes heat-treated at 600 °C inhibited the adhesion of S. mutans and P. gingivalis.


Assuntos
Implantes Dentários , Nanotubos , Peri-Implantite , Humanos , Nanotubos/química , Biofilmes , Titânio/química , Propriedades de Superfície , Streptococcus mutans
2.
Int J Mol Sci ; 24(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38003346

RESUMO

Non-invasive physical plasma (NIPP), an electrically conductive gas, is playing an increasingly important role in medicine due to its antimicrobial and regenerative properties. However, NIPP is not yet well established in dentistry, although it has promising potential, especially for periodontological applications. The aim of the present study was to investigate the effect of NIPP on a commercially available human gingival fibroblast (HGF) cell line and primary HGFs in the presence of periodontitis-associated bacteria. First, primary HGFs from eight patients were characterised by immunofluorescence, and cell numbers were examined by an automatic cell counter over 5 days. Then, HGFs that were preincubated with Fusobacterium nucleatum (F.n.) were treated with NIPP. Afterwards, the IL-6 and IL-8 levels in the cell supernatants were determined by ELISA. In HGFs, F.n. caused a significant increase in IL-6 and IL-8, and this F.n.-induced upregulation of both cytokines was counteracted by NIPP, suggesting a beneficial effect of physical plasma on periodontal cells in a microbial environment. The application of NIPP in periodontal therapy could therefore represent a novel and promising strategy and deserves further investigation.


Assuntos
Interleucina-6 , Periodontite , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Citocinas/metabolismo , Fibroblastos/metabolismo , Periodontite/terapia , Periodontite/metabolismo , Gengiva/metabolismo , Células Cultivadas
3.
Int Endod J ; 54(9): 1548-1556, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33938023

RESUMO

AIM: To evaluate whether the use of non-thermal plasma (NTP) could reduce triethylene glycol dimethacrylate (TEGDMA)-mediated damage in MDPC-23 cells. METHODOLOGY: The effects of NTP and TEGDMA on MDPC-23 cell proliferation were tested using WST-1 assays after pretreatment with NTP for 1 min and exposure to TEGDMA. Live/Dead assays were used to visualize cell death. To monitor the effects of NTP and TEGDMA on the cell cycle and apoptotic cell death, flow cytometry was performed. Western blotting was used to assess changes in protein levels mediated by NTP and TEGDMA treatment, and enzyme-linked immunosorbent assays were performed to evaluate the effects of NTP and TEGDMA on prostaglandin E2 (PGE2 ) expression. One-way analysis of variance and Duncan's post hoc tests were used for statistical analysis. RESULTS: NTP treatment effectively protected cells from TEGDMA-mediated cell damage and blocked TEGDMA-mediated cell growth inhibition (p < .05). NTP appeared to protect cells from death (p < .05) and blocked TEGDMA-mediated apoptotic cell death. Additionally, NTP reduced TEGDMA-mediated apoptotic activation of poly (ADP) ribose polymerase-1 and caspase-3 (p < .05). Furthermore, NTP effectively reduced TEGDMA-mediated expression of cyclooxygenase-2 and PGE2 proteins by inhibiting nuclear factor-κB protein expression (p < .05). CONCLUSIONS: NTP alleviated TEGDMA-mediated adverse effects by reducing cytotoxicity and inflammatory reactions in cells exposed to TEGDMA.


Assuntos
Odontoblastos , Gases em Plasma , Humanos , Polietilenoglicóis , Ácidos Polimetacrílicos/toxicidade
4.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34768973

RESUMO

Non-thermal plasma activated water (PAW) has recently emerged as a powerful antimicrobial agent. Despite numerous potential bio-medical applications, studies concerning toxicity in live animals, especially after long-term exposure, are scarce. Our study aimed to assess the effects of long-term watering with PAW on the health of CD1 mice. PAW was prepared from distilled water with a GlidArc reactor according to a previously published protocol. The pH was 2.78. The mice received PAW (experimental group) or tap water (control group) daily for 90 days as the sole water source. After 90 days, the following investigations were performed on the euthanatized animals: gross necropsy, teeth mineral composition, histopathology, immunohistochemistry, hematology, blood biochemistry, methemoglobin level and cytokine profile. Mice tolerated PAW very well and no adverse effects were observed during the entire period of the experiment. Histopathological examination of the organs and tissues did not reveal any structural changes. Moreover, the expression of proliferation markers PCNA and Ki67 has not been identified in the epithelium of the upper digestive tract, indicating the absence of any pre- or neoplastic transformations. The results of our study demonstrated that long-term exposure to PAW caused no toxic effects and could be used as oral antiseptic solution in dental medicine.


Assuntos
Anti-Infecciosos/toxicidade , Gases em Plasma/toxicidade , Administração Oral , Animais , Anti-Infecciosos/administração & dosagem , Anti-Infecciosos Locais/administração & dosagem , Anti-Infecciosos Locais/toxicidade , Biomarcadores/sangue , Biomarcadores/metabolismo , Citocinas/metabolismo , Assistência Odontológica/métodos , Humanos , Antígeno Ki-67/metabolismo , Camundongos , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Gases em Plasma/administração & dosagem , Antígeno Nuclear de Célula em Proliferação/metabolismo , Fatores de Tempo , Dente/química , Dente/efeitos dos fármacos , Dente/ultraestrutura , Água/administração & dosagem
5.
Int J Med Sci ; 17(8): 1112-1120, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32410841

RESUMO

The objective of this study was to evaluate the effect of non-thermal plasma (NTP) on the healing process of peripheral nerve crush injuries, which can occur during dental implant procedures. For this, a rat model of sciatic nerve crush injury (SNCI) was adopted. The rats were divided into three groups: non-nerve damage (non-ND), nerve damage (ND), and ND+NTP group. To evaluate the sciatic nerve (SN) function, the static sciatic index was calculated, and the muscle and SN tissues were subjected to a histologic analysis. The results showed that NTP effectively accelerated the healing process of SNCI in rats. In contrast to the ND group, which showed approximately 60% recovery in the SN function, the NTP-treated rats showed complete recovery. Histologically, the NTP treatments not only accelerated the muscle healing, but also reduced the edema-like phenotype of the damaged SN tissues. In the ND group, the SN tissues had an accumulation of CD68-positive macrophages, partially destroyed axonal fibers and myelinated Schwann cells. Conversely, in the ND+NTP group, the macrophage accumulation was reduced and an overall regeneration of the damaged axon fibers and the myelin sheath was accomplished. The results of this study indicate that NTP can be used for healing of injured peripheral nerves.


Assuntos
Lesões por Esmagamento/terapia , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/terapia , Gases em Plasma/uso terapêutico , Animais , Axônios/fisiologia , Lesões por Esmagamento/etiologia , Modelos Animais de Doenças , Estudos de Viabilidade , Humanos , Masculino , Bainha de Mielina/fisiologia , Traumatismos dos Nervos Periféricos/etiologia , Traumatismos dos Nervos Periféricos/patologia , Ratos , Recuperação de Função Fisiológica/fisiologia , Nervo Isquiático/lesões , Nervo Isquiático/fisiopatologia , Fatores de Tempo
6.
Int J Mol Sci ; 21(22)2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33202662

RESUMO

Ultraviolet (UV) light and non-thermal plasma (NTP) are promising chair-side surface treatment methods to overcome the time-dependent aging of dental implant surfaces. After showing the efficiency of UV light and NTP treatment in restoring the biological activity of titanium and zirconia surfaces in vitro, the objective of this study was to define appropriate processing times for clinical use. Titanium and zirconia disks were treated by UV light and non-thermal oxygen plasma with increasing duration. Non-treated disks were set as controls. Murine osteoblast-like cells (MC3T3-E1) were seeded onto the treated or non-treated disks. After 2 and 24 h of incubation, the viability of cells on surfaces was assessed using an MTS assay. mRNA expression of vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) were assessed using real-time reverse transcription polymerase chain reaction analysis. Cellular morphology and attachment were observed using confocal microscopy. The viability of MC3T3-E1 was significantly increased in 12 min UV-light treated and 1 min oxygen NTP treated groups. VEGF relative expression reached the highest levels on 12 min UV-light and 1 min NTP treated surfaces of both disks. The highest levels of HGF relative expression were reached on 12 min UV light treated zirconia surfaces. However, cells on 12 and 16 min UV-light and NTP treated surfaces of both materials had a more widely spread cytoskeleton compared to control groups. Twelve min UV-light and one min non-thermal oxygen plasma treatment on titanium and zirconia may be the favored times in terms of increasing the viability, mRNA expression of growth factors and cellular attachment in MC3T3-E1 cells.


Assuntos
Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Osteoblastos/metabolismo , Oxigênio/farmacologia , Gases em Plasma/farmacologia , RNA Mensageiro/sangue , Titânio/química , Raios Ultravioleta , Zircônio/química , Animais , Adesão Celular/efeitos dos fármacos , Adesão Celular/efeitos da radiação , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Camundongos , Osteoblastos/citologia , Propriedades de Superfície
7.
World J Microbiol Biotechnol ; 36(8): 108, 2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32656596

RESUMO

Non-thermal plasma (NTP), generated at atmospheric pressure by DC cometary discharge with a metallic grid, and antibiotics (gentamicin-GTM, ceftazidime-CFZ and polymyxin B-PMB), either alone or in combination, were used to eradicate the mature biofilm of Pseudomonas aeruginosa formed on Ti-6Al-4V alloy. Our aim was to find the conditions for NTP pre-treatment capable of enhancing the action of the antibiotics and thus reducing their effective concentrations. The NTP treatment increased the efficacy of relatively low concentrations of antibiotics. Generally, the highest effect was achieved with GTM, which was able to suppress the metabolic activity of pre-formed P. aeruginosa biofilms in the concentration range of 4-9 mg/L by up to 99%. In addition, an apparent decrease of biofilm-covered area was confirmed after combined NTP treatment and GTM action by SYTO®13 staining using fluorescence microscopy. Scanning electron microscopy confirmed a complete eradication of P. aeruginosa ATCC 15442 mature biofilm from Ti-6Al-4V alloy when using 0.25 h NTP treatment and subsequent treatment by 8.5 mg/L GTM. Therefore, NTP may be used as a suitable antibiofilm agent in combination with antibiotics for the treatment of biofilm-associated infections caused by this pathogen.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Ligas , Pressão Atmosférica , Ceftazidima/farmacologia , Gentamicinas/farmacologia , Microscopia Eletrônica de Varredura , Gases em Plasma , Polimixina B/farmacologia , Pseudomonas aeruginosa/metabolismo , Titânio/química
8.
Int J Mol Sci ; 20(22)2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31717459

RESUMO

A number of modifications have been developed in order to enhance surface cytocompatibility for prosthetic support of dental implants. Among them, ultraviolet (UV) light and non-thermal plasma (NTP) treatment are promising methods. The objective of this study was to compare the effects of UV light and NTP on machined titanium, zirconia and modified polyetheretherketone (PEEK, BioHPP) surfaces in vitro. Machined samples of titanium, zirconia and BioHPP were treated by UV light and NTP of argon or oxygen for 12 min each. Non-treated disks were set as controls. A mouse fibroblast and a human gingival fibroblast cell line were used for in vitro experiments. After 2, 24 and 48 h of incubation, the attachment, viability and cytotoxicity of cells on surfaces were assessed. Results: Titanium, zirconia and BioHPP surfaces treated by UV light and oxygen plasma were more favorable to the early attachment of soft-tissue cells than non-treated surfaces, and the number of cells on those treated surfaces was significantly increased after 2, 24 and 48 h of incubation (p < 0.05). However, the effects of argon plasma treatment on the cytocompatibility of soft tissue cells varied with the type of cells and the treated material. UV light and oxygen plasma treatments may improve the attachment of fibroblast cells on machined titanium, zirconia and PEEK surfaces, that are materials for prosthetic support of dental implants.


Assuntos
Cetonas/farmacologia , Gases em Plasma/farmacologia , Polietilenoglicóis/farmacologia , Titânio/farmacologia , Raios Ultravioleta , Zircônio/farmacologia , Animais , Benzofenonas , Adesão Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Gengiva/citologia , Humanos , Cetonas/toxicidade , Camundongos Endogâmicos C57BL , Polietilenoglicóis/toxicidade , Polímeros , Propriedades de Superfície , Titânio/toxicidade , Zircônio/toxicidade
9.
Biochem Biophys Res Commun ; 503(3): 2040-2046, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30086885

RESUMO

Periodontitis, a chronic infectious disease induced by microbial biofilm, is one of the most common diseases worldwide. Scaling and root planning (SRP) has always been recognized as the typical treatment. However, the therapeutic efficiency is often limited due to the intraoperative bleeding and the limitations of instruments. Non-thermal atmospheric plasma (NTP) appears to be a potential tool for periodontitis due to its promising biofilm degradation and decontamination effects. In this study, we investigated the role of NTP, as an adjuvant approach for the treatment of ligature-induced periodontitis in rats. Herein we showed that SRP or SRP-NTP application attenuated the periodontitis-induced alveolar bone loss, reflected by the increased BV/TV value and the decreased CEJ-AB distance, which might be related to the lower detection rate of periodontal pathogen in SRP and SRP-NTP groups. Besides, SRP-NTP rats showed less bone loss and lower CEJ-AB distance than that of SRP group at 30d post treatment, indicating a more comprehensive and long-lasting effect of SRP-NTP. A remarkable decrease of osteoclast number and lower expression of RANKL was also detected in SRP-NTP rats. In addition, expression of inflammatory-related cytokines such as TNF-α and IL-1ß decreased significantly in SRP-NTP group, while IL-10 level increased substantially. These results together illustrated that a combination of SRP and NTP treatment was an effective way to prevent periodontitis progress, which reduced alveolar bone loss and promoted periodontium restoration in ligature-induced periodontitis rats. In conclusion, non-thermal plasma treatment may be considered as a feasible and effective supplementary approach to control periodontitis.


Assuntos
Perda do Osso Alveolar/tratamento farmacológico , Periodontite/tratamento farmacológico , Gases em Plasma/uso terapêutico , Animais , Quimioterapia Combinada , Masculino , Ratos , Ratos Sprague-Dawley
10.
World J Microbiol Biotechnol ; 34(12): 178, 2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-30456518

RESUMO

In recent decades, the non-thermal plasma, i.e. partially or completely ionized gas produced by electric discharges at ambient temperature, has become of interest for its microbiocidal properties with potential of use in the food industry or medicine. Recently, this interest focuses not only on the planktonic forms of microorganisms but also on their biofilms. The works in this interdisciplinary field are summarized in this review. The wide range of biofilm-plasma interactions is divided into studies of general plasma action on bacteria, on biofilm and on its oral and dental application; a short overview of plasma instrumentation is also included. In addition, not only biofilm combating but also an important area of biofilm prevention is discussed. Various DC discharges of the point-to-plane type. Author's photograph, published in Khun et al. (Plasma Sources Sci Technol 27:065002, 2018).


Assuntos
Biofilmes/efeitos da radiação , Gases em Plasma/farmacologia , Bactérias/crescimento & desenvolvimento , Bactérias/efeitos da radiação , Biofilmes/crescimento & desenvolvimento , Materiais Dentários/farmacologia , Desinfecção/instrumentação , Desinfecção/métodos , Indústria Alimentícia , Fungos/efeitos da radiação , Cicatrização
11.
Eur J Oral Sci ; 125(1): 81-87, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27859654

RESUMO

The aim of this study was to investigate the effects of plasma-enhanced deposition of an organosilane and benzene on resin bonding to a dental zirconia ceramic. A total of 70 zirconia specimens, which were polished before sintering, were randomly divided into five groups according to surface treatments before applying a dental adhesive (each group, n = 14): group 1, no previous treatment (control); group 2, plasma deposition with tetramethylsilane (TMS); group 3, plasma deposition with benzene; group 4, sequential plasma deposition with TMS and benzene; and group 5, a zirconia primer (Z-Prime Plus). A dental adhesive (Scotchbond Multi-Purpose adhesive) was applied to the surface-treated zirconia, and resin composite rods were built in to enable shear bond-strength testing. The sequential deposition of TMS and benzene showed the highest bond strength [22.7 ± 3.7 MPa (mean ± SD)], approximately twice that of Z-Prime Plus (10.3 ± 3.2 MPa). The plasma deposition with either TMS or benzene also significantly improved bond-strength values compared with the negative-control group, and their effects were not statistically different from that of Z-Prime Plus. Following plasma deposition with TMS, the introduction of silicon-oxygen-zirconium (Si-O-Zr) bonds on the zirconia surface was confirmed via X-ray photoelectron spectroscopy (XPS) analysis. Transmission electron microscopy and energy dispersive X-ray spectroscopy showed that a silica-like layer and a polymerizable carbon-rich layer were formed through sequential deposition with TMS and benzene.


Assuntos
Benzeno/química , Resinas Compostas/química , Colagem Dentária/métodos , Compostos de Trimetilsilil/química , Zircônio/química , Teste de Materiais , Microscopia Eletrônica de Transmissão , Espectroscopia Fotoeletrônica , Gases em Plasma , Distribuição Aleatória , Espectrometria por Raios X , Propriedades de Superfície
12.
Biomed Mater ; 19(5)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38917826

RESUMO

This study was designed to deposit nanodiamonds (NDs) on 3D-printed poly-ϵ-caprolactone (PCL) scaffolds and evaluate their effect on the surface topography, hydrophilicity, degradation, andin-vitrocell adhesion compared to untreated PCL scaffolds. The PCL scaffold specimens were 3D-printed by fused deposition modeling (FDM) technique with specific porosity parameters. The 3D-printed specimens' surfaces were modified by NDs deposition followed by oxygen plasma post-treatment using a plasma focus device and a non-thermal atmospheric plasma jet, respectively. Specimens were evaluated through morphological characterization by field emission scanning electron microscope (FESEM), microstructure characterization by Raman spectroscopy, chemical characterization by Fourier transform infrared (FTIR) spectroscopy, hydrophilicity degree by contact angle and water uptake measurements, andin-vitrodegradation measurements (n= 6). In addition,in-vitrobone marrow mesenchymal stem cells adhesion was evaluated quantitatively by confocal microscopy and qualitatively by FESEM at different time intervals after cell seeding (n= 6). The statistical significance level was set atp⩽ 0.05. The FESEM micrographs, the Raman, and FTIR spectra confirmed the successful surface deposition of NDs on scaffold specimens. The NDs treated specimens showed nano-scale features distributed homogeneously across the surface compared to the untreated ones. Also, the NDs treated specimens revealed a statistically significant smaller contact angle (17.45 ± 1.34 degrees), higher water uptake percentage after 24 h immersion in phosphate buffer saline (PBS) (21.56% ± 1.73), and higher degradation rate after six months of immersion in PBS (43.92 ± 0.77%). Moreover, enhanced cell adhesion at all different time intervals was observed in NDs treated specimens with higher nuclei area fraction percentage (69.87 ± 3.97%) compared to the untreated specimens (11.46 ± 1.34%). Surface deposition of NDs with oxygen-containing functional groups on 3D-printed PCL scaffolds increased their hydrophilicity and degradation rate with significant enhancement of thein-vitrocell adhesion compared to untreated PCL scaffolds.


Assuntos
Adesão Celular , Interações Hidrofóbicas e Hidrofílicas , Células-Tronco Mesenquimais , Nanodiamantes , Poliésteres , Impressão Tridimensional , Propriedades de Superfície , Engenharia Tecidual , Alicerces Teciduais , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Poliésteres/química , Células-Tronco Mesenquimais/citologia , Nanodiamantes/química , Porosidade , Animais , Osso e Ossos , Espectroscopia de Infravermelho com Transformada de Fourier , Teste de Materiais , Microscopia Eletrônica de Varredura , Análise Espectral Raman , Humanos
13.
Antibiotics (Basel) ; 13(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39200035

RESUMO

Cold atmospheric plasma (CAP) is a promising alternative to antibiotics and chemical substances in dentistry that can reduce the risk of unwanted side effects and bacterial resistance. AmbiJet is a device that can ignite and deliver plasma directly to the site of action for maximum effectiveness. The aim of the study was to investigate its antimicrobial efficacy and the possible development of bacterial resistance. The antimicrobial effect of the plasma was tested under aerobic and anaerobic conditions on bacteria (five aerobic, three anaerobic (Gram +/-)) that are relevant in dentistry. The application times varied from 1 to 7 min. Possible bacterial resistance was evaluated by repeated plasma applications (10 times in 50 days). A possible increase in temperature was measured. Plasma effectively killed 106 seeded aerobic and anaerobic bacteria after an application time of 1 min per 10 mm2. Neither the development of resistance nor an increase in temperature above 40 °C was observed, so patient discomfort can be ruled out. The plasma treatment proved to be effective under anaerobic conditions, so the influence of ROS can be questioned. Our results show that AmbiJet efficiently eliminates pathogenic oral bacteria. Therefore, it can be advocated for clinical therapeutic use.

14.
Environ Sci Pollut Res Int ; 31(1): 609-621, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38015402

RESUMO

The objective of this investigation is to evaluate the characteristics associated with degradation of toluene through the utilization of non-thermal plasma (NTP) generated via application of a low-work-function electrode and nanosecond pulsed power supply. Initially, a comparative analysis is made between toluene removal efficiency utilizing the low-work-function electrode and that achieved with the conventional stainless-steel electrode. The outcomes demonstrate that NTP generated by the low-work-function electrode exhibits markedly superior removal efficiency for toluene in comparison to the stainless-steel electrode operating at the same voltage. Subsequently, the impacts of voltage, pulse frequency, and initial concentration of toluene on the removal efficiency and production of by-products are investigated. It is found that as the voltage and frequency increase, the removal efficiency also increases, and a maximum toluene removal efficiency of 87.2% is achieved at a voltage of 12,000 V and pulse frequency of 2000 Hz. The removal efficiency first increases and then decreases with increasing toluene initial concentration. The investigation also finds that energy yield is negatively correlated with voltage and pulse frequency and positively correlated with the initial concentration. Finally, the reaction products were subjected to quantitative analysis using GC-MS. Based on the analysis results, potential reaction pathways are inferred.


Assuntos
Tolueno , Tungstênio , Tolueno/análise , Eletrodos , Cromatografia Gasosa-Espectrometria de Massas , Aço
15.
Environ Sci Pollut Res Int ; 31(15): 22847-22857, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38411908

RESUMO

Plastic aging can cause alterations in the physical and chemical characteristics of plastics, as well as their behavior in the environment. Due to the extremely slow natural aging process, laboratory simulated aging methods have to be used. In this study, non-thermal plasma (NTP) was adopted to investigate the aging process of polypropylene (PP) and polyethylene terephthalate (PET) microplastics. Various analytical instruments, including proton transfer reaction mass spectrometry and single-particle aerosol mass spectrometry, were employed to examine and identify the organic constituents of the gas, liquid, and particle phase degradation products, as well as to monitor the degradation process. The results showed that after 90 min of aging, both PP and PET surfaces showed yellowing, and the carbonyl index of PP increased while that of PET decreased, with an increase in crystallinity. The organic components of reaction products, such as ketones, esters, acids, and alcohols, increased with longer aging times. Gas products mainly contain aromatic hydrocarbons, while particles from aged PET contain compounds with benzene rings and metal elements. Liquid products from aged PP show a significant presence of branched alkanes. Based on this analysis, degradation mechanisms of PP and PET by NTP were proposed. This investigation represents the initial systematically exploration of the release of organic substances during the degradation of microplastics mediated by NTP. It provides significant insights into the detrimental organic compounds emitted during this process, thereby offering valuable information for understanding the environmental and human health implications of natural microplastic degradation. Furthermore, it addressed the requirements for increased attention to the potential environmental risks associated with these harmful components.


Assuntos
Polipropilenos , Poluentes Químicos da Água , Humanos , Idoso , Polipropilenos/química , Plásticos/análise , Microplásticos , Poluentes Químicos da Água/análise , Envelhecimento , Polietilenotereftalatos , Monitoramento Ambiental/métodos
16.
Materials (Basel) ; 16(20)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37895615

RESUMO

Non-resorbable dental barrier membranes entail the risk of dehiscence due to their smooth and functionally inert surfaces. Non-thermal plasma (NTP) treatment has been shown to increase the hydrophilicity of a biomaterials and could thereby enhance cellular adhesion. This study aimed to elucidate the role of allyl alcohol NTP treatment of poly(tetrafluoroethylene) in its cellular adhesion. The materials (non-treated PTFE membranes (NTMem) and NTP-treated PTFE membranes (PTMem)) were subjected to characterization using scanning electron microscopy (SEM), contact angle measurements, X-ray photoelectron spectroscopy (XPS), and electron spectroscopy for chemical analysis (ESCA). Cells were seeded upon the different membranes, and cellular adhesion was analyzed qualitatively and quantitatively using fluorescence labeling and a hemocytometer, respectively. PTMem exhibited higher surface energies and the incorporation of reactive functional groups. NTP altered the surface topography and chemistry of PTFE membranes, as seen through SEM, XPS and ESCA, with partial defluorination and polymer chain breakage. Fluorescence labeling indicated significantly higher cell populations on PTMem relative to its untreated counterparts (NTMem). The results of this study support the potential applicability of allyl alcohol NTP treatment for polymeric biomaterials such as PTFE-to increase cellular adhesion for use as dental barrier membranes.

17.
Biomedicines ; 11(5)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37239072

RESUMO

The failure of endodontic treatment is frequently associated with the presence of remaining microorganisms, mainly due to the difficulty of eliminating the biofilm and the limitation of conventional irrigation solutions. Non-thermal atmospheric pressure plasma (NTPP) has been suggested for many applications in the medical field and can be applied directly to biological surfaces or indirectly through activated liquids. This literature review aims to evaluate the potential of NTPP application in Endodontics. A search in the databases Lilacs, Pubmed, and Ebsco was performed. Seventeen manuscripts published between 2007 and 2022 that followed our established inclusion criteria were found. The selected manuscripts evaluated the use of NTPP regarding its antimicrobial activity, in the direct exposure and indirect method, i.e., plasma-activated liquid. Of these, 15 used direct exposure. Different parameters, such as working gas and distance from the apparatus to the substrate, were evaluated in vitro and ex vivo. NTPP showed a disinfection property against important endodontic microorganisms, mainly Enterococcus faecalis and Candida albicans. The antimicrobial potential was dependent on plasma exposure time, with the highest antimicrobial effects over eight minutes of exposure. Interestingly, the association of NTPP and conventional antimicrobial solutions, in general, was shown to be more effective than both treatments separately. This association showed antimicrobial results with a short plasma exposure time, what could be interesting in clinical practice. However, considering the lack of standardization of the direct exposure parameters and few studies about plasma-activated liquids, more studies in the area for endodontic purposes are still required.

18.
Artigo em Inglês | MEDLINE | ID: mdl-36767814

RESUMO

We comparatively evaluated the antibacterial effects of non-thermal atmospheric pressure plasma (NTAPP) on oral microcosm biofilms. Oral microcosm biofilms, which are derived from inoculation with human saliva, were cultured on 48 hydroxyapatite disks for 6 days. The prepared biofilms were divided into three different daily treatment groups: distilled water for 1 min, 0.12% chlorhexidine (CHX) for 1 min, and NTAPP for 5 min. Using a quantitative light-induced fluorescence-digital camera, the red fluorescence intensity of the biofilms was measured as red/green ratios (RatioR/G) before and after treatment. Total and aciduric bacteria were counted as colony-forming units. Using live/dead bacterial staining, bacterial viability was calculated as the RatioG/G+R. RatioR/G was approximately 0.91-fold lower in the NTAPP group than in the CHX group on day 1 of treatment (p = 0.001), and approximately 0.94-fold lower on both days 2 and 3 (p < 0.001). The number of total bacteria was higher in the NTAPP group than in the CHX group, but not significantly different. The number of aciduric bacteria was lowest in the CHX group (p < 0.001). However, bacterial viability was lowest in the NTAPP group. Restricted bacterial aggregation was observed in the NTAPP group. These findings suggest that NTAPP may more effectively reduce the pathogenicity of oral microcosm biofilms than 0.12% CHX.


Assuntos
Gases em Plasma , Humanos , Gases em Plasma/farmacologia , Clorexidina/farmacologia , Saliva/microbiologia , Biofilmes , Bactérias , Antibacterianos/farmacologia
19.
Chemosphere ; 338: 139535, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37467857

RESUMO

Dechlorination is essential for the chemical recycling of waste polyvinyl chloride (PVC) plastics. This study investigated the use of non-thermal plasma (NTP) for chlorine removal, with a focus on the effects of treatment time and discharge power on dechlorination efficiency. The results showed that longer treatment times and higher discharge powers led to better dechlorination performance. The maximum efficiency (98.25%) and HCl recovery yield (55.72%) were achieved at 180 W power after 40 min of treatment where 96.44% of Cl existed in the form of HCl gas, 1.44% in the liquid product, and 2.12% in the solid residue product. NTP at a discharge power of 150 W showed better dechlorination performance compared to traditional thermal pyrolysis treatment in temperatures ranging from 200 to 400 °C. The activation energy analysis of the chlorine removal showed that compared to pyrolysis-based dechlorination (137.09 kJ/mol), NTP-based dechlorination (23.62 kJ/mol) was more easily achievable. This work presents a practical method for the dechlorination of waste PVC plastic using a novel technology without requiring additional thermal and pressure input.


Assuntos
Cloro , Cloreto de Polivinila , Cloreto de Polivinila/química , Temperatura , Cloretos , Reciclagem , Plásticos
20.
Materials (Basel) ; 16(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38005133

RESUMO

Non-thermal plasmas (NTPs), known as cold atmospheric plasmas (CAPs), hold great potential for diverse medical applications, including dentistry. However, traditional linear and rigid dielectric barrier discharge reactors used for NTP generation encounter limitations in accessing oral cavities and root canals. To address this issue, we have developed an innovative NTP reactor featuring an angled end for improved accessibility. The central copper electrode, with a 0.59 mm diameter and adjustable length for desired angulation, is coated with zircon powder (ZrSiO4) to ensure stable NTP generation. This central electrode is housed within a stainless steel tube (3 mm internal diameter, 8 mm external diameter, and 100 mm length) with a 27° angle at one end, making it ergonomically suitable for oral applications. NTP generation involves polarizing the reactor electrodes with 13.56 MHz radio frequency signals, using helium gas as a working medium. We introduce plasma-treated water (PTW) as an adjunctive therapy to enhance biofilm eradication within root canals. A synergistic approach combining NTP and PTW is employed and compared to the gold standard (sodium hypochlorite, NaOCl), effectively neutralizing Enterococcus faecalis bacteria, even in scenarios involving biofilms. Moreover, applying NTP in both gaseous and liquid environments successfully achieves bacterial inactivation at varying treatment durations, demonstrating the device's suitability for medical use in treating root canal biofilms. The proposed NTP reactor, characterized by its innovative design, offers a practical and specific approach to plasma treatment in dental applications. It holds promise in combatting bacterial infections in root canals and oral cavities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA