Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33875585

RESUMO

The role of natural selection in the evolution of trait complexity can be characterized by testing hypothesized links between complex forms and their functions across species. Predatory venoms are composed of multiple proteins that collectively function to incapacitate prey. Venom complexity fluctuates over evolutionary timescales, with apparent increases and decreases in complexity, and yet the causes of this variation are unclear. We tested alternative hypotheses linking venom complexity and ecological sources of selection from diet in the largest clade of front-fanged venomous snakes in North America: the rattlesnakes, copperheads, cantils, and cottonmouths. We generated independent transcriptomic and proteomic measures of venom complexity and collated several natural history studies to quantify dietary variation. We then constructed genome-scale phylogenies for these snakes for comparative analyses. Strikingly, prey phylogenetic diversity was more strongly correlated to venom complexity than was overall prey species diversity, specifically implicating prey species' divergence, rather than the number of lineages alone, in the evolution of complexity. Prey phylogenetic diversity further predicted transcriptomic complexity of three of the four largest gene families in viper venom, showing that complexity evolution is a concerted response among many independent gene families. We suggest that the phylogenetic diversity of prey measures functionally relevant divergence in the targets of venom, a claim supported by sequence diversity in the coagulation cascade targets of venom. Our results support the general concept that the diversity of species in an ecological community is more important than their overall number in determining evolutionary patterns in predator trait complexity.


Assuntos
Crotalinae/genética , Dieta/tendências , Venenos de Serpentes/genética , Adaptação Biológica/genética , Animais , Crotalinae/metabolismo , Dieta/veterinária , Expressão Gênica/genética , América do Norte , Filogenia , Comportamento Predatório/fisiologia , Proteômica/métodos , Seleção Genética/genética , Venenos de Serpentes/metabolismo , Dente/metabolismo , Transcriptoma/genética
2.
Mol Phylogenet Evol ; 162: 107201, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33984469

RESUMO

Palaemonidae is the most speciose caridean shrimp family, with its huge biodiversity partially generated via symbiosis with various marine invertebrates. Previous studies have provided insights into the evolution of protective symbiosis in this family with evidence for frequent inter-phyla host switches, but the comprehensiveness of evolutionary pathways is hampered by the resolution of the previous phylogenetic trees as well as the taxon coverage. Furthermore, several critical issues related to the evolution of a symbiotic lifestyle, including the change in host spectrum and corresponding morphological adaptations, remain largely unresolved. We therefore performed a much extended phylogenetic comparative study on Palaemonidae, rooted in a comprehensive phylogeny reconstructed by a supermatrix-supertree approach based on a total of three mitochondrial and five nuclear markers. Ancestral state reconstruction of host associations revealed at least three independent evolutions into symbiosis, with potentially a drive to seek protection fuelling incipient symbiosis. Yet, most of the observed symbiotic species diversity was radiated from a single cnidarian associate. The evolution of mandibles and ambulatory dactyli suggests a general lack of correlation with host affiliation (except sponge endosymbionts), implying limited morphological adaptations following host switching, despite being putatively a major adaptive consequence of symbiosis. Our analyses of host spectrum, in terms of basic and taxonomic specificity, revealed no apparent phylogenetic signal but instead resolved a dynamic pattern attributable to frequent host switching. Uncoupling between host spectrum and the degree of morphological specialisation is the norm in palaemonids, suggesting that morphological characters are not fully in tune with host spectrum, in addition to host affiliation. This study demonstrates the complexity in the evolution of symbiosis, pointing to the presence of cryptic adaptations determining host spectrum and governing host switch diversification, and provides a clear direction for the evolutionary study of symbiosis in other marine symbiotic groups involving host switching.


Assuntos
Adaptação Biológica/genética , Especificidade de Hospedeiro , Palaemonidae/classificação , Palaemonidae/genética , Filogenia , Simbiose , Animais , Simbiose/genética
3.
Dev Dyn ; 248(2): 153-161, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30450697

RESUMO

A small fresh water fish, the Mexican tetra (Astyanax mexicanus) is a novel animal model in evolutionary developmental biology. The existence of morphologically distinct surface and cave morphs of this species allows simultaneous comparative analysis of phenotypic changes at different life stages. The cavefish harbors many favorable constructive traits (i.e., large jaws with an increased number of teeth, neuromast cells, enlarged olfactory pits and excess storage of adipose tissues) and regressive traits (i.e., reduced eye structures and pigmentation) which are essential for cave adaptation. A wide spectrum of natural craniofacial morphologies can be observed among the different cave populations. Recently, the Mexican tetra has been identified as a human disease model. The fully sequenced genome along with modern genome editing tools has allowed researchers to generate transgenic and targeted gene knockouts with phenotypes that resemble human pathological conditions. This review will discuss the anatomy of the craniofacial skeleton of A. mexicanus with a focus on morphologically variable facial bones, jaws that house continuously replacing teeth and pharyngeal skeleton. Furthermore, the possible applications of this model animal in identifying human congenital and metabolic skeletal disorders is addressed. Developmental Dynamics 248:153-161, 2019. © 2018 Wiley Periodicals, Inc.


Assuntos
Doenças Ósseas , Osso e Ossos/anatomia & histologia , Characidae/anatomia & histologia , Modelos Animais de Doenças , Adaptação Biológica/genética , Animais , Cavernas , Characidae/genética , Peixes , Humanos , Esqueleto/anatomia & histologia , Crânio/anatomia & histologia , Dente
4.
Proc Biol Sci ; 284(1860)2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28768892

RESUMO

Understanding the developmental processes that underlie the production of adaptive variation (i.e. the 'arrival of the fittest') is a major goal of evolutionary biology. While most evo-devo studies focus on the genetic underpinnings of adaptive phenotypic variation, factors beyond changes in nucleotide sequence can also play a major role in shaping developmental outcomes. Here, we document a vigorous but enigmatic gaping behaviour during the early development of Lake Malawi cichlid larvae. The onset of the behaviour precedes the formation of bone, and we predicted that it might influence craniofacial shape by affecting the mechanical environment in which bone develops. Consistent with this, we found that both natural variation and experimental manipulation of this behaviour induced differential skeletal development that foreshadows adaptive variation in adult trophic morphology. In fact, the magnitude of difference in skeletal morphology induced by these simple shifts in behaviour was similar to those predicted to be caused by genetic factors. Finally, we demonstrate that this mechanical-load-induced shift in skeletal development is associated with differences in ptch1 expression, a gene previously implicated in mediating between-species differences in skeletal shape. Our results underscore the complexity of development, and the importance of epigenetic (sensu Waddington) mechanisms in determining adaptive phenotypic variation.


Assuntos
Adaptação Biológica/genética , Evolução Biológica , Ciclídeos/anatomia & histologia , Epigênese Genética , Arcada Osseodentária/anatomia & histologia , Animais , Comportamento Animal , Ciclídeos/genética , Larva/crescimento & desenvolvimento , Malaui , Receptor Patched-1/genética , Fenótipo
5.
Mol Ecol ; 26(23): 6634-6653, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29098748

RESUMO

Adaptive radiations are characterized by adaptive diversification intertwined with rapid speciation within a lineage resulting in many ecologically specialized, phenotypically diverse species. It has been proposed that adaptive radiations can originate from ancestral lineages with pronounced phenotypic plasticity in adaptive traits, facilitating ecologically driven phenotypic diversification that is ultimately fixed through genetic assimilation of gene regulatory regions. This study aimed to investigate how phenotypic plasticity is reflected in gene expression patterns in the trophic apparatus of several lineages of East African cichlid fishes, and whether the observed patterns support genetic assimilation. This investigation used a split brood experimental design to compare adaptive plasticity in species from within and outside of adaptive radiations. The plastic response was induced in the crushing pharyngeal jaws through feeding individuals either a hard or soft diet. We find that nonradiating, basal lineages show higher levels of adaptive morphological plasticity than the derived, radiated lineages, suggesting that these differences have become partially genetically fixed during the formation of the adaptive radiations. Two candidate genes that may have undergone genetic assimilation, gif and alas1, were identified, in addition to alterations in the wiring of LPJ patterning networks. Taken together, our results suggest that genetic assimilation may have dampened the inducibility of plasticity related genes during the adaptive radiations of East African cichlids, flattening the reaction norms and canalizing their feeding phenotypes, driving adaptation to progressively more narrow ecological niches.


Assuntos
Adaptação Biológica/genética , Ciclídeos/classificação , Especiação Genética , Arcada Osseodentária/anatomia & histologia , África Oriental , Animais , Ciclídeos/anatomia & histologia , Dieta , Comportamento Alimentar , Proteínas de Peixes/genética , Fenótipo
6.
Mol Biol Evol ; 30(4): 881-93, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23228887

RESUMO

Streptococcus mutans is widely recognized as one of the key etiological agents of human dental caries. Despite its role in this important disease, our present knowledge of gene content variability across the species and its relationship to adaptation is minimal. Estimates of its demographic history are not available. In this study, we generated genome sequences of 57 S. mutans isolates, as well as representative strains of the most closely related species to S. mutans (S. ratti, S. macaccae, and S. criceti), to identify the overall structure and potential adaptive features of the dispensable and core components of the genome. We also performed population genetic analyses on the core genome of the species aimed at understanding the demographic history, and impact of selection shaping its genetic variation. The maximum gene content divergence among strains was approximately 23%, with the majority of strains diverging by 5-15%. The core genome consisted of 1,490 genes and the pan-genome approximately 3,296. Maximum likelihood analysis of the synonymous site frequency spectrum (SFS) suggested that the S. mutans population started expanding exponentially approximately 10,000 years ago (95% confidence interval [CI]: 3,268-14,344 years ago), coincidental with the onset of human agriculture. Analysis of the replacement SFS indicated that a majority of these substitutions are under strong negative selection, and the remainder evolved neutrally. A set of 14 genes was identified as being under positive selection, most of which were involved in either sugar metabolism or acid tolerance. Analysis of the core genome suggested that among 73 genes present in all isolates of S. mutans but absent in other species of the mutans taxonomic group, the majority can be associated with metabolic processes that could have contributed to the successful adaptation of S. mutans to its new niche, the human mouth, and with the dietary changes that accompanied the origin of agriculture.


Assuntos
Evolução Molecular , Metagenômica , Streptococcus mutans/genética , Adaptação Biológica/genética , Metabolismo dos Carboidratos/genética , Cárie Dentária/microbiologia , Frequência do Gene , Genoma Bacteriano , Humanos , Funções Verossimilhança , Desequilíbrio de Ligação , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Recombinação Genética , Seleção Genética
7.
Mol Ecol ; 23(21): 5304-22, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25256664

RESUMO

Divergent natural selection acting in different habitats may build up barriers to gene flow and initiate speciation. This speciation continuum can range from weak or no divergence to strong genetic differentiation between populations. Here, we focus on the early phases of adaptive divergence in the East African cichlid fish Astatotilapia burtoni, which occurs in both Lake Tanganyika (LT) and inflowing rivers. We first assessed the population structure and morphological differences in A. burtoni from southern LT. We then focused on four lake-stream systems and quantified body shape, ecologically relevant traits (gill raker and lower pharyngeal jaw) as well as stomach contents. Our study revealed the presence of several divergent lake-stream populations that rest at different stages of the speciation continuum, but show the same morphological and ecological trajectories along the lake-stream gradient. Lake fish have higher bodies, a more superior mouth position, longer gill rakers and more slender pharyngeal jaws, and they show a plant/algae and zooplankton-biased diet, whereas stream fish feed more on snails, insects and plant seeds. A test for reproductive isolation between closely related lake and stream populations did not detect population-assortative mating. Analyses of F1 offspring reared under common garden conditions indicate that the detected differences in body shape and gill raker length do not constitute pure plastic responses to different environmental conditions, but also have a genetic basis. Taken together, the A. burtoni lake-stream system constitutes a new model to study the factors that enhance and constrain progress towards speciation in cichlid fishes.


Assuntos
Adaptação Biológica/genética , Evolução Biológica , Ciclídeos/genética , Genética Populacional , Animais , Ciclídeos/anatomia & histologia , DNA Mitocondrial/genética , Ecossistema , Lagos , Repetições de Microssatélites , Dados de Sequência Molecular , Fenótipo , Filogeografia , Isolamento Reprodutivo , Rios , Seleção Genética , Análise de Sequência de DNA
8.
Transgenic Res ; 23(2): 211-23, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23982743

RESUMO

Drought is a major stress that affects the yield and quality of tea, a widely consumed beverage crop grown in more than 20 countries of the world. Therefore, osmotin gene-expressing transgenic tea plants produced using earlier optimized conditions were evaluated for their tolerance of drought stress and their quality. Improved tolerance of polyethylene glycol-induced water stress and faster recovery from stress were evident in transgenic lines compared with the normal phenotype. Significant improvements in growth under in-vitro conditions were also observed. Besides enhanced reactive oxygen species-scavenging enzyme activity, the transgenic lines contained significantly higher levels of flavan-3-ols and caffeine, key compounds that govern quality and commercial yield of the beverage. The selected transgenic lines have the potential to meet the demands of the tea industry for stress-tolerant plants with higher yield and quality. These traits of the transgenic lines can be effectively maintained for generations because tea is commercially cultivated through vegetative propagation only.


Assuntos
Adaptação Biológica/genética , Camellia sinensis/genética , Secas , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico/genética , Análise de Variância , Cafeína/análise , Camellia sinensis/crescimento & desenvolvimento , Camellia sinensis/metabolismo , Cromatografia Líquida de Alta Pressão , Flavonoides/análise , Sequestradores de Radicais Livres/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Polietilenoglicóis , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
J Proteome Res ; 12(11): 5313-22, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24066708

RESUMO

The global proteomic response of the nonstarter lactic acid bacteria Lactobacillus casei strain GCRL163 under carbohydrate depletion was investigated to understand aspects of its survival following cessation of fermentation. The proteome of L. casei GCRL163 was analyzed quantitatively after growth in modified MRS (with and without Tween 80) with different levels of lactose (0% lactose, starvation; 0.2% lactose, growth limiting; 1% lactose, non-growth-limited control) using gel-free proteomics. Results revealed that carbohydrate starvation lead to suppression of lactose and galactose catabolic pathways as well as pathways for nucleotide and protein synthesis. Enzymes of the glycolysis/gluconeogenesis pathway, amino acid synthesis, and pyruvate and citrate metabolism become more abundant as well as other carbohydrate catabolic pathways, suggesting increased optimization of intermediary metabolism and scavenging. Tween 80 did not affect growth yield; however, proteins related to fatty acid biosynthesis were repressed in the presence of Tween 80. The data suggest that L. casei adeptly switches to a scavenging mode, using both citrate and Tween 80, and efficiently adjusts energetic requirements when carbohydrate starved and thus can sustain survival for weeks to months. Explaining the adaptation of L. casei during lactose starvation will assist efforts to maintain viability of L. casei and extend its utility as a beneficial dietary adjunct and fermentation processing aid.


Assuntos
Adaptação Biológica/fisiologia , Carboidratos/deficiência , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Lacticaseibacillus casei/fisiologia , Redes e Vias Metabólicas/efeitos dos fármacos , Proteoma/genética , Adaptação Biológica/genética , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel de Poliacrilamida , Galactose/metabolismo , Lacticaseibacillus casei/genética , Lactose/metabolismo , Polissorbatos/farmacologia , Proteoma/fisiologia , Espectrometria de Massas em Tandem
10.
Mol Ecol ; 22(3): 650-69, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23057963

RESUMO

The study of parallel evolution facilitates the discovery of common rules of diversification. Here, we examine the repeated evolution of thick lips in Midas cichlid fishes (the Amphilophus citrinellus species complex)-from two Great Lakes and two crater lakes in Nicaragua-to assess whether similar changes in ecology, phenotypic trophic traits and gene expression accompany parallel trait evolution. Using next-generation sequencing technology, we characterize transcriptome-wide differential gene expression in the lips of wild-caught sympatric thick- and thin-lipped cichlids from all four instances of repeated thick-lip evolution. Six genes (apolipoprotein D, myelin-associated glycoprotein precursor, four-and-a-half LIM domain protein 2, calpain-9, GTPase IMAP family member 8-like and one hypothetical protein) are significantly underexpressed in the thick-lipped morph across all four lakes. However, other aspects of lips' gene expression in sympatric morphs differ in a lake-specific pattern, including the magnitude of differentially expressed genes (97-510). Generally, fewer genes are differentially expressed among morphs in the younger crater lakes than in those from the older Great Lakes. Body shape, lower pharyngeal jaw size and shape, and stable isotopes (δ(13)C and δ(15)N) differ between all sympatric morphs, with the greatest differentiation in the Great Lake Nicaragua. Some ecological traits evolve in parallel (those related to foraging ecology; e.g. lip size, body and head shape) but others, somewhat surprisingly, do not (those related to diet and food processing; e.g. jaw size and shape, stable isotopes). Taken together, this case of parallelism among thick- and thin-lipped cichlids shows a mosaic pattern of parallel and nonparallel evolution.


Assuntos
Evolução Biológica , Ciclídeos/anatomia & histologia , Ciclídeos/genética , Transcriptoma , Adaptação Biológica/genética , Animais , Isótopos de Carbono/análise , Nicarágua , Isótopos de Nitrogênio/análise , Polimorfismo de Nucleotídeo Único , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA