Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 226
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(28): e2317711121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968101

RESUMO

Adult neural stem cells (NSCs) reside in the dentate gyrus of the hippocampus, and their capacity to generate neurons and glia plays a role in learning and memory. In addition, neurodegenerative diseases are known to be caused by a loss of neurons and glial cells, resulting in a need to better understand stem cell fate commitment processes. We previously showed that NSC fate commitment toward a neuronal or glial lineage is strongly influenced by extracellular matrix stiffness, a property of elastic materials. However, tissues in vivo are not purely elastic and have varying degrees of viscous character. Relatively little is known about how the viscoelastic properties of the substrate impact NSC fate commitment. Here, we introduce a polyacrylamide-based cell culture platform that incorporates mismatched DNA oligonucleotide-based cross-links as well as covalent cross-links. This platform allows for tunable viscous stress relaxation properties via variation in the number of mismatched base pairs. We find that NSCs exhibit increased astrocytic differentiation as the degree of stress relaxation is increased. Furthermore, culturing NSCs on increasingly stress-relaxing substrates impacts cytoskeletal dynamics by decreasing intracellular actin flow rates and stimulating cyclic activation of the mechanosensitive protein RhoA. Additionally, inhibition of motor-clutch model components such as myosin II and focal adhesion kinase partially or completely reverts cells to lineage distributions observed on elastic substrates. Collectively, our results introduce a unique system for controlling matrix stress relaxation properties and offer insight into how NSCs integrate viscoelastic cues to direct fate commitment.


Assuntos
Diferenciação Celular , Células-Tronco Neurais , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/fisiologia , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Astrócitos/fisiologia , Camundongos , Resinas Acrílicas/química , Proteína rhoA de Ligação ao GTP/metabolismo , Células Cultivadas , Neurônios/metabolismo , Neurônios/fisiologia , Neurônios/citologia , Matriz Extracelular/metabolismo , Estresse Mecânico
2.
Proc Natl Acad Sci U S A ; 120(38): e2308338120, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37695919

RESUMO

Allostery is a major driver of biological processes requiring coordination. Thus, it is one of the most fundamental and remarkable phenomena in nature, and there is motivation to understand and manipulate it to a multitude of ends. Today, it is often described in terms of two phenomenological models proposed more than a half-century ago involving only T(tense) or R(relaxed) conformations. Here, methyl-based NMR provides extensive detail on a dynamic T to R switch in the classical dimeric allosteric protein, yeast chorismate mutase (CM), that occurs in the absence of substrate, but only with the activator bound. Switching of individual subunits is uncoupled based on direct observation of mixed TR states in the dimer. This unique finding excludes both classic models and solves the paradox of a coexisting hyperbolic binding curve and highly skewed substrate-free T-R equilibrium. Surprisingly, structures of the activator-bound and effector-free forms of CM appear the same by NMR, providing another example of the need to account for dynamic ensembles. The apo enzyme, which has a sigmoidal activity profile, is shown to switch, not to R, but to a related high-energy state. Thus, the conformational repertoire of CM does not just change as a matter of degree depending on the allosteric input, be it effector and/or substrate. Rather, the allosteric model appears to completely change in different contexts, which is only consistent with modern ensemble-based frameworks.


Assuntos
Motivação , Polímeros , Saccharomyces cerevisiae
3.
Mar Drugs ; 22(10)2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39452844

RESUMO

Alginate-based materials have gained significant recognition in the medical industry due to their favorable biochemical properties. As a continuation of our previous studies, we have introduced a new composite consisting of cellulose nonwoven fabric charged with a metallic copper core (CNW-Cu0) covered with a calcium alginate (ALG-Ca2+) layer. The preparation process for these materials involved three main steps: coating the cellulose nonwoven fabric with copper via magnetron sputtering (CNW → CNW-Cu0), subsequent deposition with sodium alginate (CNW-Cu0 → CNW-Cu0/ALG-Na+), followed by cross-linking the alginate chains with calcium ions (CNW-Cu0/ALG-Na+ → CNW-Cu0/ALG-Ca2+). The primary objective of the work was to supply these composites with such biological attributes as antibacterial and hemostatic activity. Namely, equipping the antibacterial materials (copper action on representative Gram-positive and Gram-negative bacteria and fungal strains) with induction of blood plasma clotting processes (activated partial thromboplastin time (aPTT) and prothrombin time (PT)). We determined the effect of CNW-Cu0/ALG-Ca2+ materials on the viability of Peripheral blood mononuclear (PBM) cells. Moreover, we studied the interactions of CNW-Cu0/ALG-Ca2+ materials with DNA using the relaxation plasmid assay. However, results showed CNW-Cu0/ALG-Ca2+'s cytotoxic properties against PBM cells in a time-dependent manner. Furthermore, the CNW-Cu0/ALG-Ca2+ composite exhibited the potential to interact directly with DNA. The results demonstrated that the CNW-Cu0/ALG-Ca2+ composites synthesized show promising potential for wound dressing applications.


Assuntos
Alginatos , Antibacterianos , Cálcio , Celulose , Cobre , Alginatos/química , Alginatos/farmacologia , Cobre/química , Celulose/química , Humanos , Cálcio/química , Cálcio/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Leucócitos Mononucleares/efeitos dos fármacos , Coagulação Sanguínea/efeitos dos fármacos , Hemostáticos/farmacologia , Hemostáticos/química , Sobrevivência Celular/efeitos dos fármacos , Tempo de Tromboplastina Parcial , Tempo de Protrombina
4.
Pharm Dev Technol ; 29(5): 468-476, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38662798

RESUMO

Carboxylesterase enzymes convert a prodrug ramipril into the biologically active metabolite ramiprilat. It is prescribed for controlling ocular hypertension after oral administration. High concentrations of carboxylesterase enzymes in rectal and colon tissue can transform ramipril significantly to ramiprilat. Sustained rectal delivery of ramipril has been developed for intra-ocular pressure lowering effect using a normotensive rabbit model. Rectal suppositories have been formulated using a matrix base of HPMC K100-PEG 400-PEG 6000, incorporating varying amounts of Gelucire by the fusion moulding method. The presence of Gelucire in the suppository exhibited sustained structural relaxation-based release kinetics of RM compared to its absence. Intravenous and oral administration of ramipril has decreased IOP in the treated rabbit up to 90 and 360 min, respectively. Treated rabbits with suppositories have revealed decreased IOP for an extended period compared to the above. Formulation containing GEL 3% reduced intra-ocular pressure to 540 min, with the highest area under the decreased IOP curve. Compared to oral, the pharmacodynamic bioavailability of ramipril has been improved significantly using a sustained-release rectal suppository. A rectal suppository for sustained delivery of ramipril could be used to lower IOP significantly.


Assuntos
Administração Retal , Preparações de Ação Retardada , Pressão Intraocular , Pró-Fármacos , Ramipril , Animais , Coelhos , Pressão Intraocular/efeitos dos fármacos , Pró-Fármacos/administração & dosagem , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia , Ramipril/administração & dosagem , Ramipril/farmacocinética , Ramipril/farmacologia , Supositórios , Masculino , Disponibilidade Biológica , Anti-Hipertensivos/administração & dosagem , Anti-Hipertensivos/farmacocinética , Anti-Hipertensivos/farmacologia , Lipídeos/química , Liberação Controlada de Fármacos , Administração Oral , Polietilenoglicóis
5.
BMC Plant Biol ; 23(1): 2, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36588160

RESUMO

BACKGROUND: Methane (CH4) and brassinosteroids (BRs) are important signaling molecules involved in a variety of biological processes in plants. RESULTS: Here, marigold (Tagetes erecta L. 'Marvel') was used to investigate the role and relationship between CH4 and BRs during adventitious root (AR) formation. The results showed a dose-dependent effect of CH4 and BRs on rooting, with the greatest biological effects of methane-rich water (MRW, CH4 donor) and 2,4-epibrassinolide (EBL) at 20% and 1 µmol L- 1, respectively. The positive effect of MRW on AR formation was blocked by brassinoazole (Brz, a synthetic inhibitor of EBL), indicating that BRs might be involved in MRW-regulated AR formation. MRW promoted EBL accumulation during rooting by up-regulating the content of campestanol (CN), cathasterone (CT), and castasterone (CS) and the activity of Steroid 5α-reductase (DET2), 22α-hydroxylase (DWF4), and BR-6-oxidase (BR6ox), indicating that CH4 could induce endogenous brassinolide (BR) production during rooting. Further results showed that MRW and EBL significantly down-regulated the content of cellulose, hemicellulose and lignin during rooting and significantly up-regulated the hydrolase activity, i.e. cmcase, xylanase and laccase. In addition, MRW and EBL also significantly promoted the activity of two major cell wall relaxing factors, xyloglucan endotransglucosylase/hydrolase (XTH) and peroxidase, which in turn promoted AR formation. While, Brz inhibited the role of MRW on these substances. CONCLUSIONS: BR might be involved in CH4-promoted AR formation by increasing cell wall relaxation.


Assuntos
Brassinosteroides , Celulose , Brassinosteroides/farmacologia , Metano/farmacologia , Hidrolases , Raízes de Plantas/fisiologia
6.
Mol Pharm ; 20(4): 2067-2079, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36930788

RESUMO

The main goal of this study is to develop an experimental toolbox to estimate the self-diffusion coefficient of active ingredients (AI) in single-phase amorphous solid dispersions (ASD) close to the glass transition of the mixture using dielectric spectroscopy (DS) and oscillatory rheology. The proposed methodology is tested for a model system containing the insecticide imidacloprid (IMI) and the copolymer copovidone (PVP/VA) prepared via hot-melt extrusion. For this purpose, reorientational and the viscoelastic structural (α-)relaxation time constants of hot-melt-extruded ASDs were obtained via DS and shear rheology, respectively. These were then utilized to extract the viscosity as well as the fragility index of the dispersions as input parameters to the fractional Stokes-Einstein (F-SE) relation. Furthermore, a modified version of Almond-West (AW) formalism, originally developed to describe charge diffusion in ionic conductors, was exercised on the present model system for the estimation of the AI diffusion coefficients based on shear modulus relaxation times. Our results revealed that, at the calorimetric glass-transition temperature (Tg), the self-diffusion coefficients of the AI in the compositional range from infinite dilution up to 60 wt % IMI content lied in the narrow range of 10-18-10-20 m2 s-1, while the viscosity values of the dispersions at Tg varied between 108 Pa s and 1010 Pa s. In addition, the phase diagram of the IMI-PVP/VA system was determined using the melting point depression method via differential scanning calorimetry (DSC), while mid-infrared (IR) spectroscopy was employed to investigate the intermolecular interactions within the solid dispersions. In this respect, the findings of a modest variation in melting point at different compositions stayed in agreement with the observations of weak hydrogen bonding interactions between the AI and the polymer. Moreover, IR spectroscopy showed the intermolecular IMI-IMI hydrogen bonding to have been considerably suppressed, as a result of the spatial separation of the AI molecules within the ASDs. In summary, this study provides experimental approaches to study diffusivity in ASDs using DS and oscillatory rheology, in addition to contributing to an enhanced understanding of the interactions and phase behavior in these systems.


Assuntos
Simulação de Dinâmica Molecular , Polímeros , Polímeros/química , Temperatura , Neonicotinoides , Varredura Diferencial de Calorimetria , Solubilidade , Composição de Medicamentos/métodos
7.
Mol Pharm ; 20(4): 2080-2093, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36897219

RESUMO

Amorphous-Amorphous phase separation (AAPS) is an important phenomenon that can impede the performance of amorphous solid dispersions (ASDs). The purpose of this study was to develop a sensitive approach relying on dielectric spectroscopy (DS) to characterize AAPS in ASDs. This includes detecting AAPS, determining the size of the active ingredient (AI) discrete domains in the phase-separated systems, and accessing the molecular mobility in each phase. Using a model system consisting of the insecticide imidacloprid (IMI) and the polymer polystyrene (PS), the dielectric results were further confirmed by confocal fluorescence microscopy (CFM). The detection of AAPS by DS was accomplished by identifying the decoupled structural (α-)dynamics of the AI and the polymer phase. The α-relaxation times corresponding to each phase correlated reasonably well with those of the pure components, implying nearly complete macroscopic phase separation. Congruent with the DS results, the occurrence of the AAPS was detected by means of CFM, making use of the autofluorescent property of IMI. Oscillatory shear rheology and differential scanning calorimetry (DSC) detected the glass transition of the polymer phase but not that of the AI phase. Furthermore, the otherwise undesired effects of interfacial and electrode polarization, which can appear in DS, were exploited to determine the effective domain size of the discrete AI phase in this work. Here, stereological analysis of CFM images probing the mean diameter of the phase-separated IMI domains directly stayed in reasonably good agreement with the DS-based estimates. The size of phase-separated microclusters showed little variation with AI loading, implying that the ASDs have presumably undergone AAPS upon manufacturing. DSC provided further support to the immiscibility of IMI and PS, as no discernible melting point depression of the corresponding physical mixtures was detected. Moreover, no signatures of strong attractive AI-polymer interactions could be detected by mid-infrared spectroscopy within this ASD system. Finally, dielectric cold crystallization experiments of the pure AI and the 60 wt % dispersion revealed comparable crystallization onset times, hinting at a poor inhibition of the AI crystallization within the ASD. These observations are in harmony with the occurrence of AAPS. In conclusion, our multifaceted experimental approach opens new venues for rationalizing the mechanisms and kinetics of phase separation in amorphous solid dispersions.


Assuntos
Nitrocompostos , Polímeros , Cristalização/métodos , Polímeros/química , Neonicotinoides , Solubilidade , Varredura Diferencial de Calorimetria
8.
Macromol Rapid Commun ; 44(18): e2300226, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37340957

RESUMO

As a key component in laminated glass, plasticized polyvinyl butyral (PVB) interlayer is a kind of impact-resistant polymer material with high toughness. Recently, by using ultrasmall angle X-ray scattering (USAXS) technique, Stretch-induced phase-separated structure on the scale of hundreds of nanometers formed in plasticized PVB for the first time is reported. In this work, the multiscale relaxation behavior of plasticized PVB is further investigated. The relaxation behavior of deformed plasticized PVB is studied from macroscopic stress, mesoscopic phase-separated structure, and microscopic chain segment by combining USAXS, and birefringence with in situ stretching device. The contributions of chain segments and hydrogen bonding clusters for the multiscale relaxation behavior are discussed.


Assuntos
Cloreto de Polivinila , Polivinil , Polivinil/química , Polímeros/química , Ligação de Hidrogênio
9.
Int J Mol Sci ; 24(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37373520

RESUMO

Nuclear Magnetic Resonance (NMR) spin relaxation times have been an instrumental tool in deciphering the local environment of ionic species, the various interactions they engender and the effect of these interactions on their dynamics in conducting media. Of particular importance has been their application in studying the wide range of electrolytes for energy storage, on which this review is based. Here we highlight some of the research carried out on electrolytes in recent years using NMR relaxometry techniques. Specifically, we highlight studies on liquid electrolytes, such as ionic liquids and organic solvents; on semi-solid-state electrolytes, such as ionogels and polymer gels; and on solid electrolytes such as glasses, glass ceramics and polymers. Although this review focuses on a small selection of materials, we believe they demonstrate the breadth of application and the invaluable nature of NMR relaxometry.


Assuntos
Eletrólitos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética/métodos , Fenômenos Físicos , Eletrólitos/química , Íons , Polímeros/química
10.
Molecules ; 28(4)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36838953

RESUMO

The aim of this study was to determine the effect of saponins-rich plant extract on two model biological membranes: phospholipid monolayers and liposomes. The Langmuir monolayer technique was used to study the interactions of model phospholipid membranes with saponins. The π-A isotherms were determined for DPPE (1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine) monolayer with the addition of various concentrations of licorice saponins extracts and subjected to qualitative as well as quantitative analysis. Additionally, relaxation studies of the obtained monolayers were carried out and morphological changes were examined using Brewster angle microscopy. Moreover, changes in the structure of phospholipid vesicles treated with solutions of saponins-rich plant extracts were assessed using the FTIR technique. The size and zeta potential of the liposomes were estimated based on DLS methods. The obtained results indicated that the saponins interact with the phospholipid membrane formed by DPPE molecules and that the stability of the mixed DPPE/saponins monolayer strongly depends on the presence of impurities in saponins. Furthermore, it was found that the plant extract rich in saponins biosurfactant interacts mainly with the hydrophilic part of liposomes.


Assuntos
Fosfolipídeos , Saponinas , Fosfolipídeos/química , Lipossomos , Saponinas/química , Extratos Vegetais , Propriedades de Superfície
11.
Mol Pharm ; 19(7): 2299-2315, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35674392

RESUMO

Recently, glasses, a subset of amorphous solids, have gained attention in various fields, such as polymer chemistry, optical fibers, and pharmaceuticals. One of their characteristic features, the glass transition temperature (Tg) which is absent in 100% crystalline materials, influences several material properties, such as free volume, enthalpy, viscosity, thermodynamic transitions, molecular motions, physical stability, mechanical properties, etc. In addition to Tg, there may be several other temperature-dependent transitions known as sub-Tg transitions (or ß-, γ-, and δ-relaxations) which are identified by specific analytical techniques. The study of Tg and sub-Tg transitions occurring in amorphous solids has gained much attention because of its importance in understanding molecular kinetics, and it requires the combination of conventional and novel characterization techniques. In the present study, three different analytical techniques [modulated differential scanning calorimetry (mDSC), dynamic mechanical analysis (DMA), and dielectric relaxation spectroscopy (DRS)] were used to perform comprehensive qualitative/quantitative characterization of molecular relaxations, miscibility, and molecular interactions present in an amorphous polymer (PVPVA), a model drug (indomethacin, IND), and IND/PVPVA-based amorphous solid dispersions (ASDs). This is the first ever reported DMA study on PVPVA in its powder form, which avoids the contribution of solvent to the mechanical properties when a self-standing polymer film is used. A good correlation between the techniques in determining the Tg value of PVPVA, IND, and IND/PVPVA-based ASDs is established, and the negligible difference (within 10 °C) is attributed to the different material properties assessed in each technique. However, the overall Tg behavior, the decrease in Tg with increase in drug loading in ASDs, is universally observed in all the above-mentioned techniques, which reveals their complementarity. DMA and DRS techniques are used to study the different sub-Tg transitions present in PVPVA, amorphous IND, and IND/PVPVA-based ASDs because these transitions are normally too weak or too broad for mDSC to detect. For IND/PVPVA-based ASDs, both techniques show a shift of sub-Tg transitions (or secondary relaxation peaks) toward the high-temperature region from -140 to -45 °C. Thus, this paper outlines the usage of different solid-state characterization techniques in understanding the different molecular dynamics present in the polymer, drug, and their interactions in ASDs with the integrated information obtained from individual techniques.


Assuntos
Indometacina , Povidona , Varredura Diferencial de Calorimetria , Indometacina/química , Polímeros/química , Povidona/química , Solubilidade , Temperatura de Transição
12.
Macromol Rapid Commun ; 43(16): e2200083, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35257443

RESUMO

In both natural and artificial functional systems, the cooperation between different dynamic interactions is of vital importance for realizing complicated functions. Dynamic covalent bonds are one kind of relatively stable dynamic interactions and have shown synergistic effect in natural systems such as functional proteins. However, synergistic interactions between different dynamic covalent bonds in polymeric materials are still unclear. Herein, polymeric materials containing diselenide and imine bonds are prepared, and then the synergistic effect between the two dynamic covalent bonds is quantitatively evaluated in typical processes of dynamic materials. The results reveal that dynamic covalent bonds show weak synergistic effect in the degradation process and have strong synergistic effect in stress relaxation process. Therefore, introducing multiple dynamic covalent bonds in polymeric materials can extensively enhance their dynamic properties.


Assuntos
Iminas , Polímeros , Iminas/química , Polímeros/química , Proteínas
13.
Proc Natl Acad Sci U S A ; 116(9): 3562-3571, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808748

RESUMO

The N-terminal region of the huntingtin protein, encoded by exon-1, comprises an amphiphilic domain (httNT), a polyglutamine (Q n ) tract, and a proline-rich sequence. Polyglutamine expansion results in an aggregation-prone protein responsible for Huntington's disease. Here, we study the earliest events involved in oligomerization of a minimalistic construct, httNTQ7, which remains largely monomeric over a sufficiently long period of time to permit detailed quantitative NMR analysis of the kinetics and structure of sparsely populated [Formula: see text] oligomeric states, yet still eventually forms fibrils. Global fitting of concentration-dependent relaxation dispersion, transverse relaxation in the rotating frame, and exchange-induced chemical shift data reveals a bifurcated assembly mechanism in which the NMR observable monomeric species either self-associates to form a productive dimer (τex ∼ 30 µs, Kdiss ∼ 0.1 M) that goes on to form a tetramer ([Formula: see text] µs; Kdiss ∼ 22 µM), or exchanges with a "nonproductive" dimer that does not oligomerize further (τex ∼ 400 µs; Kdiss ∼ 0.3 M). The excited state backbone chemical shifts are indicative of a contiguous helix (residues 3-17) in the productive dimer/tetramer, with only partial helical character in the nonproductive dimer. A structural model of the productive dimer/tetramer was obtained by simulated annealing driven by intermolecular paramagnetic relaxation enhancement data. The tetramer comprises a D2 symmetric dimer of dimers with largely hydrophobic packing between the helical subunits. The structural model, validated by EPR distance measurements, illuminates the role of the httNT domain in the earliest stages of prenucleation and oligomerization, before fibril formation.


Assuntos
Amiloide/genética , Proteína Huntingtina/genética , Doença de Huntington/genética , Amiloide/química , Amiloide/ultraestrutura , Cristalografia por Raios X , Citoesqueleto/química , Citoesqueleto/genética , Éxons/genética , Proteína Huntingtina/química , Proteína Huntingtina/ultraestrutura , Doença de Huntington/patologia , Cinética , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Peptídeos/química , Peptídeos/genética , Polímeros/química , Domínios Proteicos/genética , Multimerização Proteica/genética , Relação Estrutura-Atividade
14.
Int J Mol Sci ; 23(16)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36012099

RESUMO

An effective method was developed to improve the interfacial interaction between Mutiwalled carbon nanotubes (MWCNTs) and epoxy matrix. The performance of thermal conductivity and strength of the epoxy vitrimer were enhanced by polydopamine (PDA) coating. Polydopamine is a commonly used photothermal agent, which of course, was effective in modifying MWCNTs used in photoresponsive epoxy resin. The surface temperature of the epoxy composite with 3% MWCNTs@PDA fillers added increased from room temperature to 215 °C in 48 s. The metal-catechol coordination interactions formed between the catechol groups of PDA and Zn2+ accelerated the stress relaxation of epoxy vitrimer. Moreover, the shape memory, repairing, and recycling of epoxy vitrimer were investigated. Therefore, dopamine coating is a multifunctional approach to enhance the performance of epoxy vitrimer.


Assuntos
Resinas Epóxi , Nanotubos de Carbono , Catecóis , Condutividade Térmica
15.
Int J Mol Sci ; 23(21)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36361613

RESUMO

Advancing our understanding of the mechanism of the interaction between inhaled pollutant microparticles and cell membrane components is useful to study the impact of fine particulate matter on human health. In this paper, we focus on the effect of cholesterol (Chol) molecules on the surface properties of a model membrane in the presence of silica microparticles (MPs). Mixed monolayers containing phospholipid-dipalmitoylphosphatidylcholine (DPPC), Chol and silica particle dispersions (MPs; 0.033% w/w, 0.33% w/w and 0.83% w/w) were formed and studied using the Langmuir monolayer technique complemented by Brewster Angle Microscopy (BAM) images. It was shown that Chol caused a condensation of the DPPC monolayer, which influenced the penetration of MPs and their interactions with the model membrane. The relaxation experiments of the lipid-MP monolayer proved that the presence of Chol molecules in the monolayer led to the formation of lipid and MP complexes. Strong interactions between Chol and MPs contributed to the formation of more stable monolayers. The presented results can be useful to better comprehend the interaction between particulate materials and the lipid components of biomembranes.


Assuntos
1,2-Dipalmitoilfosfatidilcolina , Dióxido de Silício , Humanos , Colesterol , Membranas Artificiais , Propriedades de Superfície , Microscopia
16.
Molecules ; 27(17)2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36080277

RESUMO

Cell therapies for age-related macular degeneration (AMD) treatment have been developed by integrating hydrogel-based biomaterials. Until now, cell activity has been observed only in terms of the modulus of the hydrogel. In addition, cell behavior has only been observed in the 2D environment of the hydrogel and the 3D matrix. As time-dependent stress relaxation is considered a significant mechanical cue for the control of cellular activities, it is important to optimize hydrogels for retinal tissue engineering (TE) by applying this viewpoint. Herein, a gellan Gum (GG)/Hyaluronic acid (HA) hydrogel was fabricated using a facile physical crosslinking method. The physicochemical and mechanical properties were controlled by forming a different composition of GG and HA. The characterization was performed by conducting a mass swelling study, a sol fraction study, a weight loss test, a viscosity test, an injection force study, a compression test, and a stress relaxation analysis. The biological activity of the cells encapsulated in 3D constructs was evaluated by conducting a morphological study, a proliferation test, a live/dead analysis, histology, immunofluorescence staining, and a gene expression study to determine the most appropriate material for retinal TE biomaterial. Hydrogels with moderate amounts of HA showed improved physicochemical and mechanical properties suitable for injection into the retina. Moreover, the time-dependent stress relaxation property of the GG/HA hydrogel was enhanced when the appropriate amount of HA was loaded. In addition, the cellular compatibility of the GG/HA hydrogel in in vitro experiments was significantly improved in the fast-relaxing hydrogel. Overall, these results demonstrate the remarkable potential of GG/HA hydrogel as an injectable hydrogel for retinal TE and the importance of the stress relaxation property when designing retinal TE hydrogels. Therefore, we believe that GG/HA hydrogel is a prospective candidate for retinal TE biomaterial.


Assuntos
Ácido Hialurônico , Hidrogéis , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Células Epiteliais , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/farmacologia , Retina , Pigmentos da Retina , Engenharia Tecidual
17.
Molecules ; 27(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36364250

RESUMO

The in vivo potency of polyphosphazene immunoadjuvants is inherently linked to the ability of these ionic macromolecules to assemble with antigenic proteins in aqueous solutions and form physiologically stable supramolecular complexes. Therefore, in-depth knowledge of interactions in this biologically relevant system is a prerequisite for a better understanding of mechanism of immunoadjuvant activity. Present study explores a self-assembly of polyphosphazene immunoadjuvant-PCPP and a model antigen-lysozyme in a physiologically relevant environment-saline solution and neutral pH. Three analytical techniques were employed to characterize reaction thermodynamics, water-solute structural organization, and supramolecular dimensions: isothermal titration calorimetry (ITC), water proton nuclear magnetic resonance (wNMR), and dynamic light scattering (DLS). The formation of lysozyme-PCPP complexes at near physiological conditions was detected by all methods and the avidity was modulated by a physical state and dimensions of the assemblies. Thermodynamic analysis revealed the dissociation constant in micromolar range and the dominance of enthalpy factor in interactions, which is in line with previously suggested model of protein charge anisotropy and small persistence length of the polymer favoring the formation of high affinity complexes. The paper reports advantageous use of wNMR method for studying protein-polymer interactions, especially for low protein-load complexes.


Assuntos
Prótons , Água , Água/química , Muramidase , Polieletrólitos , Difusão Dinâmica da Luz , Calorimetria/métodos , Polímeros/química , Termodinâmica , Espectroscopia de Ressonância Magnética , Adjuvantes Imunológicos
18.
Magn Reson Med ; 85(3): 1643-1654, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32970889

RESUMO

PURPOSE: CEST MRI experiments of mobile macromolecules, for example, proteins, carbohydrates, and phospholipids, often show signals due to saturation transfer from aliphatic protons to water. Currently, the mechanism of this nuclear Overhauser effect (NOE)-based transfer pathway is not completely understood and could be due either to NOEs directly to bound water or NOEs relayed intramolecularly via exchangeable protons. We used glycogen as a model system to investigate this saturation transfer pathway in sugar polymer solution. METHODS: To determine whether proton exchange affected saturation transfer, saturation spectra (Z-spectra) were measured for glycogen solutions of different pH, D2 O/H2 O ratio, and glycogen particle size. A theoretical model was derived to analytically describe the NOE-based signals in these spectra. Numerical simulations were performed to verify this theory, which was further tested by fitting experimental data for different exchange regimes. RESULTS: Signal intensities of aliphatic NOEs in Z-spectra of glycogen in D2 O solution were influenced by hydroxyl proton exchange rates, whereas those in H2 O were not. This indicates that the primary transfer pathway is an exchange-relayed NOE from these aliphatic protons to neighboring hydroxyl protons, followed by the exchange to water protons. Experimental data for glycogen solutions in D2 O and H2 O could be analyzed successfully using an analytical theory derived for such relayed NOE transfer, which was further validated using numerical simulations with the Bloch equations. CONCLUSION: The predominant mechanism underlying aliphatic signals in Z-spectra of mobile carbohydrate polymers is intramolecular relayed NOE transfer followed by proton exchange.


Assuntos
Prótons , Água , Imageamento por Ressonância Magnética , Polímeros , Proteínas
19.
Eur Biophys J ; 50(7): 963-977, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34254174

RESUMO

The biocompatible, biodegradable, linear copolymer sodium alginate is fabricated from [Formula: see text] linked [Formula: see text]-D-mannuronic acid (M block) and [Formula: see text]-L-guluronic acid (G-block). It has wide applications in drug delivery, cell encapsulation, and commercial application in the textile, cosmetics, paper, food, biomedical, and pharmaceutical industries. The structure and dynamics of sodium alginate were here investigated by measuring chemical shift anisotropy (CSA) parameters, spin-lattice relaxation time, and molecular correlation time. The principal components of the CSA tensor were determined by two-dimensional phase-adjusted spinning sideband (2DPASS) cross-polarization magic angle spinning (CP-MAS) SSNMR. The alternating M and G blocks of both equatorial and axial links are associated with greater overall flexibility. The molecular correlation time of the carboxyl carbon of both G and M blocks is faster than for the anomeric carbon and pyranose carbon. This is further experimental evidence of the coexistence of two different dynamics within the polysaccharide chains of sodium alginate, which was previously established by 1H-13C dipolar profile analysis. The relaxation time of the para-crystalline region of sodium alginate is comparable with that of chitosan, but it is much shorter than that of cellulose and chitin. The order of the molecular correlation time of sodium alginate and chitosan is also the same. Hence, it can be concluded that sodium alginate exhibits greater flexibility than cellulose and chitin. These types of investigation into the local electronic configuration and nuclear spin dynamics at various carbon nuclei sites of the biopolymer at atomic-scale resolution will help in the design of biomimetic materials.


Assuntos
Alginatos , Celulose , Anisotropia , Carbono , Ressonância Magnética Nuclear Biomolecular
20.
Eur J Cancer Care (Engl) ; 30(1): e13355, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33159422

RESUMO

BACKGROUND: Chemotherapy of nasopharyngeal carcinoma (NPC) can lead to significant side effects and complications. Exercises during chemoradiotherapy have potential to reduce complications and fatigue and improve quality of life. The aim of the randomised clinical study was to investigate the benefits of resistance exercise during chemoradiotherapy in NPC patients. METHODS: A total of 146 patients were randomised to perform resistance or relaxation exercises during chemoradiotherapy. Resistance exercise consisted of eight machine-based progressive resistance exercises, and relaxation control consisted of progressive muscle relaxation. Side effects and complications were analysed, and fatigue was assessed by Multidimensional Fatigue Symptom Inventory-Short Form (MFSI-SF) scores. The European Organization for Research and Treatment of Cancer Quality of Life Questionnaire Core-30 (EORTC QLQ30) scale was used to evaluate the effects of resistance exercise or relaxation control on quality of life. Per-protocol analysis was performed on the collected data. RESULTS: Resistance exercise has stronger effects than relaxation in reducing complications, including oral mucositis, mouth-opening difficulties, xerostomia, hearing loss and nasal congestion, and alleviating both physical fatigue and mental fatigue. The improvement in quality of life was also more prominent among patients performing resistance exercise. CONCLUSIONS: For NPC patients undergoing chemoradiotherapy, resistance exercise has a better efficacy in reducing complications, alleviating fatigue and improving quality of life.


Assuntos
Neoplasias Nasofaríngeas , Treinamento Resistido , Quimiorradioterapia/efeitos adversos , Humanos , Carcinoma Nasofaríngeo/terapia , Neoplasias Nasofaríngeas/terapia , Qualidade de Vida , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA