Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biomed Mater Res A ; 111(3): 340-353, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36403282

RESUMO

The present study reports the impact of the interplay between electroactive properties of the biomaterials and electrical stimulation (ES) toward the cell proliferation, migration and maturation of osteoprogenitors (preosteoblasts; MC3T3-E1) on the electroactive poly (vinylidene difluoride) (PVDF)-based composites. The barium titanate (BaTiO3; BT; 30 wt%) and multiwalled carbon nanotubes (MWCNT; 3 wt%) were introduced into the PVDF via melt mixing, which led to an enhancement of the dielectric permittivity, electrical conductivity, and surface roughness. We also present the design and development of an in-house customized 12-well plate-based device for providing different types (DC, square, biphasic) of ES to cells in culture in a programmable manner. In the presence of ES of 1 V cm-1 , biophysical stimulation experiments performed using 12-well plate-based device revealed that PVDF composite (PVDF/30BT/3MWCNT) can facilitate the enhanced adhesion and proliferation of the MC3T3-E1 in non-osteogenic media, with respect to non-stimulated conditions. Importantly, MC3T3-E1 cells demonstrated significantly better migration and differentiation on the PVDF/30BT/3MWCNT under ES when compared to ES-free culture conditions. Similar enhancement with respect to alkaline phosphatase activity, intracellular Ca2+ concentration, and calcium deposition in MC3T3-E1 cells was recorded, when pre-osteoblasts were grown for 21 days on electroactive substrates. All these observations supported the activation of osteo-differentiation fates, which were further promoted in the osteogenic medium. The present study demonstrates that the synergistic interactions of ES with piezoelectric PVDF-based polymer composite can potentially enhance the proliferation, migration, and osteogenesis of the pre-osteoblast cells, rendering it a promising bioengineering strategy for bone tissue engineering.


Assuntos
Materiais Biocompatíveis , Nanotubos de Carbono , Materiais Biocompatíveis/metabolismo , Osteoblastos , Diferenciação Celular , Osteogênese
2.
Biomaterials ; 297: 122100, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37004426

RESUMO

Hybrid polymer-ceramic composites have been widely investigated for bone tissue engineering applications. The incorporation of a large amount of inorganic phase, like barium titanate (BaTiO3) with good dispersion, in a polymeric matrix using a conventional processing approach has always been challenging. Also, the comprehensive study encompassing the interactions of key components of living organisms (cell, blood, tissue) with such hybrid composites is not well explored in many published studies. Built on our earlier studies and recognizing the importance of poly(vinylidene fluoride) (PVDF) as a widely used polymer for a wide spectrum of biomedical applications, the present study reports the qualitative and quantitative analysis of the biocompatibility of PVDF composite (PVDF/30BT/3MWCNT) reinforced with large amounts of BaTiO3 (30 wt %) and tailored addition of multiwalled carbon nanotubes (MWCNT; 3 wt %). The melt mixing-extrusion-compression moulding-based processing approach resulted in an enhancement of ß-phase content, thermal stability, and wettability in the semi-crystalline PVDF composite. The enhanced hemocompatibility of PVDF/30BT/3MWCNT has been established conclusively by a series of in vitro blood-material interaction assays, including haemolysi, analysis of platelets attachment and activation, dynamic blood coagulation, and plasma recalcification time. The cytocompatibility study confirms an improved adhesion, proliferation, and migration of osteoprogenitor cells (preosteoblasts; MC3T3-E1) on PVDF/30BT/3MWCNT, in a manner better than neat PVDF, in vitro. When these cells were cultured in osteogenic differentiating media, the modulated osteogenesis, in terms of alkaline phosphatase activity, intracellular Ca2+ concentration, and calcium deposition on the PVDF/30BT/3MWCNT, was recorded. Following subcutaneous implantation of PVDF/30BT/3MWCNT in rat model, no apparent variation was recorded in the complete hemogram (blood hematology analysis) or serum biochemistry, post 30-, 60-, and 90-days surgery. Importantly, 90-days post-implantation, the fibrous capsule thickness was significantly reduced in the composites w.r.t PVDF alone, together with better blood vessel formation, indicating improved neovascularization around the composite. This study establishes the efficacy of inorganic fillers in enhancing the biocompatibility of PVDF, which could open up a wide range of biomedical applications.


Assuntos
Nanotubos de Carbono , Osteogênese , Ratos , Animais , Osteogênese/fisiologia , Polivinil/química , Cerâmica/química , Excipientes
3.
Adv Mater ; 33(3): e2006093, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33274802

RESUMO

Fabrication of soft piezoelectric nanomaterials is essential for the development of wearable and implantable biomedical devices. However, a big challenge in this soft functional material development is to achieve a high piezoelectric property with long-term stability in a biological environment. Here, a one-step strategy for fabricating core/shell poly(vinylidene difluoride) (PVDF)/dopamine (DA) nanofibers (NFs) with a very high ß-phase content and self-aligned polarization is reported. The self-assembled core/shell structure is believed essential for the formation and alignment of ß-phase PVDF, where strong intermolecular interaction between the NH2 groups on DA and the CF2 groups on PVDF is responsible for aligning the PVDF chains and promoting ß-phase nucleation. The as-received PVDF/DA NFs exhibit significantly enhanced piezoelectric performance and excellent stability and biocompatibility. An all-fiber-based soft sensor is fabricated and tested on human skin and in vivo in mice. The devices show a high sensitivity and accuracy for detecting weak physiological mechanical stimulation from diaphragm motions and blood pulsation. This sensing capability offers great diagnostic potential for the early assessment and prevention of cardiovascular diseases and respiratory disorders.


Assuntos
Técnicas Biossensoriais/métodos , Dopamina/química , Eletricidade , Nanofibras/química , Polivinil/química
4.
Mater Sci Eng C Mater Biol Appl ; 75: 79-87, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28415530

RESUMO

To inhibit fouling phenomenon in membrane process, a new amphiphilic copolymer, poly(tetrafluoroethylene-co-vinylpyrrolidone) (P(TFE-VP)), was blended with poly(vinylidene difluoride) (PVDF) to fabricate a series of antifouling membranes via non solvent induced phase separation (NIPS) method. The effect of copolymer blend ratios and TFE/VP ratios on membrane properties were evaluated, and the stability of P(TFE-VP) in PVDF membrane was studied. The membrane morphology was controlled by adjusting polymer concentration in dope solution, such that all membranes have similar pore size and density, as well as pure water permeability. In evaluating the effect of TFE/VP ratios, the content of VP in dope solutions was also adjusted to allow a fair comparison. We found that for P(TFE-VP) with a higher VP content, adsorption of BSA on polymer film was negligible. Higher blend ratios of this copolymer resulted in higher surface VP content and better hydrophilicity, but antifouling performance ceased to improve when blend ratio was larger than 1:9 (copolymer:PVDF). Meanwhile, a lower VP content in copolymer resulted in inferior hydrophilicity and severe fouling of the blend membranes. It was also proved that comparing with PVP homopolymer, P(TFE-VP) had satisfying stability inside PVDF membrane.


Assuntos
Membranas Artificiais , Polivinil/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA