Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.893
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 566(7745): 528-532, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30760927

RESUMO

Over the past two centuries, mammalian chewing and related anatomical features have been among the most discussed of all vertebrate evolutionary innovations1-3. Chief among these features are two characters: the dentary-only mandible, and the tribosphenic molar with its triangulated upper cusps and lower talonid basin3-5. The flexible mandibular joint and the unfused symphysis of ancestral mammals-in combination with transformations of the adductor musculature and palate-are thought to have permitted greater mobility of each lower jaw, or hemimandible6,7. Following the appearance of precise dental occlusion near the origin of the mammalian crown8,9, therians evolved a tribosphenic molar with a craggy topography that is presumed to have been used to catch, cut and crush food. Here we describe the ancestral tribosphenic therian chewing stroke, as conserved in the short-tailed opossum Monodelphis domestica: it is a simple symmetrical sequence of lower tooth-row eversion and inversion during jaw opening and closing, respectively, enacted by hemimandibular long-axis rotation. This sequence is coupled with an eversion-inversion rotational grinding stroke. We infer that the ancestral therian chewing stroke relied heavily on long-axis rotation, including symmetrical eversion and inversion (inherited from the first mammaliaforms) as well as a mortar-and-pestle rotational grinding stroke that was inherited from stem therians along with the tribosphenic molar. The yaw-dominated masticatory cycle of primates, ungulates and other bunodont therians is derived; it is necessitated by a secondarily fused jaw symphysis, and permitted by the reduction of high, interlocking cusps10-12. The development of an efficient masticatory system-culminating in the tribosphenic apparatus-allowed early mammals to begin the process of digestion by shearing and crushing food into small boli instead of swallowing larger pieces in the reptilian manner, which necessitates a long, slow and wholly chemical breakdown. The vast diversity of mammalian teeth has emerged from the basic tribosphenic groundplan13.


Assuntos
Arcada Osseodentária/fisiologia , Mastigação/fisiologia , Dente Molar/fisiologia , Monodelphis/fisiologia , Animais , Evolução Biológica , Fenômenos Biomecânicos , Arcada Osseodentária/anatomia & histologia , Masculino , Dente Molar/anatomia & histologia , Monodelphis/anatomia & histologia , Rotação , Articulação Temporomandibular/anatomia & histologia , Articulação Temporomandibular/fisiologia
2.
J Anat ; 244(6): 929-942, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38308591

RESUMO

Premaxillary protrusion and the performance advantages it confers are implicated in the success of diverse lineages of teleost fishes, such as Cypriniformes and Acanthomorpha. Although premaxillary protrusion has evolved independently at least five times within bony fishes, much of the functional work investigating this kinesis relates to mechanisms found only in these two clades. Few studies have characterized feeding mechanisms in less-diverse premaxilla-protruding lineages and fewer yet have investigated the distinctive anatomy underlying jaw kinesis in these lineages. Here, we integrated dissection, clearing and staining, histology, micro-CT, and high-speed videography to investigate an isolated and independent origin of jaw protrusion in the hingemouth, Phractolaemus ansorgii, which employs a complex arrangement of bones, musculature, and connective tissues to feed on benthic detritus via a deployable proboscis. Our goals were to provide an integrative account of the underlying architecture of P. ansorgii's feeding apparatus and to assess the functional consequences of this drastic deviation from the more typical teleost condition. Phractolaemus ansorgii's cranial anatomy is distinct from all other fishes in that its adducted lower jaw is caudally oriented, and it possesses a mouth at the terminal end of an elongated, tube-like proboscis that is unique in its lack of skeletal support from the oral jaws. Instead, its mouth is supported primarily by hyaline-cell cartilage and other rigid connective tissues, and features highly flexible lips that are covered in rows of keratinous unculi. Concomitant changes to the adductor musculature likely allow for the flexibility to protrude the mouth dorsally and ventrally as observed during different feeding behaviors, while the intrinsic compliance of the lips allows for more effective scraping of irregular surfaces. From our feeding videos, we find that P. ansorgii is capable of modulating the distance of protrusion, with maximum anterior protrusion exceeding 30% of head length. This represents a previously undescribed example of extreme jaw protrusion on par with many acanthomorph species. Protrusion is much slower in P. ansorgii-reaching an average speed of 2.74 cm/s-compared to acanthomorphs feeding on elusive prey or even benthivorous cypriniforms. However, this reorganization of cranial anatomy may reflect a greater need for dexterity to forage more precisely in multiple directions and on a wide variety of surface textures. Although this highly modified mechanism may have limited versatility over evolutionary timescales, it has persisted in solitude within Gonorynchiformes, representing a novel functional solution for benthic feeding in tropical West African rivers.


Assuntos
Comportamento Alimentar , Arcada Osseodentária , Animais , Arcada Osseodentária/anatomia & histologia , Arcada Osseodentária/fisiologia , Fenômenos Biomecânicos , Comportamento Alimentar/fisiologia , Peixes/anatomia & histologia , Peixes/fisiologia , Microtomografia por Raio-X
3.
J Exp Biol ; 227(9)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38726757

RESUMO

Differences in the physical and behavioral attributes of prey are likely to impose disparate demands of force and speed on the jaws of a predator. Because of biomechanical trade-offs between force and speed, this presents an interesting conundrum for predators of diverse prey types. Loggerhead shrikes (Lanius ludovicianus) are medium-sized (∼50 g) passeriform birds that dispatch and feed on a variety of arthropod and vertebrate prey, primarily using their beaks. We used high-speed video of shrikes biting a force transducer in lateral view to obtain corresponding measurements of bite force, upper and lower bill linear and angular displacements, and velocities. Our results show that upper bill depression (about the craniofacial hinge) is more highly correlated with bite force, whereas lower bill elevation is more highly correlated with jaw-closing velocity. These results suggest that the upper and lower jaws might play different roles for generating force and speed (respectively) in these and perhaps other birds as well. We hypothesize that a division of labor between the jaws may allow shrikes to capitalize on elements of force and speed without compromising performance. As expected on theoretical grounds, bite force trades-off against jaw-closing velocity during the act of biting, although peak bite force and jaw-closing velocity across individual shrikes show no clear signs of a force-velocity trade-off. As a result, shrikes appear to bite with jaw-closing velocities and forces that maximize biting power, which may be selectively advantageous for predators of diverse prey that require both jaw-closing force and speed.


Assuntos
Força de Mordida , Arcada Osseodentária , Animais , Fenômenos Biomecânicos , Arcada Osseodentária/fisiologia , Passeriformes/fisiologia , Comportamento Predatório/fisiologia , Bico/fisiologia , Gravação em Vídeo
4.
J Sports Sci ; 42(9): 763-768, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38873943

RESUMO

Research assessing the effects of mouthpieces on an individual's aerobic, anaerobic, or muscular performance have attributed cited improvements to the participant's ability to jaw clench. Jaw clenching research finds positive outcomes with the task of jaw clenching with targeted muscle groups in a controlled laboratory setting. Thus, the study's goal was to determine if the addition of a mouthpiece would positively affect performance outcomes in a field-based whole-body muscle movement. Fourteen participants (8=F and 6=M) NCAA softball and baseball athletes completed 5 maximal bat swings with and without a mouthpiece in 4 conditions: no jaw clenching (NC), mouthpiece and jaw clenching (MP+C), mouthpiece only (MP), and jaw clenching only (C). Significant differences occurred in conditions, with the highest velocity noted in the combined condition of MP+C (71.9 mph) as compared to NC (67.9 mph), MP (68.6 mph), and C (70.9 mph). A repeated measures ANOVA demonstrated significant differences with bat swing velocity (F = 13.19, df 3, p < 0.0001). Pairwise comparisons revealed significant differences in MP+C with MP (p = 0.007); MP+C with NC (p = 0.001), and C with NC (p = 0.009). The results of this study provide evidence of jaw clenching's positive effects on the dynamic, whole-body explosive activity of a bat swing.


Assuntos
Desempenho Atlético , Beisebol , Arcada Osseodentária , Protetores Bucais , Humanos , Masculino , Beisebol/fisiologia , Adulto Jovem , Feminino , Desempenho Atlético/fisiologia , Arcada Osseodentária/fisiologia , Fenômenos Biomecânicos , Movimento/fisiologia , Quirópteros/fisiologia , Adulto , Equipamentos Esportivos
5.
J Oral Rehabil ; 51(6): 1041-1049, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38491728

RESUMO

BACKGROUND: Jaw clenching improves dynamic reactive balance on an oscillating platform during forward acceleration and is associated with decreased mean sway speed of different body regions. OBJECTIVE: It is suggested that jaw clenching as a concurrent muscle activity facilitates human motor excitability, increasing the neural drive to distal muscles. The underlying mechanism behind this phenomenon was studied based on leg and trunk muscle activity (iEMG) and co-contraction ratio (CCR). METHODS: Forty-eight physically active and healthy adults were assigned to three groups, performing three oral motor tasks (jaw clenching, tongue pressing against the palate or habitual lower jaw position) during a dynamic one-legged stance reactive balance task on an oscillating platform. The iEMG and CCR of posture-relevant muscles and muscle pairs were analysed during platform forward acceleration. RESULTS: Tongue pressing caused an adjustment of co-contraction patterns of distal muscle groups based on changes in biomechanical coupling between the head and trunk during static balancing at the beginning of the experiment. Neither iEMG nor CCR measurement helped detect a general neuromuscular effect of jaw clenching on the dynamic reactive balance. CONCLUSION: The findings might indicate the existence of robust fixed patterns of rapid postural responses during the important initial phases of balance recovery.


Assuntos
Eletromiografia , Arcada Osseodentária , Contração Muscular , Equilíbrio Postural , Língua , Humanos , Equilíbrio Postural/fisiologia , Masculino , Feminino , Adulto , Arcada Osseodentária/fisiologia , Língua/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Adulto Jovem , Fenômenos Biomecânicos/fisiologia , Voluntários Saudáveis , Postura/fisiologia
6.
J Exp Biol ; 226(15)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37439316

RESUMO

Bite force and gape are two important performance metrics of the feeding system, and these metrics are inversely related for a given muscle size because of fundamental constraints in sarcomere length-tension relationships. How these competing performance metrics change in developing primates is largely unknown. Here, we quantified in vivo bite forces and gapes across ontogeny and examined these data in relation to body mass and cranial measurements in captive tufted capuchins, Sapajus spp. Bite force and gape were also compared across geometric and mechanical properties of mechanically challenging foods to investigate relationships between bite force, gape and food accessibility (defined here as the ability to breach shelled nuts). Bite forces at a range of gapes and feeding behavioral data were collected from a cross-sectional ontogenetic series of 20 captive and semi-wild tufted capuchins at the Núcleo de Procriação de Macacos-Prego Research Center in Araçatuba, Brazil. These data were paired with body mass, photogrammetric measures of jaw length and facial width, and food geometric and material properties. Tufted capuchins with larger body masses had absolutely higher in vivo bite forces and gapes, and animals with wider faces had absolutely higher bite forces. Bite forces and gapes were significantly smaller in juveniles compared with subadults and adults. These are the first primate data to empirically demonstrate the gapes at which maximum active bite force is generated and to demonstrate relationships to food accessibility. These data advance our understanding of how primates meet the changing performance demands of the feeding system during development.


Assuntos
Força de Mordida , Crânio , Animais , Estudos Transversais , Comportamento Alimentar/fisiologia , Sarcômeros , Fenômenos Biomecânicos , Arcada Osseodentária/fisiologia
7.
Eur J Oral Sci ; 131(2): e12917, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36749095

RESUMO

Although eicosapentaenoic acid (EPA) application in vitro inhibits voltage-gated Na+ (Nav) channels in excitable tissues, the acute local effect of EPA on the jaw-opening reflex in vivo remains unknown. The aim of the present study was to determine whether local administration of EPA to adult male Wistar rats could attenuate the excitability of the jaw-opening reflex in vivo, including nociception. The jaw-opening reflex evoked by electrical stimulation of the tongue was recorded by a digastric muscle electromyogram (dEMG) in pentobarbital-anesthetized rats. The amplitude of the dEMG response was significantly increased in proportion to the electrical stimulation intensity (1×-5× threshold). At 3×, local administration of EPA dose-dependently inhibited the dEMG response, lasting 60 min, with maximum inhibition observed within approximately 10 min. The mean magnitude of dEMG signal inhibition by EPA was almost equal to that observed with a local anesthetic, 1% lidocaine, and with a half dose of lidocaine plus a half dose of EPA. These findings suggest that EPA attenuates the jaw-opening reflex, possibly by blocking Nav channels of primary nerve terminals, and strongly support the idea that EPA is a potential therapeutic agent and complementary alternative medicine for the prevention of acute trigeminal nociception.


Assuntos
Ácido Eicosapentaenoico , Reflexo , Ratos , Masculino , Animais , Ratos Wistar , Ácido Eicosapentaenoico/farmacologia , Reflexo/fisiologia , Eletromiografia , Lidocaína/farmacologia , Estimulação Elétrica , Arcada Osseodentária/fisiologia
8.
J Oral Rehabil ; 50(11): 1270-1278, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37322854

RESUMO

BACKGROUND: Chewing and licking are primarily activated by central pattern generator (CPG) neuronal circuits in the brainstem and when activated trigger repetitive rhythmic orofacial movements such as chewing, licking and swallowing. These CPGs are reported to modulate orofacial reflex responses in functions such as chewing. OBJECTIVE: This study explored the modulation of reflex responses in the anterior and posterior bellies (ant-Dig and post-Dig, respectively) of the digastric muscle evoked by low-intensity trigeminal stimulation in conscious rats. METHODS: The ant-Dig and post-Dig reflexes were evoked by using low-intensity electrical stimulation applied to either the right or left inferior alveolar nerve. Peak-to-peak amplitudes and onset latencies were measured. RESULTS: No difference was observed between threshold and onset latency for evoking ant-Dig and post-Dig reflexes, suggesting that the latter was also evoked disynaptically. The peak-to-peak amplitude of both reflexes was significantly reduced during chewing, licking and swallowing as compared to resting period and was lowest during the jaw-closing phase of chewing and licking. Onset latency was significantly largest during the jaw-closing phase. Inhibitory level was similar between the ant-Dig and post-Dig reflex responses and between the ipsilateral and contralateral sides. CONCLUSION: These results suggest that both the ant-Dig and post-Dig reflex responses were significantly inhibited, probably due to CPG activation during feeding behaviours to maintain coordination of jaw and hyoid movements and hence ensure smooth feeding mechanics.


Assuntos
Arcada Osseodentária , Reflexo , Animais , Ratos , Arcada Osseodentária/fisiologia , Eletromiografia/métodos , Reflexo/fisiologia , Nervo Mandibular , Estimulação Elétrica , Músculos do Pescoço
9.
Evol Dev ; 24(1-2): 61-76, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35334153

RESUMO

Changing the shape of craniofacial bones can profoundly alter ecological function, and understanding how developmental conditions sculpt skeletal phenotypes can provide insight into evolutionary adaptations. Thyroid hormone (TH) stimulates metamorphosis and regulates skeletal morphogenesis across vertebrates. To assess the roles of this hormone in sculpting the craniofacial skeleton of a non-metamorphic vertebrate, we tested zebrafish for developmental periods of TH-induced craniofacial shape change. We analyzed shapes of specific bones that function in prey detection, capture and processing. We quantified these elements from late-larval through adult stages under three developmental TH profiles. Under wild-type conditions, each bone progressively grows allometrically into a mature morphology over the course of postembryonic development. In three of the four bones, TH was required to sculpt an adult shape: hypothyroidism inhibited aspects of shape change, and allowed some components of immature shape to be retained into adulthood. Excess developmental TH stimulated aspects of precocious shape change leading to abnormal morphologies in some bones. Skeletal features with functional importance showed high sensitivities to TH, including the transformator process of the tripus, the mandibular symphysis of the lower jaw, the scutiform lamina of the hyomandibula, and the anterior arm of the pharyngeal jaw. In all, we found that TH is necessary for shaping mature morphology of several essential skeletal elements; this requirement is particularly pronounced during larval development. Altered TH titer leads to abnormal morphologies with likely functional consequences, highlighting the potential of TH and downstream pathways as targets for evolutionary change.


Assuntos
Hormônios Tireóideos , Peixe-Zebra , Animais , Osso e Ossos , Arcada Osseodentária/fisiologia , Larva/metabolismo , Hormônios Tireóideos/metabolismo
10.
J Exp Biol ; 225(1)2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34897477

RESUMO

Caecilians are enigmatic limbless amphibians that, with a few exceptions, all have an at least partly burrowing lifestyle. Although it has been suggested that caecilian evolution resulted in sturdy and compact skulls as an adaptation to their head-first burrowing habits, no relationship between skull shape and burrowing performance has been demonstrated to date. However, the unique dual jaw-closing mechanism and the osteological variability of their temporal region suggest a potential relationship between skull shape and feeding mechanics. Here, we explored the relationships between skull shape, head musculature and in vivo bite forces. Although there is a correlation between bite force and external head shape, no relationship between bite force and skull shape could be detected. Whereas our data suggest that muscles are the principal drivers of variation in bite force, the shape of the skull is constrained by factors other than demands for bite force generation. However, a strong covariation between the cranium and mandible exists. Moreover, both cranium and mandible shape covary with jaw muscle architecture. Caecilians show a gradient between species with a long retroarticular process associated with a large and pennate-fibered m. interhyoideus posterior and species with a short process but long and parallel-fibered jaw adductors. Our results demonstrate the complexity of the relationship between form and function of this jaw system. Further studies that focus on factors such as gape distance or jaw velocity will be needed in order to fully understand the evolution of feeding mechanics in caecilians.


Assuntos
Anfíbios , Força de Mordida , Anfíbios/fisiologia , Animais , Fenômenos Biomecânicos , Cabeça , Arcada Osseodentária/fisiologia , Músculo Esquelético , Crânio
11.
J Exp Biol ; 225(2)2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34989395

RESUMO

The intramandibular joint (IMJ) is a secondary point of movement between the two major bones of the lower jaw. It has independently evolved in several groups of teleost fishes, each time representing a departure from related species in which the mandible functions as a single structure rotating only at the quadratomandibular joint (QMJ). In this study, we examine kinematic consequences of the IMJ novelty in a freshwater characiform fish, the herbivorous Distichodus sexfasciatus. We combine traditional kinematic approaches with trajectory-based analysis of motion shapes to compare patterns of prey capture movements during substrate biting, the fish's native feeding mode, and suction of prey from the water column. We find that the IMJ enables complex jaw motions and contributes to feeding versatility by allowing the fish to modulate its kinematics in response to different prey and to various scenarios of jaw-substrate interaction. Implications of the IMJ include context-dependent movements of lower versus upper jaws, enhanced lower jaw protrusion, and the ability to maintain contact between the teeth and substrate throughout the jaw closing or biting phase of the motion. The IMJ in D. sexfasciatus appears to be an adaptation for removing attached benthic prey, consistent with its function in other groups that have evolved the joint. This study builds on our understanding of the role of the IMJ during prey capture and provides insights into broader implications of the innovative trait.


Assuntos
Comportamento Alimentar , Arcada Osseodentária , Animais , Fenômenos Biomecânicos , Comportamento Alimentar/fisiologia , Peixes/fisiologia , Arcada Osseodentária/fisiologia , Mandíbula/fisiologia , Comportamento Predatório
12.
J Exp Biol ; 225(3)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35019979

RESUMO

Many fishes use substantial cranial kinesis to rapidly increase buccal cavity volume, pulling prey into the mouth via suction feeding. Living polypterids are a key lineage for understanding the evolution and biomechanics of suction feeding because of their phylogenetic position and unique morphology. Polypterus bichir have fewer mobile cranial elements compared with teleosts [e.g. immobile (pre)maxillae] but successfully generate suction through dorsal, ventral and lateral oral cavity expansion. However, the relative contributions of these motions to suction feeding success have not been quantified. Additionally, extensive body musculature and lack of opercular jaw opening linkages make P. bichir of interest for examining the role of cranial versus axial muscles in driving mandibular depression. Here, we analyzed the kinematics of buccal expansion during suction feeding in P. bichir using X-ray Reconstruction of Moving Morphology (XROMM) and quantified the contributions of skeletal elements to oral cavity volume expansion and prey capture. Mouth gape peaks early in the strike, followed by maximum cleithral and ceratohyal rotations, and finally by opercular and suspensorial abductions, maintaining the anterior-to-posterior movement of water. Using a new method of quantifying bones' relative contributions to volume change (RCVC), we demonstrate that ceratohyal kinematics are the most significant drivers of oral cavity volume change. All measured cranial bone motions, except abduction of the suspensorium, are correlated with prey motion. Lastly, cleithral retraction is largely concurrent with ceratohyal retraction and jaw depression, while the sternohyoideus maintains constant length, suggesting a central role of the axial muscles, cleithrum and ceratohyal in ventral expansion.


Assuntos
Comportamento Alimentar , Cinese , Animais , Fenômenos Biomecânicos , Comportamento Alimentar/fisiologia , Peixes , Arcada Osseodentária/fisiologia , Boca/fisiologia , Filogenia , Comportamento Predatório/fisiologia , Sucção
13.
Artigo em Inglês | MEDLINE | ID: mdl-34979243

RESUMO

The kinematics of lizard feeding are the result of complex interactions between the craniocervical, the hyolingual, and the locomotor systems. The coordinated movement of these elements is driven by sensory feedback from the tongue and jaws during intraoral transport. The kinematics of jaw movements have been suggested to be correlated with the functional characteristics of the prey consumed, such as prey mobility and hardness. However, whether and how dietary breadth correlates with the flexibility in the behavioral response has rarely been tested, especially at the intraspecific level. Here we tested whether an increase in dietary breadth was associated with a greater behavioral flexibility by comparing two recently diverged populations of insular Podarcis lizards differing in dietary breadth. To do so, we used a stereoscopic high-speed camera set-up to analyze the jaw kinematics while offering them different prey types. Our results show that prey type impacts kinematics, especially maximum gape, and maximum opening and closing speed. Furthermore, the behavioral flexibility was greater in the population with the greater dietary breadth, suggesting that populations which naturally encounter and feed on more diverse prey items show a greater ability to modulate their movements to deal with variation in functionally relevant prey properties. Finally, the more generalist population showed more stereotyped movements suggesting a finer motor control.


Assuntos
Lagartos , Animais , Fenômenos Biomecânicos/fisiologia , Comportamento Alimentar/fisiologia , Arcada Osseodentária/anatomia & histologia , Arcada Osseodentária/fisiologia , Lagartos/fisiologia , Comportamento Predatório/fisiologia
14.
Sensors (Basel) ; 22(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36433520

RESUMO

We proposed a novel jaw movement tracking method that can measure in six degrees of freedom. The magnetic field generated by a permanent magnet paired with a small, low-power-consumption Hall effect magnetic sensor is used to estimate the relative distance between two objects-in this instance, the lower and upper jaws. By installing a microelectromechanical system (MEMS) orientation sensor in the device, we developed a mouthpiece-type sensing device that can measure voluntary mandibular movements in three-dimensional orientation and position. An evaluation of individuals wearing this device demonstrated its ability to measure mandibular movement with an accuracy of approximately 3 mm. Using the movement recording feature with six degrees of freedom also enabled the evaluation of an individual's jaw movements over time in three dimensions. In this method, all sensors are built onto the mouthpiece and the sensing is completed in the oral cavity. It does not require the fixation of a large-scale device to the head or of a jig to the teeth, unlike existing mandibular movement tracking devices. These novel features are expected to increase the accessibility of routine measurements of natural jaw movement, unrestricted by an individual's physiological movement and posture.


Assuntos
Arcada Osseodentária , Movimento , Humanos , Movimento/fisiologia , Arcada Osseodentária/fisiologia , Magnetismo , Mandíbula/fisiologia , Fenômenos Magnéticos
15.
J Oral Rehabil ; 49(8): 806-816, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35514258

RESUMO

BACKGROUND: Individuals with impaired oral sensation report difficulty chewing, but little is known about the underlying changes to tongue and jaw kinematics. Methodological challenges impede the measurement of 3D tongue movement and its relationship to the gape cycle. OBJECTIVE: The aim of this study was to quantify the impact of loss of oral somatosensation on feeding performance, 3D tongue kinematics and tongue-jaw coordination. METHODOLOGY: XROMM (X-ray Reconstruction of Moving Morphology) was used to quantify 3D tongue and jaw kinematics during feeding in three rhesus macaques (Macaca mulatta) before and after an oral tactile nerve block. Feeding performance was measured using feeding sequence duration, number of manipulation cycles and swallow frequency. Coordination was measured using event- and correlation-based metrics of jaw pitch, anterior tongue length, width and roll. RESULTS: In the absence of tactile sensation to the tongue and other oral structures, feeding performance decreased, and the fast open phase of the gape cycle became significantly longer, relative to the other phases (p < .05). The tongue made similar shapes in both the control and nerve block conditions, but the pattern of tongue-jaw coordination became significantly more variable after the block (p < .05). CONCLUSION: Disruption of oral somatosensation impacts feeding performance by introducing variability into the typically tight pattern of tongue-jaw coordination.


Assuntos
Arcada Osseodentária , Mastigação , Animais , Comportamento Alimentar/fisiologia , Arcada Osseodentária/fisiologia , Macaca mulatta , Mastigação/fisiologia , Movimento , Sensação , Língua/fisiologia
16.
J Struct Biol ; 213(2): 107726, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33781897

RESUMO

In the course of a lifetime the crowns of teeth wear off, cementum thickens and the pulp closes-in or may stiffen. Little is known about how these changes affect the tooth response to load. Using a series of finite element models of teeth attached to the jawbone, and by comparing these to a validated model of a 'young' pig 3-rooted tooth, the effects of these structural changes were studied. Models of altered teeth show a stiffer response to mastication even when material properties used are identical to those found in 'young' teeth. This stiffening response to occlusal loads is mostly caused by the thicker cementum found in 'old' teeth. Tensile stresses associated with bending of dentine in the roots fall into a narrower distribution range with lower peak values. It is speculated that this is a possible protective adaptation mechanism of the aging tooth to avoid fracture. The greatest reduction in lateral motion was seen in the bucco-lingual direction. We propose that greater tooth motion during mastication is typical for the young growing animal. This motion is reduced in adulthood, favoring less off-axis loading, possibly to counteract natural bone resorption and consequent compromised anchoring.


Assuntos
Envelhecimento/fisiologia , Cemento Dentário/fisiologia , Mastigação/fisiologia , Mobilidade Dentária/fisiopatologia , Raiz Dentária/fisiologia , Animais , Simulação por Computador , Análise de Elementos Finitos , Arcada Osseodentária/fisiologia , Modelos Biológicos , Dente Molar/fisiologia , Suínos , Raiz Dentária/fisiopatologia
17.
Anaesthesia ; 76(11): 1511-1517, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34289084

RESUMO

Supraglottic airway devices are commonly used to manage the airway during general anaesthesia. There are sporadic case reports of temporomandibular joint dysfunction and dislocation following supraglottic airway device use. We conducted a prospective observational study of adult patients undergoing elective surgery where a supraglottic airway device was used as the primary airway device. Pre-operatively, all participants were asked to complete a questionnaire involving 12 points adapted from the Temporomandibular Joint Scale and the Liverpool Oral Rehabilitation Questionnaire. Objective measurements included inter-incisor distance as well as forward and lateral jaw movements. The primary outcome was the inter-incisor distance, an accepted measure of temporomandibular joint mobility. Both the questionnaire and measurements were repeated in the postoperative period and we analysed data from 130 participants. Mean (SD) inter-incisor distance in the pre- and postoperative period was 46.5 (7.2) mm and 46.3 (7.5) mm, respectively (p = 0.521) with a difference (95%CI) of 0.2 (-0.5 to 0.9) mm. Mean (SD) forward jaw movement in the pre- and postoperative period was 3.6 (2.4) mm and 3.9 (2.4) mm, respectively (p = 0.018). Mean (SD) lateral jaw movement to the right in the pre- and postoperative period was 8.9 (4.1) mm and 9.1 (4.0) mm, respectively (p = 0.314). Mean (SD) lateral jaw movement to the left in the pre- and postoperative period was 8.8 (4.0) mm and 9.3 (3.6) mm, respectively (p = 0.008). The number of patients who reported jaw clicks or pops before opening their mouth as wide as possible was 28 (21.5%) vs. 12 (9.2%) in the pre- and postoperative period, respectively (p < 0.001) with a difference (95%CI) of 12.3% (6.7-17.9%). There was no significant difference in the responses to the other 11 questions or in the number of patients who reported pain in the temporomandibular joint area postoperatively. No clinically significant dysfunction of the temporomandibular joint following the use of supraglottic airway devices in the postoperative period was identified by either patient questionnaires or objective measurements.


Assuntos
Anestesia Geral , Intubação Intratraqueal/instrumentação , Articulação Temporomandibular/fisiologia , Adulto , Idoso , Procedimentos Cirúrgicos Eletivos/efeitos adversos , Feminino , Humanos , Intubação Intratraqueal/métodos , Arcada Osseodentária/fisiologia , Masculino , Pessoa de Meia-Idade , Dor Pós-Operatória/patologia , Pacientes/psicologia , Período Pós-Operatório , Estudos Prospectivos , Inquéritos e Questionários
18.
Int J Mol Sci ; 22(15)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34360630

RESUMO

The aim of this study was to analyse the influence of different thread shapes of titanium dental implant on the bone collagen fibre orientation (BCFO) around loaded implants. Twenty titanium dental implants, divided for thread shapes in six groups (A-F) were analysed in the present study. All implants were immediately loaded and left in function for 6 months before retrieval. The parameters evaluated under scanning electron microscope were the thread width, thread depth, top radius of curvature, flank angle, and the inter-thread straight section. Two undecalcified histological sections were prepared from each implant. Birefringence analysis using circularly polarized light microscopy was used to quantitively measure BCFO. For groups A-F, respectively, transverse BCFO was 32.7%, 24.1%, 22.3%, 18.2%, 32.4%, and 21.2%, longitudinal BCFO was 28.2%, 14.5%, 44.9%, 33.1%, 37.7%, and 40.2%. The percentage differences between transverse and longitudinal orientation were 4.50% (A), 9.60% (B), -22.60% (C), -14.90% (D), -5.30% (E), and -19.00% (F). Following loading, the amount of transverse and longitudinal BCFO were significantly influenced by the thread shape. The greater flank angles and narrower inter-thread sections of the "V" shaped and "concave" shaped implant threads of groups A and B, respectively, promoted the predominance of transverse BCFO, compared to groups C-F (p < 0.05). A narrow inter-thread straight section promotes transverse BCFO, as do "V" shaped and "concave" shaped threads, which can thus be considered desirable design for implant threads.


Assuntos
Implantes Dentários , Colágenos Fibrilares/fisiologia , Arcada Osseodentária/fisiologia , Osseointegração , Desenho de Prótese , Humanos , Arcada Osseodentária/anatomia & histologia
19.
J Struct Biol ; 211(2): 107530, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32407760

RESUMO

We examine the structure of the bone of the pharyngeal jaws of a large fish, the black drum (Pogonias cromis), that uses its tooth-jaw complex to crush hard-shelled bivalve mollusks. During mastication huge compressive forces are concentrated in a tiny zone at the tooth-bone interface. We report on the structure of this bone, with emphasis on its contact with the teeth, at different hierarchical levels and in 3D. Micro-CT shows that the molariform teeth do not have roots and are supported by a circular narrow bony rim that surrounds the periphery of the tooth base. The lower pharyngeal jaw is highly porous, as seen by reflected light microscopy and secondary electron microscopy (SE-SEM). Porosity decreases close to the bone-tooth interface and back-scattered electron (BSE-SEM) microscopy shows a slight elevation in mineral density. Focused ion beam - scanning electron microscopy (FIB-SEM) in the serial surface view (SSV) mode reveals a most surprising organization at the nanoscale level: parallel arrays of mineralized collagen fibrils surrounding channels of ~100 nm diameter, both with their long axes oriented along the load direction. The channels are filled with organic matter. These fibril-channel arrays are surrounded by a highly disordered mineralized material. This unusual structure clearly functions efficiently under compression, but the precise way by which this unique arrangement achieves this function is unknown.


Assuntos
Peixes/fisiologia , Arcada Osseodentária/ultraestrutura , Mandíbula/ultraestrutura , Animais , Arcada Osseodentária/fisiologia , Mandíbula/fisiologia , Fenômenos Mecânicos , Dente/fisiologia , Dente/ultraestrutura
20.
Proc Biol Sci ; 287(1927): 20200428, 2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32429804

RESUMO

Tendon springs often influence locomotion by amplifying the speed and power of limb joint rotation. However, less is known about elastic recoil action in feeding systems, particularly for small aquatic animals. Here, we ask if elastic recoil amplifies the speed of gape closing during aquatic food processing in the Axolotl (Ambystoma mexicanum). We measure activation of the adductor mandibulae externus via electromyography and strain of the jaw adductor muscle-tendon unit (MTU), and gape kinematics via fluoromicrometry. The muscle is pre-activated coincident with gape opening, which causes MTU stretch. Activation lasts significantly shorter for fish than cricket processing, and muscle shortening during MTU lengthening yields significantly greater elastic strain for cricket processing. The speed of MTU shortening, which dictates the speed of gape closing is 2.5-4.4 times greater than the speed of the initial shortening of the muscle fascicles for fish and cricket gape cycles, respectively. These data demonstrate a clear role for elastic recoil, which may be unexpected for a MTU in a feeding system of a small, aquatic animal. Amplification of jaw-closing speed resulting from elastic recoil likely confers ecological advantages in reducing prey escape risks during food processing in a dense and viscous fluid environment.


Assuntos
Arcada Osseodentária/fisiologia , Urodelos/fisiologia , Animais , Elasticidade , Contração Muscular , Músculo Esquelético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA