Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 45(10): e2300723, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38395416

RESUMO

Emulsions are complex. Dispersing two immiscible phases, thus expanding an interface, requires effort to achieve and the resultant dispersion is thermodynamically unstable, driving the system toward coalescence. Furthermore, physical instabilities, including creaming, arise due to presence of dispersed droplets of different densities to a continuous phase. Emulsions allow the formulation of oils, can act as vehicles to solubilize both hydrophilic and lipophilic molecules, and can be tailored to desirable rheological profiles, including "gel-like" behavior and shear thinning. The usefulness of emulsions can be further expanded by imparting stimuli-responsive or "smart" behaviors by inclusion of a stimuli-responsive emulsifier, polymer or surfactant. This enables manipulation like gelation, breaking, or aggregation, by external triggers such as pH, temperature, or salt concentration changes. This platform generates functional materials for pharmaceuticals, cosmetics, oil recovery, and colloid engineering, combining both smart behaviors and intrinsic benefit of emulsions. However, with increased functionality comes greater complexity. This review focuses on the use of stimuli-responsive polymers for the generation of smart emulsions, motivated by the great adaptability of polymers for this application and their efficacy as steric stabilizers. Stimuli-responsive emulsions are described according to the trigger used to provide the reader with an overview of progress in this field.


Assuntos
Emulsões , Emulsões/química , Polímeros Responsivos a Estímulos/química , Concentração de Íons de Hidrogênio , Tensoativos/química , Polímeros/química , Temperatura , Interações Hidrofóbicas e Hidrofílicas , Reologia
2.
Macromol Rapid Commun ; 45(10): e2400041, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38366845

RESUMO

Ionic thermoelectrics (TEs), in which voltage generation is based on ion migration, are suitable for applications based on their low cost, high flexibility, high ionic conductivity, and wide range of Seebeck coefficients. This work reports on the development of ionic TE materials based on the poly(vinylidene fluoride-trifluoroethylene), Poly(VDF-co-TrFE), as host polymer blended with different contents of the ionic liquid, IL, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [EMIM][TFSI]. The morphology, physico-chemical, thermal, mechanical, and electrical properties of the samples are evaluated together with the TE response. It is demonstrated that the IL acts as a nucleating agent for polymer crystallization. The mechanical properties and ionic conductivity values are dependent on the IL content. A high room temperature ionic conductivity of 0.008 S cm-1 is obtained for the sample with 60 wt% of [EMIM][TFSI] IL. The TE properties depend on both IL content and device topology-vertical or planar-the largest generated voltage range being obtained for the planar topology and the sample with 10 wt% of IL content, characterized by a Seebeck coefficient of 1.2 mV K-1. Based on the obtained maximum power density of 4.9 µW m-2, these materials are suitable for a new generation of TE devices.


Assuntos
Condutividade Elétrica , Líquidos Iônicos , Polímeros , Líquidos Iônicos/química , Polímeros/química , Temperatura , Polivinil/química , Imidazóis/química , Imidas
3.
Crit Rev Food Sci Nutr ; 63(23): 6464-6483, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35099331

RESUMO

Packaging materials for microwave application should be generally designed based on products properties and processing conditions such as microwavability, susceptibility, processing condition, barrier properties, mechanical properties, storage condition, sustainability, convenience, and so on. Ready-to-eat products are packed in materials that can sustain thermal processing in an industrial oven and warming process in a household oven. In this context, high barrier polymers are versatile microwave packaging materials due to the microwave transparency (unlike metalized film) and high barrier. Additionally, microwave packaging materials used for ready-to-cook are intended to facilitate the microwave heating of the products in a domestic oven. The introduction of a functional feather to microwave packaging tends to improve the microwaving efficiency such as susceptor and shielding in the household oven or self-venting microwave packaging to safely release the internal steam. Furthermore, microwave-assisted thermal processing intends to control microbial contamination, requiring materials with adequate stability during processing and storage. The features of these materials are addressed in this review along with details on the basic requirements and advanced technologies for microwave packaging, microwave processing of prepackaged food, and migration testing. The prospects of microwave packaging materials in the near future are also discussed.


Assuntos
Temperatura Alta , Micro-Ondas , Culinária , Polímeros , Vapor , Embalagem de Alimentos
4.
Sensors (Basel) ; 23(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37299890

RESUMO

Smart flexible materials with piezoresistive property are increasingly used in the field of sensors. When embedded in structures, they would allow for in situ structural health monitoring and damage assessment of impact loading, such as crash, bird strikes and ballistic impacts; however, this could not be achieved without a deep characterization of the relation between piezoresistivity and mechanical behavior. The aim of this paper is to study the potential use of the piezoresistivity effect of a conductive foam made of a flexible polyurethane matrix filled with activated carbon for integrated structural health monitoring (SHM) and low-energy impact detection. To do so, polyurethane foam filled with activated carbon, namely PUF-AC, is tested under quasi-static compressions and under a dynamic mechanical analyzer (DMA) with in situ measurements of its electrical resistance. A new relation is proposed for describing the evolution of the resistivity versus strain rate showing that a link exists between electrical sensitivity and viscoelasticity. In addition, a first demonstrative experiment of feasibility of an SHM application using piezoresistive foam embedded in a composite sandwich structure is realized by a low-energy impact (2 J) test.


Assuntos
Carvão Vegetal , Materiais Inteligentes , Poliuretanos , Condutividade Elétrica , Eletricidade , Alimentos
5.
Int J Mol Sci ; 24(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37958733

RESUMO

The emerging field of regenerative medicine holds immense promise for addressing complex tissue and organ regeneration challenges. Central to its advancement is the evolution of additive manufacturing techniques, which have transcended static constructs to embrace dynamic, biomimetic solutions. This manuscript explores the pivotal role of smart materials in this transformative journey, where materials are endowed with dynamic responsiveness to biological cues and environmental changes. By delving into the innovative integration of smart materials, such as shape memory polymers and stimulus-responsive hydrogels, into additive manufacturing processes, this research illuminates the potential to engineer tissue constructs with unparalleled biomimicry. From dynamically adapting scaffolds that mimic the mechanical behavior of native tissues to drug delivery systems that respond to physiological cues, the convergence of smart materials and additive manufacturing heralds a new era in regenerative medicine. This manuscript presents an insightful overview of recent advancements, challenges, and future prospects, underscoring the pivotal role of smart materials as pioneers in shaping the dynamic landscape of regenerative medicine and heralding a future where tissue engineering is propelled beyond static constructs towards biomimetic, responsive, and regenerative solutions.


Assuntos
Medicina Regenerativa , Materiais Inteligentes , Materiais Biocompatíveis , Biomimética/métodos , Impressão Tridimensional , Medicina Regenerativa/métodos , Engenharia Tecidual/métodos
6.
Sci Eng Ethics ; 29(5): 33, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37668955

RESUMO

It may soon become possible not just to replace, but to re-grow healthy tissues after injury or disease, because of innovations in the field of Regenerative Medicine. One particularly promising innovation is a regenerative valve implant to treat people with heart valve disease. These implants are fabricated from so-called 'smart', 'lifelike' materials. Implanted inside a heart, these implants stimulate re-growth of a healthy, living heart valve. While the technological development advances, the ethical implications of this new technology are still unclear and a clear conceptual understanding of the notions 'smart' and 'lifelike' is currently lacking. In this paper, we explore the conceptual and ethical implications of the development of smart lifelike materials for the design of regenerative implants, by analysing heart valve implants as a showcase. In our conceptual analysis, we show that the materials are considered 'smart' because they can communicate with human tissues, and 'lifelike' because they are structurally similar to these tissues. This shows that regenerative valve implants become intimately integrated in the living tissues of the human body. As such, they manifest the ontological entanglement of body and technology. In our ethical analysis, we argue this is ethically significant in at least two ways: It exacerbates the irreversibility of the implantation procedure, and it might affect the embodied experience of the implant recipient. With our conceptual and ethical analysis, we aim to contribute to responsible development of smart lifelike materials and regenerative implants.


Assuntos
Corpo Humano , Materiais Inteligentes , Humanos , Próteses e Implantes , Análise Ética , Nível de Saúde
7.
Mol Pharm ; 19(7): 1999-2021, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35730605

RESUMO

Smart materials are engineered materials that have one or more properties that are introduced in a controlled fashion by surrounding stimuli. Engineering of biomacromolecules like proteins into a smart material call for meticulous artistry. Peptides have grabbed notable attention as a preferred source for smart materials in the medicinal field, promoted by their versatile chemical and biophysical attributes of biocompatibility, and biodegradability. Recent advances in the synthesis of multifunctional peptides have proliferated their application in diverse domains: agriculture, nanotechnology, medicines, biosensors, therapeutics, and soft robotics. Stimuli such as pH, temperature, light, metal ions, and enzymes have vitalized physicochemical properties of peptides by augmented sensitivity, stability, and selectivity. This review elucidates recent (2018-2021) advances in the design and synthesis of smart materials, from stimuli-responsive peptides followed by their biomedical and therapeutic applications.


Assuntos
Polímeros Responsivos a Estímulos , Sistemas de Liberação de Medicamentos , Nanotecnologia , Peptídeos/química , Peptídeos/uso terapêutico , Temperatura
8.
Sensors (Basel) ; 22(21)2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36366018

RESUMO

Sensing Technology (ST) plays a key role in Structural Health-Monitoring (SHM) systems. ST focuses on developing sensors, sensory systems, or smart materials that monitor a wide variety of materials' properties aiming to create smart structures and smart materials, using Embedded Sensors (ESs), and enabling continuous and permanent measurements of their structural integrity. The integration of ESs is limited to the processing technology used to embed the sensor due to its high-temperature sensitivity and the possibility of damage during its insertion into the structure. In addition, the technological process selection is dependent on the base material's composition, which comprises either metallic or composite parts. The selection of smart sensors or the technology underlying them is fundamental to the monitoring mode. This paper presents a critical review of the fundaments and applications of sensing technologies for SHM systems employing ESs, focusing on their actual developments and innovation, as well as analysing the challenges that these technologies present, in order to build a path that allows for a connected world through distributed measurement systems.


Assuntos
Redes de Comunicação de Computadores , Materiais Inteligentes , Monitorização Fisiológica
9.
Int J Mol Sci ; 23(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35408883

RESUMO

As a new type of flexible smart material, ionic polymer-metal composite (IPMC) has the advantages of being lightweight and having fast responses, good flexibility, and large deformation ranges. However, IPMC has the disadvantages of a small driving force and short lifespan. Based on this, this paper firstly analyzes the driving mechanism of IPMC. Then, it focuses on the current preparation technology of IPMC from the aspects of electroless plating and mechanical plating. The advantages and disadvantages of various preparation methods are analyzed. Due to the special driving mechanism of IPMC, there is a problem of short non-aqueous working time. Therefore, the modification research of IPMC is reviewed from the aspects of the basement membrane, working medium, and electrode materials. Finally, the current challenges and future development prospects of IPMC are discussed.


Assuntos
Metais , Polímeros , Eletrodos , Íons , Tecnologia
10.
Molecules ; 27(16)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36014435

RESUMO

Traditional open surgery complications are typically due to trauma caused by accessing the procedural site rather than the procedure itself. Minimally invasive surgery allows for fewer complications as microdevices operate through small incisions or natural orifices. However, current minimally invasive tools typically have restricted maneuverability, accessibility, and positional control of microdevices. Thermomagnetic-responsive microgrippers are microscopic multi-fingered devices that respond to temperature changes due to the presence of thermal-responsive polymers. Polymeric devices, made of poly(N-isopropylacrylamide-co-acrylic acid) (pNIPAM-AAc) and polypropylene fumarate (PPF), self-fold due to swelling and contracting of the hydrogel layer. In comparison, soft metallic devices feature a pre-stressed metal bilayer and polymer hinges that soften with increased temperature. Both types of microdevices can self-actuate when exposed to the elevated temperature of a cancerous tumor region, allowing for direct targeting for biopsies. Microgrippers can also be doped to become magnetically responsive, allowing for direction without tethers and the retrieval of microdevices containing excised tissue. The smaller size of stimuli-responsive microgrippers allows for their movement through hard-to-reach areas within the body and the successful extraction of intact cells, RNA and DNA. This review discusses the mechanisms of thermal- and magnetic-responsive microdevices and recent advances in microgripper technology to improve minimally invasive surgical techniques.


Assuntos
Hidrogéis , Polímeros , Biópsia , Magnetismo , Procedimentos Cirúrgicos Minimamente Invasivos , Temperatura
11.
Small ; 17(35): e2100446, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34013667

RESUMO

Thermal radiation in the mid-infrared region profoundly affects human lives in various fields, including thermal management, imaging, sensing, camouflage, and thermography. Due to their fixed emissivities, radiance features of conventional materials are usually proportional to the quadruplicate of surface temperature, which set the limit, that one type of material can only present a single thermal function. Therefore, it is necessary and urgent to design materials for dynamic thermal radiation regulations to fulfill the demands of the age of intelligent machines. Recently, the ability of some smart materials to dynamically regulate thermal radiation has been evaluated. These materials are found to be competent enough for various commands, thereby, providing better alternatives and tremendously promoting the commercial potentials. In this review, the dynamic regulatory mechanisms and recent progress in the evaluation of these smart materials are summarized, including thermochromic materials, electrochromic materials, mechanically and humidity responsive materials, with the potential applications, insufficient problems, and possible strategies highlighted.


Assuntos
Materiais Inteligentes , Humanos , Umidade , Temperatura , Termografia
12.
Biotechnol Bioeng ; 118(8): 2906-2922, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34050923

RESUMO

Nanotechnology is still developing over the decades and it is commonly used in biomedical applications with the design of nanomaterials due to the several purposes. With the investigation of materials on the molecular level has increased the develop composite nanomaterials with exceptional properties using in different applications and industries. The application of these composite nanomaterials is widely used in the fields of textile, chemical, energy, defense industry, electronics, and biomedical engineering which is growing and developing on human health. Development of biosensors for the diagnosis of diseases, drug targeting and controlled release applications, medical implants and imaging techniques are the research topics of nanobiotechnology. In this review, overview of the development of nanotechnology and applications which is use of composite nanomaterials in biomedical engineering is provided.


Assuntos
Materiais Biocompatíveis/química , Bioengenharia , Técnicas Biossensoriais , Sistemas de Liberação de Medicamentos , Nanocompostos/química , Nanotecnologia , Materiais Biocompatíveis/uso terapêutico , Nanocompostos/uso terapêutico
13.
Macromol Rapid Commun ; 42(11): e2100056, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33729614

RESUMO

Light-responsive reversible two-way shape memory polymers (2W-SMPs) are highly promising for many fields due to indirect heating, clean, and remote control. In this work, a composite with both thermal- and near-infrared (NIR) light-induced reversible two-way shape memory effect (2W-SME) is prepared by doping extremely little quantities of 2D non-layered molybdenum dioxide nanosheets (2D-MoO2 ) into semicrystalline poly(ethylene-co-vinyl acetate) (EVA) networks. This is the first report on light-induced reversible two-way shape memory composites employing 2D-MoO2 as photothermal fillers. Upon switching the NIR light on and off, due to the excellent photothermal feature and stability of 2D-MoO2 , the composite exhibits remarkable light-induced reversible 2W-SME. A light-driven actuator for sensing applications is designed based on the composite and the circuit, where the lamp acting as an alarm can raise and fade upon responding to NIR light. A completely flexible, fuel-free self-walking soft robot is designed based on the advantages of the light-responsive reversible 2W-SMPs. Additionally, the composite acting as a light-fueled crane is able to lift and lower a load that is 3846 times its own weight. The results demonstrate that the prepared composite has a promising prospect for applications as actuators, self-walking soft robot and crane.


Assuntos
Raios Infravermelhos , Materiais Inteligentes
14.
Artif Organs ; 45(5): 454-463, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33107042

RESUMO

Smart materials have intrinsic properties that change in a controlled fashion in response to external stimuli. Currently, the only smart materials with a significant clinical impact in cardiovascular implant design are shape memory alloys, particularly Nitinol. Recent prodigious progress in material science has resulted in the development of sophisticated shape memory polymers. In this article, we have reviewed the literature and outline the characteristics, advantages, and disadvantages of shape memory alloys and shape memory polymers which are relevant to clinical cardiovascular applications, and describe the potential of these smart materials for applications in coronary stents and transcatheter valves.


Assuntos
Doenças Cardiovasculares/cirurgia , Intervenção Coronária Percutânea/instrumentação , Polímeros/uso terapêutico , Materiais Inteligentes/uso terapêutico , Substituição da Valva Aórtica Transcateter/instrumentação , Desenho de Equipamento , Humanos , Teste de Materiais , Intervenção Coronária Percutânea/tendências , Stents/tendências , Substituição da Valva Aórtica Transcateter/tendências
15.
Drug Dev Ind Pharm ; 47(4): 521-534, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33307855

RESUMO

Additive manufacturing has attracted a lot of attention in fabrication of bio medical devices and structures in recent years. 4D printing, a new class of 3D printing where time is considered as a 4th dimension, allows us to build biological structures such as scaffolds, implants, and stents with dynamic performance mimicking the body's natural tissues. In order to properly exploit the capabilities of this fabrication method, understanding and exploiting the shape memory materials is critical. These 'smart' materials are responsive to the external stimuli which eliminates the need for utilizing the sensors, and batteries. These stimuli-triggered 'smart' materials possess a dynamic behavior unlike the static scaffolds based on conventional manufacturing techniques. In this review, recent advances on application of 4D printing for manufacturing of this type of materials and other high-performance biomaterials for medical applications have been discussed.


Assuntos
Biomimética , Impressão Tridimensional , Materiais Biocompatíveis
16.
Int J Mol Sci ; 22(5)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802425

RESUMO

Supramolecular peptide hydrogels are gaining increased attention, owing to their potential in a variety of biomedical applications. Their physical properties are similar to those of the extracellular matrix (ECM), which is key to their applications in the cell culture of specialized cells, tissue engineering, skin regeneration, and wound healing. The structure of these hydrogels usually consists of a di- or tripeptide capped on the N-terminus with a hydrophobic aromatic group, such as Fmoc or naphthalene. Although these peptide conjugates can offer advantages over other types of gelators such as cross-linked polymers, they usually possess the limitation of being particularly sensitive to proteolysis by endogenous proteases. One of the strategies reported that can overcome this barrier is to use a peptidomimetic strategy, in which natural amino acids are switched for non-proteinogenic analogues, such as D-amino acids, ß-amino acids, or dehydroamino acids. Such peptides usually possess much greater resistance to enzymatic hydrolysis. Peptides containing dehydroamino acids, i.e., dehydropeptides, are particularly interesting, as the presence of the double bond also introduces a conformational restraint to the peptide backbone, resulting in (often predictable) changes to the secondary structure of the peptide. This review focuses on peptide hydrogels and related nanostructures, where α,ß-didehydro-α-amino acids have been successfully incorporated into the structure of peptide hydrogelators, and the resulting properties are discussed in terms of their potential biomedical applications. Where appropriate, their properties are compared with those of the corresponding peptide hydrogelator composed of canonical amino acids. In a wider context, we consider the presence of dehydroamino acids in natural compounds and medicinally important compounds as well as their limitations, and we consider some of the synthetic strategies for obtaining dehydropeptides. Finally, we consider the future direction for this research area.


Assuntos
Materiais Biocompatíveis/química , Hidrogéis/química , Nanoestruturas/química , Peptídeos/química , Peptidomiméticos/química , Aminoácidos/química , Animais , Humanos , Estrutura Secundária de Proteína
17.
Annu Rev Biomed Eng ; 21: 241-265, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-30857392

RESUMO

Stimuli-responsive materials undergo triggered changes when presented with specific environmental cues. These dynamic systems can leverage biological signals found locally within the body as well as exogenous cues administered with spatiotemporal control, providing powerful opportunities in next-generation diagnostics and personalized medicine. Here, we review the synthetic and strategic advances used to impart diverse responsiveness to a wide variety of biomaterials. Categorizing systems on the basis of material type, number of inputs, and response mechanism, we examine past and ongoing efforts toward endowing biomaterials with customizable sensitivity. We draw an analogy to computer science, whereby a stimuli-responsive biomaterial transduces a set of inputs into a functional output as governed by a user-specified logical operator. We discuss Boolean and non-Boolean operations, as well as the various chemical and physical modes of signal transduction. Finally, we examine current limitations and promising directions in the ongoing development of programmable stimuli-responsive biomaterials.


Assuntos
Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Sistemas de Liberação de Medicamentos , Hidrogéis/química , Polímeros/química , Engenharia Tecidual/tendências , Trifosfato de Adenosina/química , Glucose/química , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Campos Magnéticos , Ácidos Nucleicos/química , Oxirredução , Resistência ao Cisalhamento , Temperatura , Ultrassom
18.
J Biomed Sci ; 26(1): 73, 2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31623607

RESUMO

Soft materials have been developed very rapidly in the biomedical field over the past 10 years because of advances in medical devices, cell therapy, and 3D printing for precision medicine. Smart polymers are one category of soft materials that respond to environmental changes. One typical example is the thermally-responsive polymers, which are widely used as cell carriers and in 3D printing. Self-healing polymers are one type of smart polymers that have the capacity to recover the structure after repeated damages and are often injectable through needles. Shape memory polymers are another type with the ability to memorize their original shape. These smart polymers can be used as cell/drug/protein carriers. Their injectability and shape memory performance allow them to be applied in bioprinting, minimally invasive surgery, and precision medicine. This review will describe the general materials design, characterization, as well as the current progresses and challenges of these smart polymers.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Medicina de Precisão/métodos , Polímeros Responsivos a Estímulos/uso terapêutico , Bioimpressão/instrumentação , Bioimpressão/métodos , Terapia Baseada em Transplante de Células e Tecidos/instrumentação , Humanos , Medicina de Precisão/instrumentação , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos
19.
Molecules ; 24(16)2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31443287

RESUMO

Smart nano-carriers have attained great significance in the biomedical field due to their versatile and interesting designs with different functionalities. The initial stages of the development of nanocarriers mainly focused on the guest loading efficiency, biocompatibility of the host and the circulation time. Later the requirements of less side effects with more efficacy arose by attributing targetability and stimuli-responsive characteristics to nano-carriers along with their bio- compatibility. Researchers are utilizing many stimuli-responsive polymers for the better release of the guest molecules at the targeted sites. Among these, pH-triggered release achieves increasing importance because of the pH variation in different organ and cancer cells of acidic pH. This specific feature is utilized to release the guest molecules more precisely in the targeted site by designing polymers having specific functionality with the pH dependent morphology change characteristics. In this review, we mainly concert on the pH-responsive polypeptides and some interesting nano-carrier designs for the effective theranostic applications. Also, emphasis is made on pharmaceutical application of the different nano-carriers with respect to the organ, tissue and cellular level pH environment.


Assuntos
Portadores de Fármacos , Concentração de Íons de Hidrogênio , Nanopartículas , Peptídeos , Nanomedicina Teranóstica , Animais , Ânions/química , Cátions/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Humanos , Micelas , Nanopartículas/química , Peptídeos/química , Polímeros/química
20.
Molecules ; 24(10)2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31096669

RESUMO

Recently, the fast development of hybrid nanogels dedicated to various applications has been seen. In this context, nanogels incorporating biomolecules into their nanonetworks are promising innovative carriers that gain great potential in biomedical applications. Hybrid nanogels containing various types of biomolecules are exclusively designed for: improved and controlled release of drugs, targeted delivery, improvement of biocompatibility, and overcoming of immunological response and cell self-defense. This review provides recent advances in this rapidly developing field and concentrates on: (1) the key physical consequences of using hybrid nanogels and introduction of biomolecules; (2) the construction and functionalization of degradable hybrid nanogels; (3) the advantages of hybrid nanogels in controlled and targeted delivery; and (4) the analysis of the specificity of drug release mechanisms in hybrid nanogels. The limitations and future directions of hybrid nanogels in targeted specific- and real-time delivery are also discussed.


Assuntos
Materiais Biocompatíveis/química , Biopolímeros/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Géis/química , Nanoestruturas/química , Animais , Fenômenos Biofísicos , Difusão , Liberação Controlada de Fármacos , Elasticidade , Humanos , Hidrogéis/química , Concentração de Íons de Hidrogênio , Estrutura Molecular , Nanoestruturas/ultraestrutura , Oligonucleotídeos/química , Proteínas/química , Temperatura , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA