Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 114(11): 118302, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25839315

RESUMO

We show direct experimental evidence that radiation effects produced by single MeV heavy ions on a polymer surface are weakened when the length of the ion track in the material is confined into layers of a few tens of nanometers. Deviation from the bulk (thick film) behavior of ion-induced craters starts at a critical thickness as large as ∼40 nm, due to suppression of long-range additive effects of excited atoms along the track. Good agreement was found between the experimental results, molecular dynamic simulations, and an analytical model.


Assuntos
Íons Pesados , Modelos Químicos , Polimetil Metacrilato/química , Simulação de Dinâmica Molecular
2.
J Mater Sci Mater Med ; 25(12): 2605-17, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25064465

RESUMO

The aim of this investigation was to enhance the biological behavior of NiTi shape memory alloy while preserving its super-elastic behavior in order to facilitate its compatibility for application in human body. The surfaces of NiTi samples were bombarded by three different nitrogen doses. Small-angle X-ray diffraction was employed for evaluating the generated phases on the bombarded surfaces. The electrochemical behaviors of the bare and surface-modified NiTi samples were studied in simulated body fluid (SBF) using electrochemical impedance and potentio-dynamic polarization tests. Ni ion release during a 2-month period of service in the SBF environment was evaluated using atomic absorption spectrometry. The cellular behavior of nitrogen-modified samples was studied using fibroblast cells. Furthermore, the effect of surface modification on super-elasticity was investigated by tensile test. The results showed the improvement of both corrosion and biological behaviors of the modified NiTi samples. However, no significant change in the super-elasticity was observed. Samples modified at 1.4E18 ion cm(-2) showed the highest corrosion resistance and the lowest Ni ion release.


Assuntos
Materiais Biocompatíveis/síntese química , Líquidos Corporais/química , Fibroblastos/citologia , Fibroblastos/fisiologia , Íons Pesados , Níquel/química , Nitrogênio , Titânio/química , Animais , Materiais Biocompatíveis/efeitos da radiação , Linhagem Celular , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Teste de Materiais , Camundongos , Níquel/efeitos da radiação , Propriedades de Superfície , Titânio/efeitos da radiação
3.
Sensors (Basel) ; 14(5): 8150-61, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24806739

RESUMO

Solid-state nanopores are emerging as a valuable tool for the detection and characterization of individual biomolecules. Central to their success is the realization of fabrication strategies that are both rapid and flexible in their ability to achieve diverse device dimensions. In this paper, we demonstrate the membrane thickness dependence of solid-state nanopore formation with a focused helium ion beam. We vary membrane thickness in situ and show that the rate of pore expansion follows a reproducible trend under all investigated membrane conditions. We show that this trend shifts to lower ion dose for thin membranes in a manner that can be described quantitatively, allowing devices of arbitrary dimension to be realized. Finally, we demonstrate that thin, small-diameter nanopores formed with our approach can be utilized for high signal-to-noise ratio resistive pulse sensing of DNA.


Assuntos
Condutometria/instrumentação , DNA/análise , Hélio , Membranas Artificiais , Nanopartículas/ultraestrutura , Nanoporos/ultraestrutura , Compostos de Silício/química , DNA/genética , Desenho de Equipamento , Análise de Falha de Equipamento , Íons Pesados , Teste de Materiais , Nanopartículas/química , Nanopartículas/efeitos da radiação , Compostos de Silício/efeitos da radiação , Propriedades de Superfície/efeitos da radiação
4.
J Biotechnol ; 394: 112-124, 2024 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-39197754

RESUMO

Vanillin is an inhibitor of lignocellulose hydrolysate, which can reduce the ability of Saccharomyces cerevisiae to utilize lignocellulose, which is an important factor limiting the development of the ethanol fermentation industry. In this study, mutants of vanillin-tolerant yeast named H6, H7, X3, and X8 were bred by heavy ion irradiation (HIR) combined with adaptive laboratory evolution (ALE). Phenotypic tests revealed that the mutants outperformed the original strain WT in tolerance, growth rate, genetic stability and fermentation ability. At 1.6 g/L vanillin concentration, the average OD600 value obtained for mutant strains was 0.95 and thus about 3.4-fold higher than for the wild-type. When the concentration of vanillin was 2.0 g/L, the glucose utilization rate of the mutant was 86.3 % within 96 h, while that of the original strain was only 70.0 %. At this concentration of vanillin, the mitochondrial membrane potential of the mutant strain recovered faster than that of the original strain, and the ROS scavenging ability was stronger. We analyzed the whole transcriptome sequencing map and the whole genome resequencing of the mutant, and found that DEGs such as FLO9, GRC3, PSP2 and SWF1, which have large differential expression multiples and obvious mutation characteristics, play an important role in cell flocculation, rDNA transcription, inhibition of DNA polymerase mutation and protein palmitoylation. These functions can help cells resist vanillin stress. The results show that combining HIR with ALE is an effective mutagenesis strategy. This approach can efficiently obtain Saccharomyces cerevisiae mutants with improved vanillin tolerance, and provide reference for obtaining robust yeast strains with lignocellulose inhibitor tolerance.


Assuntos
Benzaldeídos , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Benzaldeídos/farmacologia , Benzaldeídos/metabolismo , Fermentação , Íons Pesados , Evolução Molecular Direcionada/métodos , Mutação , Lignina/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Etanol/metabolismo , Etanol/farmacologia
5.
Microbiol Spectr ; 11(4): e0132223, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37310225

RESUMO

Radiation caries is one of the most common complications of head and neck radiotherapy. A shift in the oral microbiota is the main factor of radiation caries. A new form of biosafe radiation, heavy ion radiation, is increasingly being applied in clinical treatment due to its superior depth-dose distribution and biological effects. However, how heavy ion radiation directly impacts the oral microbiota and the progress of radiation caries are unknown. Here, unstimulated saliva samples from both healthy and caries volunteers and caries-related bacteria were directly exposed to therapeutic doses of heavy ion radiation to determine the effects of radiation on oral microbiota composition and bacterial cariogenicity. Heavy ion radiation significantly decreased the richness and diversity of oral microbiota from both healthy and caries volunteers, and a higher percentage of Streptococcus was detected in radiation groups. In addition, heavy ion radiation significantly enhanced the cariogenicity of saliva-derived biofilms, including the ratios of the genus Streptococcus and biofilm formation. In the Streptococcus mutans-Streptococcus sanguinis dual-species biofilms, heavy ion radiation increased the ratio of S. mutans. Next, S. mutans was directly exposed to heavy ions, and the radiation significantly upregulated the gtfC and gtfD cariogenic virulence genes to enhance the biofilm formation and exopolysaccharides synthesis of S. mutans. Our study demonstrated, for the first time, that direct exposure to heavy ion radiation can disrupt the oral microbial diversity and balance of dual-species biofilms by increasing the virulence of S. mutans, increasing its cariogenicity, indicating a potential correlation between heavy ions and radiation caries. IMPORTANCE The oral microbiome is crucial to understanding the pathogenesis of radiation caries. Although heavy ion radiation has been used to treat head and neck cancers in some proton therapy centers, its correlation with dental caries, especially its direct effects on the oral microbiome and cariogenic pathogens, has not been reported previously. Here, we showed that the heavy ion radiation directly shifted the oral microbiota from a balanced state to a caries-associated state by increasing the cariogenic virulence of S. mutans. Our study highlighted the direct effect of heavy ion radiation on oral microbiota and the cariogenicity of oral microbes for the first time.


Assuntos
Cárie Dentária , Íons Pesados , Microbiota , Humanos , Streptococcus mutans , Streptococcus , Streptococcus sanguis , Biofilmes
6.
Opt Express ; 20(17): 18772-83, 2012 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-23038517

RESUMO

We have fabricated thin erbium-doped amorphous silicon sub-oxide (a-SiOx) photonic crystal membrane using focused gallium ion beam (FIB). The photonic crystal is composed of a hexagonal lattice with a H1 defect supporting two quasi-doubly degenerate second order dipole states. 2-D simulation was used for the design of the structure and full 3-D FDTD (Finite-Difference Time-Domain) numerical simulations were performed for a complete analysis of the structure. The simulation predicted a quality factor for the structure of Q = 350 with a spontaneous emission enhancement of 7. Micro photoluminescence measurements showed an integrated emission intensity enhancement of ~2 times with a Q = 130. We show that the discrepancy between simulation and measurement is due to the conical shape of the photonic crystal holes and the optical losses induced by FIB milling.


Assuntos
Íons Pesados , Membranas Artificiais , Dióxido de Silício/química , Transdutores , Cristalização , Gálio , Teste de Materiais
7.
Nanotechnology ; 23(49): 495307, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23165355

RESUMO

The development of several kinds of micro/nanofabrication techniques has resulted in many innovations in the micro/nanodevices that support today's science and technology. With feature miniaturization, the fabrication tools have shifted from light to ionizing radiation. Here, we propose a simple micro/nanofabrication technique for organic materials using a scanning beam (SB) of ionizing radiation. By controlling the scission/crosslinking of the material via three-dimensional energy-deposition distribution of the SB, appropriate solvents can easily peel off only the crosslinked region from the bulk material. The technique was demonstrated using a focused ion beam and a chlorinated organic polymer. The polymer underwent main-chain scission upon irradiation, but it crosslinked after high-dose irradiation. Appropriate solvents could easily peel off only the crosslinked region from the bulk material. The technique, 'nanobead from nanocup', enabled the production of desired structures such as nanowires and nanomembranes. It can be also applied to the micro/nanofabrication of functional materials.


Assuntos
Reagentes de Ligações Cruzadas/química , Nanosferas/química , Nanosferas/efeitos da radiação , Compostos Orgânicos/química , Polímeros/química , Reagentes de Ligações Cruzadas/efeitos da radiação , Íons Pesados , Substâncias Macromoleculares/química , Substâncias Macromoleculares/efeitos da radiação , Teste de Materiais , Conformação Molecular , Nanosferas/ultraestrutura , Compostos Orgânicos/efeitos da radiação , Tamanho da Partícula , Polímeros/efeitos da radiação , Propriedades de Superfície/efeitos da radiação
8.
Mutat Res ; 737(1-2): 51-7, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22683605

RESUMO

Heavy ion irradiation has been used as radiotherapy of deep-seated tumors, and is also an inevitable health concern for astronauts in space mission. Unlike photons such as X-rays and γ-rays, a high linear energy transfer (LET) heavy ion has a varying energy distribution along its track. Therefore, it is important to determine the correlation of biological effects with the Bragg curve energy distribution of heavy ions. In this study, a continuous biological tissue equivalent was constructed using a layered cylinder of Arabidopsis seeds, which was irradiated with carbon ions of 87.5MeV/nucleon. The position of energy loss peak in the seed pool was determined with CR-39 track detectors. The mutagenic effect in vivo along the path of carbon ions was investigated with the seeds in each layer as an assay unit, which corresponded to a given position in physical Bragg curve. Homologous recombination frequency (HRF), expression level of AtRAD54 gene, germination rate of seeds, and survival rate of young seedlings were used as checking endpoints, respectively. Our results showed that Arabidopsis S0 and S1 plants exhibited significant increases in HRF compared to their controls, and the expression level of AtRAD54 gene in S0 plants was significantly up-regulated. The depth-biological effect curves for HRF and the expression of AtRAD54 gene were not consistent with the physical Bragg curve. Differently, the depth-biological effect curves for the developmental endpoints matched generally with the physical Bragg curve. The results suggested a different response pattern of various types of biological events to heavy ion irradiation. It is also interesting that except for HRF in S0 plants, the depth-biological effect curves for each biological endpoint were similar for 5Gy and 30Gy of carbon irradiation.


Assuntos
Arabidopsis/genética , Arabidopsis/efeitos da radiação , Carbono/toxicidade , Íons Pesados/efeitos adversos , Recombinação Homóloga/efeitos da radiação , Sementes/efeitos da radiação , Proteínas de Arabidopsis/metabolismo , DNA Helicases/metabolismo , Transferência Linear de Energia , Polietilenoglicóis , Sementes/genética , Regulação para Cima/efeitos da radiação
9.
J Nanosci Nanotechnol ; 12(6): 5009-15, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22905568

RESUMO

The possibility of fabricating nanoparticles by ion bombardment was investigated by the ion bombardment of indium films on oxide covered Si and Cr surfaces. The different masses of implanting specimen ensured the different energy transfer while the same Si substrate ensured the same thermal conductivity for the In and Cr layers. Chromium served as a reference for the effect of ion bombardment and as a substrate as well. The SRIM program was used to simulate the ion surface interaction process. The nanoparticles were detected by scanning electron microscopy (SEM). We found that the melting of the In layer results in the formation of nanoparticles of 50-300 nm diameter and 5-10 nm height. This method can be promising for nanoparticle formation of materials with low melting point.


Assuntos
Íons Pesados , Índio/química , Índio/efeitos da radiação , Membranas Artificiais , Modelos Químicos , Nanoestruturas/química , Nanoestruturas/efeitos da radiação , Simulação por Computador , Nanoestruturas/ultraestrutura , Tamanho da Partícula
10.
J Nanosci Nanotechnol ; 12(6): 4762-8, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22905528

RESUMO

In this work, we present results on study of DLC, nanocomposite and nanocrystal nanographite films synthesized utilizing mass-separated beam of C60-ions with energy in range from 2 to 6 keV (energy dispersions approximately 1 keV) and at Ts in the range of RT - 873 K. The dependence of the structure, mechanical and electrical properties from the ion energy and substrate temperature was revealed. We demonstrate a possibility to control the orientation of the base planes in the nanographite grains during the film growth. The dependence of mechanical properties of the films from the orientation of the base planes was defined. It is discussed a mechanisms of oriented growth for nanocrystal graphite. Possible applications of the textured nanocomposite and nanographite films are nanodevices, thin-filmed lithium batteries and field-emitter arrays.


Assuntos
Ácidos Carboxílicos/efeitos da radiação , Cristalização/métodos , Fulerenos/efeitos da radiação , Grafite/química , Grafite/efeitos da radiação , Íons Pesados , Membranas Artificiais , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Dureza/efeitos da radiação , Substâncias Macromoleculares/química , Substâncias Macromoleculares/efeitos da radiação , Teste de Materiais , Conformação Molecular/efeitos da radiação , Nanoestruturas/efeitos da radiação , Tamanho da Partícula , Propriedades de Superfície/efeitos da radiação
11.
Life Sci Space Res (Amst) ; 31: 71-79, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34689952

RESUMO

Energetic ion beam experiments with major space radiation elements, 1H, 4He, 16O, 28Si and 56Fe, have been conducted to investigate the radiation shielding properties of composite materials. These materials are expected to be used for parts and fixtures of space vehicles due to both their mechanical strength and their space radiation shielding capabilities. Low Z materials containing hydrogen are effective for shielding protons and heavy ions due to their high stopping power and large fragmentation cross section per unit mass. The stopping power of the composite materials used in this work is intermediate between that of aluminum and polyethylene, which are typical structural and shielding materials used in space. The total charge-changing cross sections per unit mass, σUM, of the composite materials are 1.3-1.8 times larger than that of aluminum. By replacing conventional aluminum used for spacecraft with commercially available composite (carbon fiber / polyether ether ketone), it is expected that the shielding effect is increased by ∼17%. The utilization of composite materials will help mitigate the space radiation hazard on future deep space missions.


Assuntos
Radiação Cósmica , Íons Pesados , Proteção Radiológica , Voo Espacial , Polietileno , Doses de Radiação , Astronave
12.
Carbohydr Polym ; 261: 117846, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33766342

RESUMO

In the clinical treatment of cancer, improving the effectiveness and targeting of drugs has always been a bottleneck problem that needs to be solved. In this contribution, inspired by the targeted inhibition on cancer from combination application of disulfiram and divalent copper ion (Cu2+), we optimized the concentration of disulfiram and Cu2+ ion for inhibiting esophageal cancer cells, and loaded them in hyaluronic acid (HA)/polyethyleneimine (PEI) nanoparticles with specific scales, in order to improve the effectiveness and targeting of drugs. The in vitro cell experiments demonstrated that more drug loaded HA/PEI nanoparticles accumulated to the esophageal squamous cell carcinoma (Eca109) and promoted higher apoptosis ratio of Eca109. Both in vitro and in vivo biological assessment verified that the disulfiram/Cu2+ loaded HA/PEI nanoparticles promoted the apoptosis of cancer cells and inhibited the tumor proliferation, but had no toxicity on other normal organs.


Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Cobre/administração & dosagem , Dissulfiram/administração & dosagem , Neoplasias Esofágicas/tratamento farmacológico , Ácido Hialurônico/química , Nanopartículas/química , Polietilenoimina/química , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Células Cultivadas , Cobre/farmacocinética , Dissulfiram/farmacocinética , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Portadores de Fármacos/uso terapêutico , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Íons Pesados , Humanos , Ácido Hialurônico/síntese química , Ácido Hialurônico/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/uso terapêutico , Polietilenoimina/síntese química , Polietilenoimina/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Nanotechnology ; 21(17): 175102, 2010 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-20357408

RESUMO

Polyaniline (PAni) nanofibers doped with HCl and CSA have been irradiated with 90 MeV O(7+) ions with fluence of 3 x 10(10), 3 x 10(11) and 1 x 10(12) ions cm(-2). TEM micrographs show a decrease in the fiber diameter with increasing irradiation fluence, which has been explained on the basis of the Coulomb explosion model. XRD analysis reveals a decrease in the crystalline domain length and an increase in the strain. The increase in d-spacing for the (100) reflection with increasing irradiation fluence is ascribed to the increase in the tilt angle of the polymer chain, which is also evident from micro-Raman spectra. UV-vis spectra of the PAni nanofibers exhibit blue-shift in the absorption bands attributed to pi-pi* band transitions indicating a reduction in particle size after SHI irradiation; as also observed in TEM micrographs. Micro-Raman spectra also reveal a transition from the benzenoid to quinoid structures in the PAni chain as the fluence is increased. Although the quinoid unit has no hydrogen for DPPH scavenging, the antioxidant activity of PAni nanofibers is found to increase with increasing fluence. This has been attributed to the availability of more reaction sites as a result of fragmentation of the PAni nanofibers which compensates for the benzenoid to quinoid transition after irradiation. The biocompatibility of the PAni nanofibers is also found to increase with increasing irradiation fluence, indicating the possibility of employing swift heavy ion irradiation as an effective technique in order to modify conducting polymer nanostructures for biomedical applications.


Assuntos
Compostos de Anilina/química , Compostos de Anilina/efeitos da radiação , Antioxidantes/farmacologia , Materiais Biocompatíveis/efeitos da radiação , Íons Pesados , Nanofibras/efeitos da radiação , Compostos de Anilina/farmacologia , Antioxidantes/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Cânfora/análogos & derivados , Cânfora/química , Hemólise/efeitos dos fármacos , Ácido Clorídrico/química , Teste de Materiais/métodos , Microscopia Eletrônica de Transmissão , Nanofibras/química , Nanofibras/ultraestrutura , Tamanho da Partícula , Espectrofotometria Ultravioleta , Difração de Raios X
14.
J Mater Sci Mater Med ; 20 Suppl 1: S271-5, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19089600

RESUMO

The effect of swift heavy oxygen ion irradiation of hydroxyapatite on its in vitro bioactivity was studied. The irradiation experiment was performed using oxygen ions at energy of 100 MeV with 1 x 10(12) and 1 x 10(13) ions/cm2 fluence range. The irradiated samples were characterized by glancing angle X-ray diffraction (GXRD), photoluminescence spectroscopy (PL) and scanning electron microscopy (SEM). GXRD showed that irradiated samples exhibited better crystallinity. The irradiated samples revealed an increase in PL intensity. In addition, the irradiated hydroxyapatite was found to have enhanced bioactivity.


Assuntos
Durapatita/química , Durapatita/efeitos da radiação , Oxigênio/farmacologia , Líquidos Corporais/fisiologia , Substitutos Ósseos/química , Substitutos Ósseos/farmacologia , Substitutos Ósseos/efeitos da radiação , Durapatita/farmacologia , Íons Pesados , Concentração de Íons de Hidrogênio , Teste de Materiais , Microscopia Eletrônica de Varredura , Modelos Biológicos , Propriedades de Superfície , Difração de Raios X
15.
Radiat Prot Dosimetry ; 186(2-3): 168-171, 2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31803909

RESUMO

Plasmid DNA is commonly used as a simpler substitute for a cell in studies of early effects of ionizing radiation because it allows to determine yields of primary DNA lesions. Experimental studies often employ plasmids of different lengths, in different concentrations in the aqueous solution. Influence of these parameters on the heavy-ion induced yields of primary DNA damage has been studied, using plasmids pUC19 (2686 bp), pBR322 (4361 bp) and pKLAC2 (9107 bp) in 10 and 50 ng/µl concentration. Results demonstrate the impact of plasmid length, while no significant difference was observed between the two concentrations. The uncertainty of the results is discussed.


Assuntos
Dano ao DNA/efeitos da radiação , DNA/efeitos da radiação , Plasmídeos/efeitos da radiação , Algoritmos , Antioxidantes/farmacologia , Relação Dose-Resposta à Radiação , Raios gama , Íons Pesados , Transferência Linear de Energia , Método de Monte Carlo , Polipropilenos/química , Radiação Ionizante , Incerteza
16.
Carbohydr Polym ; 222: 114976, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31320042

RESUMO

A deeper understanding of the pretreatment process of lignocellulosic biomass could enhance the production efficiency of biofuels. Sweet sorghum straws (SSS) were subjected to heavy ion beams irradiation (HIBI) pretreatment and then hydrolyzed with 2.4 FPU of cellulase. Notably, the pretreatment has been proved to increase enzymatic digestibility of SSS. The reducing sugar yield and hydrolysis yield of SSS pretreated by 600 Gray (Gy) of HIBI reached to 7.23 mg/mL and 34.43% for 36 h, respectively, which was significantly higher than that of the untreated SSS (4.93 mg/mL of reducing sugar and 23.47% of hydrolysis yield). Additionally, the analysis of pretreated SSS showed that the destruction of amorphous region and surface ultrastructure as well as the transformation of polymorphs (Iα →Iß) of cellulose I were major effects on SSS by HIBI pretreatment. The results demonstrated that HIBI could be chosen as an effective physical pretreatment process for enhancing enzymatic hydrolysis yield of lignocellulosic biomass.


Assuntos
Biocombustíveis , Carbono/química , Lignina/química , Polissacarídeos/química , Biomassa , Celulase/química , Íons Pesados , Hidrólise , Radiação , Sorghum/metabolismo
17.
Cancer Sci ; 99(7): 1455-60, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18422753

RESUMO

Although mutations in the p53 gene can lead to resistance to radiotherapy, chemotherapy and thermotherapy, high linear energy transfer (LET) radiation induces apoptosis regardless of p53 gene status in cancer cells. The aim of this study was to clarify the mechanisms involved in high LET radiation-induced apoptosis. Human gingival cancer cells (Ca9-22 cells) containing a mutated p53 (mp53) gene were irradiated with X-rays, C-ion (13-100 KeV/microm), or Fe-ion beams (200 KeV/microm). Cellular sensitivities were determined using colony forming assays. Apoptosis was detected and quantified with Hoechst 33342 staining. The activity of Caspase-3 was analyzed with Western blotting and flow cytometry. Cells irradiated with high LET radiation showed a high sensitivity with a high frequency of apoptosis induction. The relative biological effectiveness (RBE) values for the surviving fraction and apoptosis induction increased in a LET-dependent manner. Both RBE curves reached a peak at 100 KeV/microm, and then decreased at values over 100 KeV/microm. When cells were irradiated with high LET radiation, Caspase-3 was cleaved and activated, leading to poly (ADP-ribose) polymerase (PARP) cleavage. In addition, Caspase-9 inhibitor suppressed Caspase-3 activation and apoptosis induction resulting from high LET radiation to a greater extent than Caspase-8 inhibitor. These results suggest that high LET radiation enhances apoptosis by activation of Caspase-3 through Caspase-9, even in the presence of mp53.


Assuntos
Apoptose/efeitos da radiação , Caspase 9/fisiologia , Genes p53/fisiologia , Mutação , Neoplasias/radioterapia , Caspase 3/fisiologia , Linhagem Celular Tumoral , Relação Dose-Resposta à Radiação , Ativação Enzimática , Íons Pesados , Humanos , Transferência Linear de Energia , Neoplasias/enzimologia , Neoplasias/patologia , Raios X
18.
IEEE Trans Nanobioscience ; 7(1): 1-10, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18334450

RESUMO

A better understanding of the interactions between biological entities and nanostructures is of central importance for developing functionalized materials and systems such as active surfaces with adapted biocompatibility. There is clear evidence in literature that cells and proteins generally interact with nanoscale-featured surfaces. Despite this quantity of information, little is known about the functional relationship between surface properties (i.e., roughness and nanostructuration) and biomolecules interaction. The main obstacle in the achievement of this goal is a technological one. Precise and straightforward control on surface modification at the nanometer level is required for understanding how nanostructuration influences interactions at bio/nonbio interface. In this paper, the authors describe the advantages of the focused ion beam (FIB) for surface nanostructuration of any material. The use of light transmitting substrates (especially glass) is often useful when studying the influence of surface morphology-in terms of shape and feature size-on bio/nonbio interactions by using traditional methods of biology and biotechnology. A simple methodology enabling a very efficient patterning of glass surfaces is thus described and validated: the enhancement of proteins interaction on FIB-nanostructured glass surfaces is demonstrated via fluorescence assays and a relationship between the adsorbed protein concentration and the density of surface patterning is derived.


Assuntos
Materiais Biocompatíveis/química , Bioensaio/métodos , Teste de Materiais/métodos , Microscopia de Fluorescência/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Íons Pesados , Propriedades de Superfície
19.
Phys Med Biol ; 63(18): 185006, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30113018

RESUMO

Facilities for heavy ion therapies are steadily increasing in number worldwide. One of the advantages of heavy ions is their high relative biological effect (RBE). In a model used at NIRS (National Institute of Radiological Sciences), linear energy transfer (LET) spectra are required to estimate biological dose (physical dose × RBE). The CR-39 plastic charged-particle detector (CR-39) is suitable for measurement of LET. For the present study, done at the Gunma University Heavy Ion Medical Center (GHMC), we measured LET spectra at 11 depths in spread-out Bragg peak (SOBP) irradiation by a 12C beam of 380 MeV/u. The lower threshold of the CR-39 to measure LET was about 5 keV µm-1 due to poor sensitivity for low LET. Then we calculated biological dose and survival fraction distributions and compared them with treatment planning results at GHMC. We used Monte Carlo simulation (Geant4) to calculate LET spectra. The simulation results were in good agreement with the experimental spectra. Moreover, the biological dose and survival fraction distributions estimated from the CR-39 reproduced the treatment planning. The CR-39 is suitable for estimating biological dose in carbon ion therapy.


Assuntos
Radioterapia com Íons Pesados/métodos , Íons Pesados , Transferência Linear de Energia , Polietilenoglicóis/química , Dosímetros de Radiação/normas , Humanos , Método de Monte Carlo , Polietilenoglicóis/efeitos da radiação , Eficiência Biológica Relativa
20.
Phys Med Biol ; 52(24): 7295-312, 2007 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-18065840

RESUMO

We study the spatial distributions of beta(+)-activity produced by therapeutic beams of (3)He and (12)C ions in various tissue-like materials. The calculations were performed within a Monte Carlo model for heavy-ion therapy (MCHIT) based on the GEANT4 toolkit. The contributions from positron-emitting nuclei with T(1/2) > 10 s, namely (10,11)C, (13)N, (14,15)O, (17,18)F and (30)P, were calculated and compared with experimental data obtained during and after irradiation, where available. Positron-emitting nuclei are created by a (12)C beam in fragmentation reactions of projectile and target nuclei. This leads to a beta(+)-activity profile characterized by a noticeable peak located close to the Bragg peak in the corresponding depth-dose distribution. This can be used for dose monitoring in carbon-ion therapy of cancer. In contrast, as most of the positron-emitting nuclei are produced by a (3)He beam in target fragmentation reactions, the calculated total beta(+)-activity during or soon after the irradiation period is evenly distributed within the projectile range. However, we predict also the presence of (13)N, (14)O, (17,18)F created in charge-transfer reactions by low-energy (3)He ions close to the end of their range in several tissue-like media. The time evolution of beta(+)-activity profiles was investigated for both kinds of beams. We found that due to the production of (18)F nuclides the beta(+)-activity profile measured 2 or 3 h after irradiation with (3)He ions will have a distinct peak correlated with the maximum of depth-dose distribution. We also found certain advantages of low-energy (3)He beams over low-energy proton beams for reliable PET monitoring during particle therapy of shallow-located tumours. In this case the distal edge of beta(+)-activity distribution from (17)F nuclei clearly marks the range of (3)He in tissues.


Assuntos
Carbono , Hélio , Neoplasias/diagnóstico , Tomografia por Emissão de Pósitrons/métodos , Software , Osso e Ossos , Carbono/uso terapêutico , Simulação por Computador , Relação Dose-Resposta à Radiação , Elétrons , Transferência de Energia , Íons Pesados , Hélio/uso terapêutico , Humanos , Modelos Biológicos , Modelos Químicos , Método de Monte Carlo , Músculos , Neoplasias/terapia , Imagens de Fantasmas , Polimetil Metacrilato , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Alta Energia/métodos , Eficiência Biológica Relativa , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA