Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35743311

RESUMO

(1) Background: Curcumin (CUR) and tetrandrine (TET) are natural compounds with various bioactivities, but have problems with low solubility, stability, and absorption rate, resulting in low bioavailability, and limited applications in food, medicine, and other fields. It is very important to improve the solubility while maintaining the high activity of drugs. Liposomes are micro-vesicles synthesized from cholesterol and lecithin. With high biocompatibility and biodegradability, liposomes can significantly improve drug solubility, efficacy, and bioavailability. (2) Methods: In this work, CUR and TET were encapsulated with nano-liposomes and g DSPE-MPEG 2000 (DP)was added as a stabilizer to achieve better physicochemical properties, biosafety, and anti-tumor effects. (3) Results: The nano-liposome (CT-DP-Lip) showed stable particle size (under 100 nm) under different conditions, high solubility, drug encapsulation efficiency (EE), loading capacity (LC), release rate in vitro, and stability. In addition, in vivo studies demonstrated CT-DP-Lip had no significant toxicity on zebrafish. Tumor cytotoxicity test showed that CT-DP-Lip had a strong inhibitory effect on a variety of cancer cells. (4) Conclusions: This work showed that nano-liposomes can significantly improve the physical and chemical properties of CUR and TET and make them safer and more efficient.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Curcumina , Neoplasias , Animais , Benzilisoquinolinas , Curcumina/química , Curcumina/farmacologia , Portadores de Fármacos/química , Lipossomos/química , Neoplasias/tratamento farmacológico , Tamanho da Partícula , Peixe-Zebra
2.
J Liposome Res ; 31(2): 145-157, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32223361

RESUMO

Tumour metastasis is a major cause of cancer treatment failure and death, and chemotherapy efficiency for gastric cancer patients is usually unsatisfactory due to tumour cell metastasis, poor targeting and serious adverse reactions. In this study, a kind of R8GD-modified epirubicin plus tetrandrine liposomes was prepared to enhance the antitumor efficiency via killing tumour cells, destroying tumour metastasis and inhibiting energy supply for tumour cells. In order to investigate the antitumour efficiency of the targeting liposomes, morphology observation, intracellular uptake, cytotoxic effects, and inhibition on tumour metastasis and energy supply were carried out in vitro, and tumour-bearing mice models were established to investigate the antitumour efficiency in vivo. In vitro results showed that R8GD-modified epirubicin plus tetrandrine liposomes with ideal physicochemical properties could kill the most tumour cells, inhibit tumour metastasis and cut-off energy supply for tumour cells. In vivo results exhibited that R8GD-modified epirubicin plus tetrandrine liposomes could enhance the accumulation in tumour site and display an obvious antitumor efficiency. Therefore, R8GD-modified epirubicin plus tetrandrine liposomes could be used as a potential therapy for treatment of gastric cancer.


Assuntos
Lipossomos , Neoplasias Gástricas , Animais , Benzilisoquinolinas , Linhagem Celular Tumoral , Epirubicina , Humanos , Camundongos , Neoplasias Gástricas/tratamento farmacológico
3.
J Sep Sci ; 43(3): 569-576, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31701613

RESUMO

10-Hydroxycamptothecin is a drug to cure various cancers. However, the 10-hydroxycamptothecin cannot be widely applied in clinics due to fast elimination and resistance of various cancers to the drug. Nevertheless, co-treatment with tetrandine is known to reverse the resistance of multi-drug resistant cancers, and may present an effective strategy to improve the efficacy of 10-hydroxycamptothecin. In order to improve the bioavailability and prolong the treatment time of the 10-hydroxycamptothecin in vivo, we prepared 10-hydroxycamptothecin-tetrandrine liposome complexes with 10-hydroxycamptothecin as the basic anticancer drug, tetrandrine and liposomes as carriers. In this article, an ultra-high performance liquid chromatography tandem mass spectrometry method for the analysis of 10-hydroxycamptothecin and tetrandrine in plasma has been developed, validated, and utilized to compare the pharmacokinetics of both drugs in the original dosage form and administered as liposome complexes. According to the pharmacokinetic parameters of mean residence time, half-life period and clearance rate, the 10-hydroxycamptothecin-tetrandrine liposome complexes prolongs the retention and circulation time of 10-hydroxycamptothecin in vivo, achieving a good sustained release effect. To the best of our current knowledge, the pharmacokinetic properties of 10-hydroxycamptothecin-tetrandrine liposome complexes in rats have not been reported yet. Our study can provide a helpful reference for further related study.


Assuntos
Antineoplásicos/farmacocinética , Benzilisoquinolinas/farmacocinética , Camptotecina/farmacocinética , Animais , Antineoplásicos/sangue , Antineoplásicos/química , Benzilisoquinolinas/sangue , Benzilisoquinolinas/química , Camptotecina/análogos & derivados , Camptotecina/sangue , Cromatografia Líquida de Alta Pressão , Lipossomos/sangue , Lipossomos/química , Lipossomos/farmacocinética , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
4.
Drug Dev Ind Pharm ; 46(2): 200-208, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31933388

RESUMO

Objectives: Stability issues are inevitable problems that are encountered in nanosuspension (NS) technology developments and in the industrial application of pharmaceuticals. This study aims to assess the stability of wet-milled cepharanthine NSs and elucidate the stabilization mechanisms of different stabilizers.Methods: The aggregation state was examined via scanning electron microscopy, laser diffraction, and rheometry. The zeta potential, stabilizer adsorption, surface tension, and drug-stabilizer interactions were employed to elucidate the stabilization mechanisms.Results: The results suggest that croscarmellose sodium (CCS), D-α-tocopherol polyethylene glycol 1000 succinate (TPGS), or polyvinyl pyrrolidone VA64 (PVP VA64) alone was able to prevent nanoparticle aggregation for at least 30 days. Attempts to evaluate the stability mechanisms of different stabilization systems revealed that CCS improved the steric-kinetic stabilization of the NSs, attributed to its high viscosity, swelling capacity, and physical barrier effects. In contrast, the excellent physical stability of TPGS systems was mainly due to the reduced surface tension and higher crystallinity. PVP VA64 can adsorb onto the surfaces of nanoparticles and stabilize the NS via steric forces.Conclusion: This study demonstrated the complex effects of CCS, TPGS, and PVP VA64 on cepharanthine NS stability and presented an approach for the rational design of stable NSs.


Assuntos
Benzilisoquinolinas/química , Nanopartículas/química , Suspensões/química , Adsorção , Carboximetilcelulose Sódica/química , Estabilidade de Medicamentos , Excipientes/química , Nanotecnologia/métodos , Polietilenoglicóis/química , Povidona/química , Vitamina E/química
5.
J Liposome Res ; 29(1): 21-34, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29166813

RESUMO

Brain glioma is one of the most common and devastating intracranial malignancies with a high mortality. Chemotherapy for brain glioma is not ideal due to blood brain barrier (BBB) and multidrug resistance (MDR). The objectives of the present study were to develop a kind of RGD (Arg-Gly-Asp) tripeptide modified vinorelbine plus tetrandrine liposomes to achieve BBB transportation, MDR reversion and glioma cell targeting simultaneously. The studies were performed on glioma cells, resistant glioma cells and glioma-bearing mice. Results showed that the constructed liposomes with suitable physicochemical properties could significantly enhance the transport across BBB, obviously accumulate in glioma cells, and exhibit evident capabilities in diminishing brain glioma in mice. Action mechanism studies indicated that the enhanced anticancer efficacy could be attribute to the follows: prolonged elimination half-life (7.093 ± 1.311 h); increased AUC0-24 h (28.92 ± 2.66 mg/L*h); transporting across BBB; enhanced cellular uptake; down-regulation on P-gp (0.49 ± 0.06 fold); inducing apoptosis via activating caspase 8, 9, and 3 (2.40 ± 0.22, 3.57 ± 0.29, and 4.33 ± 0.30 folds, respectively). In conclusion, the RGD modified vinorelbine plus tetrandrine liposomes may offer a promising therapeutic strategy for treatment of brain glioma.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Benzilisoquinolinas/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glioma/tratamento farmacológico , Lipossomos , Oligopeptídeos , Vinorelbina/administração & dosagem , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Humanos , Lipossomos/química , Camundongos
6.
J Microencapsul ; 36(4): 356-370, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31190597

RESUMO

Here, we have successfully synthesised and purified multifunctional PLGA-based nanoparticles by the co-encapsulation of an anticancer drug (tetrandrine) and a magnetic material (Fe3O4). The obtained Tet-Fe3O4-PLGA NPs had a uniform spherical shape with a particle size of approximately 199 nm and a negative surface charge of -18.0 mV, displaying a high encapsulation efficiency. Furthermore, TEM studies provided representative images of the purification process of the magnetic nanoparticles with MACS® technology. The MFM and VSM results indicated that both the Fe3O4 NPs and Tet-Fe3O4-PLGA NPs were superparamagnetic. The DSC spectrum demonstrated that Tet was successfully encapsulated within the PLGA-based nanoparticles. Significantly, the release studies revealed NPs had a relatively slower release rate than free Tet after 8 h's initial burst release, which had decreased from 98% to 65% after 24 h. In vitro cellular studies revealed that NPs could effectively penetrate into A549 cells and A549 multicellular spheroids to exert cytotoxicity, displaying a significantly high anti-proliferation effect. Moreover, western blot demonstrated that the co-loaded NPs had a higher anticancer activity by injuring lysosomes to activate the mitochondria pathway and induce A549 cell apoptosis. The magnetic characteristics and high anticancer activity support the use of Tet/Fe3O4 co-loaded PLGA-based nanoparticles as a promising strategy in the treatment of lung cancer.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Benzilisoquinolinas/administração & dosagem , Portadores de Fármacos/química , Nanopartículas de Magnetita/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Células A549 , Antineoplásicos Fitogênicos/farmacocinética , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Benzilisoquinolinas/farmacocinética , Benzilisoquinolinas/farmacologia , Liberação Controlada de Fármacos , Humanos , Neoplasias Pulmonares/tratamento farmacológico
7.
Zhongguo Zhong Yao Za Zhi ; 43(12): 2531-2536, 2018 Jun.
Artigo em Zh | MEDLINE | ID: mdl-29950071

RESUMO

In order to optimize the prescription and preparation process of norcantharidin/tetrandrine dual loaded liposomes, the dual drug loaded liposomes were prepared by film dispersion-ultrasonic method using norcantharidin-mesoporous silica nanoparticles(MSN-NCTD)and tetrandrine(Tet). With particle size and encapsulation efficiency as comprehensive indexes, the influences of phospholipid cholesterol amount, ultrasonic time and ultrasonic power on prescription process were investigated by orthogonal test; the in vitro release characteristics of liposomes were investigated by dialysis method. The results indicated that the best prescription process of prepared norcantharidin/tetrandrine dual loaded liposomes was as follows: phospholipid-cholesterol ratio 2.5:1, ultrasonic time 4 min, ultrasonic power 40%; the encapsulation efficiency was 86.62% and 79.19%respectively for NCTD and Tet;liposomes were well-shaped under the transmission microscope, with average particle size of (207.5±3.6) nm, Zeta potential of (1.345±0.173) mV; and the 48 h cumulative release rates of NCTD and Tet were 85.14% and 85.00% respectively. The experiment results proved that the dual drug loaded liposomes prepared by film dispersion-ultrasonic method had uniform particle size, high encapsulation efficiency and in vitro sustained release characteristics.


Assuntos
Benzilisoquinolinas/administração & dosagem , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Portadores de Fármacos/química , Lipossomos/química , Tamanho da Partícula
8.
J Microencapsul ; 33(3): 249-56, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26961245

RESUMO

The objective of this study was to improve the efficacy of a natural compound tetrandrine against cancer by designing surfactant-free poly(lactic-co-glycolic acid) (PLGA) nanoparticles as drug carriers for tetrandrine. Nanoparticles were prepared from PLGA via the nano-precipitation method with or without the presence of surfactant poly(vinyl alcohol) (PVA) to encapsulate tetrandrine. Tetrandrine-loaded surfactant-free PLGA nanoparticles had an average particle size of 169.3 nm and morphology similar to the PLGA nanoparticles prepared using PVA as the surfactant. Tetrandrine-loaded surfactant-free PLGA nanoparticles could retard drug release in phosphate buffered saline (PBS) at pH 7.4 and the cumulative release of tetrandrine reached up to 68.33% over a period of 120 h. A549 cell line was used as the model cancer cells to investigate anticancer capability of tetrandrine-loaded surfactant-free PLGA nanoparticles via apoptosis assay, cytotoxicity and lysosome injury studies. The results showed that tetrandrine-loaded surfactant-free PLGA nanoparticles could effectively reduce cell viability and synergistically enhance tetrandrine-induced cell apoptosis.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/farmacologia , Benzilisoquinolinas/administração & dosagem , Benzilisoquinolinas/farmacologia , Preparações de Ação Retardada/química , Poliglactina 910/química , Células A549 , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Nanopartículas/química
9.
J BUON ; 21(1): 125-34, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27061540

RESUMO

PURPOSE: Response surface methodology (RSM) using the central composite rotatable design (CCRD) model was used to optimize the formulation of paclitaxel (PTX)-cepharanthine (CEP) nanoparticles for gastric cancer. METHODS: Nanoparticles were prepared using nanoprecipitation technique and optimized using central composite rotatable design response surface methodology (CCRD-RSM). Further the optimized nanoparticles were characterised for particle size (PS), zeta potential, entrapment efficiency (EE), drug loading efficiency (DL), anticancer potential against MKN45 (human gastric cancer) cells, in vivo tumor inhibition and survival analysis. RESULTS: Significant findings were the optimal formulation of polymer concentration of 48 mg, surfactant concentration of 45% and EE of 98.12%, DL of 15.61% and mean diameter of 198±4.7 nm. The encapsulation of PTX/CEP into nanoparticles retained the synergistic anticancer efficiency against MKN45 cells. In the in vivo evaluation, PTXsCEP nanoparticles delivered into mice by intravenous injection significantly improved the antitumor efficacy of PTX/CEP. Moreover, PTX/CEP co-loaded nanoparticles substantially increased the overall survival in an established MKN45-transplanted mouse model. CONCLUSION: These data are the first to demonstrate that PTX/CEP co-loaded nanoparticles increased the anticancer efficacy in cell lines and xenograft mouse model. Our results suggest that PTX/CEP coloaded nanoparticles could be a potential useful chemotherapeutic formulation for gastric cancer.


Assuntos
Benzilisoquinolinas/administração & dosagem , Nanopartículas , Paclitaxel/administração & dosagem , Neoplasias Gástricas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Tamanho da Partícula , Polímeros/administração & dosagem , Neoplasias Gástricas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Zhongguo Zhong Yao Za Zhi ; 41(5): 838-844, 2016 Mar.
Artigo em Zh | MEDLINE | ID: mdl-28875636

RESUMO

In this paper, we prepared a type of composite microspheres embedded with poly (lactic-co-glycolic acid) (PLGA) nanoparticles for efficient inhalation delivery of tetrandrine (Tet), which is a traditional Chinese medicine for anticancer, and studied its morphology, drug release profile, cytotoxicity and cellular uptake behavior. PLGA nanoparticles loading tetrandrine were prepared by emulsion solvent diffusion method, and composite microspheres were prepared by spray drying method with mannitol as matrix due to its osmotic effect. Scanning electronic microscopy, dynamic light scattering laser particle analyzer and confocal microscopy were applied to characterize the morphology and size of the microspheres. The drug loading rate, drug encapsulation efficiency and drug release properties were explored by RP-HPLC. The cytotoxicity in A549 cells between crude drug of Tet and Tet-loaded microspheres were compared by MTT assay. The cellular uptake behavior of microspheres in A549 cells was investigated using confocal laser scanning microscopy. The resultant microspheres were composed of 189 nm PLGA nanoparticles exhibited sizes ranging from 1 to 3 µm, with the highest deposition efficiency. The microspheres can easily be dissolved in a mimic lung environment and release redispersible PLGA nanoparticles. Compared with crude drug of Tet, Tet-loaded microspheres showed a certain sustained release property and higher cytotoxicity effect to A549 cells. The cellular uptake experiment demonstrated a higher excellent penetration ability of cells to nanoparticles and time-dependent uptake process. This study provides a basis for developing new inhalation therapies for lung cancer.


Assuntos
Benzilisoquinolinas/química , Portadores de Fármacos/química , Composição de Medicamentos/métodos , Ácido Láctico/química , Ácido Poliglicólico/química , Células A549 , Benzilisoquinolinas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Humanos , Microesferas , Nanopartículas/química , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
11.
Zhongguo Zhong Yao Za Zhi ; 40(6): 1091-6, 2015 Mar.
Artigo em Zh | MEDLINE | ID: mdl-26226751

RESUMO

Tetradrine-tashionone II(A)-PLGA composite microspheres were prepared by the SPG membrane emulsification method, and the characterization of tetradrine-tashionone II(A) -PLGA composite microspheres were studied in this experiment. The results of IR, DSC and XRD showed that teradrine and tashionone II(A) in composite microspheres were highly dispersed in the PLGA with amorphous form. The results of tetradrine-tashionone II(A) -PLGA composite microspheres in vitro release experiment showed that the cumulative release amounts of tetradrine and tashionone II(A) were 6.44% and 3.60% in 24 h, and the cumulative release amounts of tetradrine and tashionone II(A) were 89.02% and 21.24% in 17 d. The process of drug in vitro release accorded with the model of Riger-Peppas. Tetradrine-tashionone II(A) -PLGA composite microspheres had slow-release effect, and it could significantly reduce the burst release, prolong the therapeutic time, decrease the dosage of drugs and provide a new idea and method to prepare traditional Chinese medicine compound.


Assuntos
Benzofuranos/química , Benzilisoquinolinas/química , Portadores de Fármacos/química , Composição de Medicamentos/métodos , Medicamentos de Ervas Chinesas/química , Ácido Láctico/química , Ácido Poliglicólico/química , Composição de Medicamentos/instrumentação , Cinética , Microesferas , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
12.
Yao Xue Xue Bao ; 49(11): 1607-13, 2014 Nov.
Artigo em Zh | MEDLINE | ID: mdl-25757290

RESUMO

For effective inhalable dry-powder drug delivery, tetrandrine-PLGA (polylactic-co-glycolic acid) nanocomposite particles have been developed to overcome the disadvantages of nanoparticles and microparticles. The primary nanoparticles were prepared by using premix membrane emulsification method. To prepare second particles, they were spray dried. The final particles were characterized by scanning electron microscopy (SEM), dry laser particle size analysis, high performance liquid chromatography (HPLC), X-ray diffraction (XRD), differential scanning calorimetry (DSC), infrared analysis (IR) and confocal laser scanning microscope (CLSM). The average size of the primary particles was (337.5 ± 6.2) nm, while that second particles was (3.675 ± 0.16) µm which can be decomposed into primary nanoparticles in water. And the second particles were solid sphere-like with the drug dispersed as armorphous form in them. It is a reference for components delivery to lung in a new form.


Assuntos
Benzilisoquinolinas/química , Ácido Láctico/química , Nanocompostos/química , Ácido Poliglicólico/química , Administração por Inalação , Varredura Diferencial de Calorimetria , Sistemas de Liberação de Medicamentos , Inaladores de Pó Seco , Microscopia Eletrônica de Varredura , Nanopartículas/química , Tamanho da Partícula , Preparações Farmacêuticas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Difração de Raios X
13.
Int J Nanomedicine ; 19: 787-803, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38293606

RESUMO

Background: Tetrandrine (Tet), a bisbenzylisoquinoline alkaloid, is a potential candidate for cancer chemotherapy. However, Tet has poor aqueous solubility and a short half-life, which limits its bioavailability and efficacy. Liposomes have been widely utilized to enhance the bioavailability and efficacy of drugs. Methods: In this study, Tet-loaded stealth liposomes (S-LPs@Tet) were prepared by ethanol injection method. Furthermore, physicochemical characterisation, biopharmaceutical behaviour, therapeutic efficacy, and biocompatibility of S-LPs@Tet were assessed. Results: The prepared S-LPs@Tet had an average particle size of 65.57 ± 1.60 nm, a surface charge of -0.61 ± 0.10 mV, and an encapsulation efficiency of 87.20% ± 1.30%. The S-LPs@Tet released Tet in a sustained manner, and the results demonstrated that the formulation remained stable for one month. More importantly, S-LPs significantly enhanced the inhibitory ability of Tet on the proliferation and migration of lung cancer cells, and enabled Tet to escape phagocytosis by immune cells. Furthermore, in vivo studies confirmed the potential for long-circulation and potent tumor-suppressive effects of S-LPs@Tet. Moreover, ex vivo and in vivo safety experiments demonstrated that the carrier material S-LPs exhibited superior biocompatibility. Conclusion: Our research suggested that S-LPs@Tet has potential applications in lung cancer treatment.


Assuntos
Benzilisoquinolinas , Neoplasias Pulmonares , Humanos , Lipossomos , Lipopolissacarídeos , Benzilisoquinolinas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico
14.
Int J Pharm ; 649: 123625, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37984618

RESUMO

Pulmonary fibrosis is a chronic and progressive disease, current systemic administration is not fully effective with many side effects, such as gastrointestinal and liver injury. The pulmonary delivery system for pulmonary fibrosis may contribute to maximize therapeutic benefit. Natural compounds might have prominence as potential drug candidates, but the low bioavailabilities affect their clinical use. Tetrandrine is a natural alkaloid with good anti-inflammatory, antifibrogenetic and antioxidant effects, and it is used as a clinical therapeutic drug for the treatment of silicosis in China. In the present study, we explore a new strategy of pulmonary delivery system to improve low solubility and pesticide effect of tetrandrine. Tetrandrine was loaded into alginate nanogels by reverse microemulsion method. The release behavior of tetrandrine reached zero-order kinetics release and the maximum free radical clearance rates reached up to 90%. The pulmonary fibrosis rats were treated with tetrandrine nanogels by using ultrasonic atomizing inhalation. Tetrandrine nanogels decreased the development and progression of fibrosis by reducing inflammation response and bating the deposition of extra cellular matrix. In conclusion, ultrasonic atomizing inhalation of tetrandrine nanogels provided a new therapeutic strategy for pulmonary fibrosis.


Assuntos
Benzilisoquinolinas , Fibrose Pulmonar , Ratos , Animais , Fibrose Pulmonar/tratamento farmacológico , Nanogéis , Zinco , Alginatos
15.
Int J Nanomedicine ; 19: 6145-6160, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911506

RESUMO

Background: Combination therapy offers superior therapeutic results compared to monotherapy. However, the outcomes of combination therapy often fall short of expectations, mainly because of increased toxicity from drug interactions and challenges in achieving the desired spatial and temporal distribution of drug delivery. Optimizing synergistic drug combination ratios to ensure uniform targeting and distribution across space and time, particularly in vivo, is a significant challenge. In this study, cRGD-coated liposomes encapsulating optimized synergistic cepharanthine (CEP; a chemotherapy drug) and IR783 (a phototherapy agent) were developed for combined chemotherapy and photothermal therapy in vitro and in vivo. Methods: An MTT assay was used to evaluate the combination index of CEP and IR783 in five cell lines. The cRGD-encapsulated liposomes were prepared via thin-film hydration, and unencapsulated liposomes served as controls for the loading of CEP and IR783. Fluorescence and photothermal imaging were used to assess the efficacy of CEP and IR783 encapsulated in liposomes at an optimal synergistic ratio, both in vitro and in vivo. Results: The combination indices of CEP and IR783 were determined in five cell lines. As a proof-of-concept, the optimal synergistic ratio (1:2) of CEP to IR783 in 4T1 cells was evaluated in vitro and in vivo. The average diameter of the liposomes was approximately 100 nm. The liposomes effectively retained the encapsulated CEP and IR783 in vitro at the optimal synergistic molar ratio for over 7 d. In vivo fluorescence imaging revealed that the fluorescence signal from cRGD-CEP-IR783-Lip was detectable at the tumor site at 4 h post-injection and peaked at 8 h. In vivo photothermal imaging of tumor-bearing mice indicated an increase in tumor temperature by 32°C within 200 s. Concurrently, cRGD-CEP-IR783-Lip demonstrated a significant therapeutic effect and robust biosafety in the in vivo antitumor experiments. Conclusion: The combination indices of CEP and IR783 were successfully determined in vitro in five cell lines. The cRGD-coated liposomes encapsulated CEP and IR783 at an optimal synergistic ratio, exhibiting enhanced antitumor effects and targeting upon application in vitro and in vivo. This study presents a novel concept and establishes a research framework for synergistic chemotherapy and phototherapy treatment.


Assuntos
Benzilisoquinolinas , Indóis , Lipossomos , Terapia Fototérmica , Lipossomos/química , Animais , Linhagem Celular Tumoral , Humanos , Feminino , Camundongos , Indóis/química , Indóis/farmacocinética , Indóis/farmacologia , Indóis/administração & dosagem , Terapia Fototérmica/métodos , Benzilisoquinolinas/química , Benzilisoquinolinas/farmacocinética , Benzilisoquinolinas/farmacologia , Benzilisoquinolinas/administração & dosagem , Camundongos Endogâmicos BALB C , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacocinética , Sinergismo Farmacológico , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/farmacocinética , Antineoplásicos/administração & dosagem , Terapia Combinada/métodos , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Benzodioxóis
16.
Int J Nanomedicine ; 19: 727-742, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38288265

RESUMO

Background: A sequential release co-delivery system is an effective strategy to improve anti-cancer efficacy. Herein, multicomponent-based liposomes (TET-CTM/L) loaded with tetrandrine (TET) and celastrol (CEL)-loaded coix seed oil microemulsion (CTM) were fabricated, which showed synergistic anti-liver cancer activities. By virtue of Enhanced Permeability and Retention (EPR) effect, TET-CTM/L can achieve efficient accumulation at the tumor site. TET was released initially to repair abnormal vessels and decrease the fibroblasts, and CTM was released subsequently for eradication of tumor tissue. Methods: TEM (transmission electron microscopy) and DLS (dynamic light scattering) were adopted to characterize the TET-CTM/L. Flow cytometry was adopted to examine the cellular uptake and cytotoxicity of HepG2 cells. The HepG2 xenograft nude mice were adopted to evaluate the anti-tumor efficacy and systemic safety of TET-CTM/L. Results: TEM images of TET-CTM/L showed the structure of small particle size of CTM within large-size liposomes, indicating that CTM can be encapsulated in liposomes by film dispersion method. In in vitro studies, TET-CTM/L induced massive apoptosis toward HepG2 cells, indicating synergistic cytotoxicity against HepG2 cells. In in vivo studies, TET-CTM/L displayed diminished systemic toxicity compared to celastrol or TET used alone. TET-CTM/L showed the excellent potential for tumor-targeting ability in a biodistribution study. Conclusion: Our study provides a new strategy for combining anti-cancer therapy that has good potential not only in the treatment of liver cancer but also can be applied to the treatment of other solid tumors.


Assuntos
Benzilisoquinolinas , Coix , Neoplasias Hepáticas , Triterpenos Pentacíclicos , Animais , Camundongos , Humanos , Lipossomos , Coix/química , Camundongos Nus , Distribuição Tecidual , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Óleos de Plantas/química
17.
Virol Sin ; 39(2): 301-308, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452856

RESUMO

Hand, foot, and mouth disease (HFMD) is a common pediatric illness mainly caused by enteroviruses, which are important human pathogens. Currently, there are no available antiviral agents for the therapy of enterovirus infection. In this study, an excellent high-content antiviral screening system utilizing the EV-A71-eGFP reporter virus was developed. Using this screening system, we screened a drug library containing 1042 natural compounds to identify potential EV-A71 inhibitors. Fangchinoline (FAN), a bis-benzylisoquinoline alkaloid, exhibits potential inhibitory effects against various enteroviruses that cause HFMD, such as EV-A71, CV-A10, CV-B3 and CV-A16. Further investigations revealed that FAN targets the early stage of the enterovirus life cycle. Through the selection of FAN-resistant EV-A71 viruses, we demonstrated that the VP1 protein could be a potential target of FAN, as two mutations in VP1 (E145G and V258I) resulted in viral resistance to FAN. Our research suggests that FAN is an efficient inhibitor of EV-A71 and has the potential to be a broad-spectrum antiviral drug against human enteroviruses.


Assuntos
Antivirais , Benzilisoquinolinas , Farmacorresistência Viral , Antivirais/farmacologia , Humanos , Benzilisoquinolinas/farmacologia , Farmacorresistência Viral/genética , Replicação Viral/efeitos dos fármacos , Enterovirus Humano A/efeitos dos fármacos , Enterovirus Humano A/genética , Avaliação Pré-Clínica de Medicamentos , Genes Reporter , Ensaios de Triagem em Larga Escala , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/antagonistas & inibidores , Enterovirus/efeitos dos fármacos , Enterovirus/genética , Linhagem Celular , Proteínas de Fluorescência Verde/genética
18.
Plant J ; 72(2): 331-44, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22725256

RESUMO

Papaverine, a major benzylisoquinoline alkaloid in opium poppy (Papaver somniferum), is used as a vasodilator and antispasmodic. Conversion of the initial intermediate (S)-norcoclaurine to papaverine involves 3'-hydroxylation, four O-methylations and dehydrogenation. However, our understanding of papaverine biosynthesis remains controversial more than a century after an initial scheme was proposed. In vitro assays and in vivo labeling studies have been insufficient to establish the sequence of conversions, the potential role of the intermediate (S)-reticuline, and the enzymes involved. We used virus-induced gene silencing in opium poppy to individually suppress the expression of six genes with putative roles in papaverine biosynthesis. Suppression of the gene encoding coclaurine N-methyltransferase dramatically increased papaverine levels at the expense of N-methylated alkaloids, indicating that the main biosynthetic route to papaverine proceeds via N-desmethylated compounds rather than through (S)-reticuline. Suppression of genes encoding (S)-3'-hydroxy-N-methylcoclaurine 4-O-methyltransferase and norreticuline 7-O-methyltransferase, which accept certain N-desmethylated alkaloids, reduced papaverine content. In contrast, suppression of genes encoding N-methylcoclaurine 3'-hydroxylase or reticuline 7-O-methyltransferase, which are specific for N-methylated alkaloids, did not affect papaverine levels. Suppression of norcoclaurine 6-O-methyltransferase transcript levels significantly suppressed total alkaloid accumulation, implicating (S)-coclaurine as a key branch-point intermediate. The differential detection of N-desmethylated compounds in response to suppression of specific genes highlights the primary route to papaverine.


Assuntos
Alcaloides/metabolismo , Látex/química , Papaver/enzimologia , Proteínas de Plantas/genética , Benzilisoquinolinas/metabolismo , Vias Biossintéticas , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Látex/isolamento & purificação , Metiltransferases/genética , Metiltransferases/metabolismo , Papaver/química , Papaver/genética , Papaver/metabolismo , Papaverina/metabolismo , Proteínas de Plantas/metabolismo , Caules de Planta/química , Caules de Planta/enzimologia , Caules de Planta/genética , Caules de Planta/metabolismo , RNA Mensageiro/genética , RNA de Plantas/genética , Reação em Cadeia da Polimerase em Tempo Real , Vasodilatadores/metabolismo
19.
Oncol Res ; 20(7): 265-74, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23879166

RESUMO

Successful chemotherapy needs to reduce the toxic side effects against normal tissues and avoid the detriments caused by intolerable solvents. Drug delivery systems using soluble polymeric nanoparticles tend to be the focus. In the current study, core-shell structure nanoparticles were prepared from block copolymer of methoxy poly(ethylene glycol)-polycaprolactone (mPE-PCL). Paclitaxel (PTX) and berbamine (BA) were incorporated into mPEG-PCL nanoparticles. It was found in our study that PTX and BA can be incorporated into the nanoparticles with high encapsulation efficiency. In vitro release study showed that PTX and BA were released from nanoparticles in a sustained manner. In vitro cytotoxicity studies indicated that PTX/BA coloaded nanoparticles (PTX/BA-np) show dose- and time-dependent cytotoxicity again BGC823 cells. Furthermore, intratumoral administration was applied to improve the tumor-targeted delivery in the in vivo evaluation. Compared with free drugs, PTX/BA-np exhibited superior antitumor effect by delaying tumor growth when delivered intratumorally. These results suggest that PTX/BA-np are effective to inhibit the growth of human gastric cancer and merit more research to evaluate the feasibility of clinical application.


Assuntos
Antineoplásicos/administração & dosagem , Benzilisoquinolinas/administração & dosagem , Portadores de Fármacos/química , Paclitaxel/administração & dosagem , Neoplasias Gástricas/tratamento farmacológico , Animais , Antineoplásicos/farmacocinética , Benzilisoquinolinas/farmacocinética , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Nus , Nanopartículas/química , Paclitaxel/farmacocinética , Poliésteres , Polietilenoglicóis
20.
Mol Pharm ; 9(2): 222-9, 2012 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-22171565

RESUMO

Paclitaxel (Ptx) has demonstrated encouraging activity in the treatment of gastric cancer. Development of drug-containing biodegradable polymeric nanoparticles (np) becomes one of the solutions to relieve side effects of Ptx. However, Ptx-loaded nanoparticles prepared by the nanoprecipitation method are unstable in the aqueous phase. Here we report that tetrandrine (Tet) effectively increases the stability of Ptx-loaded nanoparticles when Tet is coencapsulated with Ptx into mPEG-PCL nanoparticles. The current study demonstrates the synergistic antitumor effect of Tet and Ptx against gastric cancer cells, which provides the basis of coadministration of Tet and Ptx by nanoparticles. It is reported that the cellular chemoresistance to Ptx correlates with intracellular antioxidant capacity and the depletion of cellular antioxidant capacity could enhance the cytotoxicity of Ptx. Tet effectively induces intracellular ROS production. Therefore, the present study provides a promising novel therapeutic strategy basing on "oxidation therapy" that it could amplify the antitumor effect of paclitaxel by employing Tet as a pro-oxidant. More intracellular Tet accumulation by endocytosis of Ptx/Tet-np than equivalent doses of free drug leads to more intracellular ROS induction, which could efficiently enhance the cytotoxicity of Ptx by sequential inhibition of ROS-dependent Akt pathway and activation of apoptotic pathways, all of which would mediate the superior cytotoxicity of Ptx/Tet-np over free drug. The present results suggest that the codelivery of Ptx and Tet by nanoparticles provides a novel therapeutic strategy basing on "oxidation therapy" against gastric cancer.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Apoptose/efeitos dos fármacos , Benzilisoquinolinas/administração & dosagem , Portadores de Fármacos/química , Paclitaxel/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Caspase 3/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Sinergismo Farmacológico , Genes bcl-2 , Humanos , Nanopartículas/química , Tamanho da Partícula , Poliésteres/química , Polietilenoglicóis/química , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Vitamina E/farmacologia , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA