Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.008
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pharm ; 21(3): 1501-1514, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38363209

RESUMO

Encapsulation of active pharmaceutical ingredients (APIs) in confined spaces has been extensively explored as it dramatically alters the molecular dynamics and physical properties of the API. Herein, we explored the effect of encapsulation on the molecular dynamics and physical stability of a guest drug, salicylic acid (SA), confined in the intermolecular spaces of γ-cyclodextrin (γ-CD) and poly(ethylene glycol) (PEG)-based polypseudorotaxane (PPRX) structure. The sublimation tendency of SA encapsulated in three polymorphic forms of the γ-CD/PEG-based PPRX complex, monoclinic columnar (MC), hexagonal columnar (HC), and tetragonal columnar (TC), was investigated. The SA sublimation rate was decreased by 3.0-6.6-fold and varied in the order of MC form > HC form > TC form complex. The 13C and 1H magic-angle spinning (MAS) solid-state nuclear magnetic resonance (NMR) spectra and 13C spin-lattice relaxation time (T1) indicated that the encapsulated SA molecules existed as the monomeric form, and its molecular mobility increased in the order of MC form > HC form > TC form complex. In the complexes, a rapid chemical exchange between two dynamic states of SA (free and bound) was suggested, with varying adsorption/desorption rates accounting for its distinct molecular mobility. This adsorption/desorption process was influenced by proton exchange at the interaction site and interaction strength of SA in the complexes, as evidenced by 1H MAS spectra and temperature dependency of the 13C carbonyl chemical shift. A positive correlation between the molecular mobility of SA and its sublimation rate was established. Moreover, the molecular mobility of γ-CD and PEG in the complexes coincided with that of SA, which can be explained by fast guest-driven dynamics. This is the first report on the stability improvement of an API through complexation in polymorphic supramolecular host structures. The relationship between the molecular dynamics and physical properties of encapsulated API will aid in the rational design of drug delivery systems.


Assuntos
Ciclodextrinas , Simulação de Dinâmica Molecular , Poloxâmero , Rotaxanos , Preparações Farmacêuticas , Ciclodextrinas/química , Espectroscopia de Ressonância Magnética , Ácido Salicílico/química
2.
Biomacromolecules ; 25(2): 941-954, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38241024

RESUMO

Supramolecular assembly has attracted significant attention and has been applied to various applications. Herein, a ß-γ-CD dimer was synthesized to complex different guest molecules, including single-strand polyethylene glycol (PEG)-modified C60 (PEG-C60), photothermal conversion reagent (IR780), and dexamethasone (Dexa), according to the complexation constant-dependent specific selectivity. Spherical or cylindrical nanoparticles, monolayer or bilayer vesicles, and bilayer fusion vesicles were discovered in succession if the concentration of PEG-C60 was varied. Moreover, if near-infrared light was employed to irradiate these nanoassemblies, the thermo-induced morphological evolution, subsequent cargo release, photothermal effect, and singlet oxygen (1O2) generation were successfully achieved. The in vitro cell experiments confirmed that these nanoparticles possessed excellent biocompatibility in a normal environment and achieved superior cytotoxicity by light regulation. Such proposed strategies for the construction of multilevel structures with different morphologies can open a new window to obtain various host-guest functional materials and achieve further use for disease treatment.


Assuntos
Ciclodextrinas , Nanopartículas , Ciclodextrinas/química , Polímeros/química , Polietilenoglicóis/química , Nanopartículas/química , Oxigênio Singlete/química
3.
Biomacromolecules ; 25(5): 3141-3152, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38687279

RESUMO

Atherosclerosis (AS) is characterized by the accumulation of substantial low-density lipoprotein (LDL) and inflammatory response. Hemoperfusion is commonly employed for the selective removal of LDL from the body. However, conventional hemoperfusion merely focuses on LDL removal and does not address the symptom of plaque associated with AS. Based on the LDL binding properties of acrylated chondroitin sodium sulfate (CSA), acrylated beta-cyclodextrin (CD) and acrylic acid (AA), along with the anti-inflammatory property of rosiglitazone (R), the fabricated AA-CSA-CD-R microspheres could simultaneously release R and facilitate LDL removal for hemoperfusion. The AA and CSA offer electrostatic adsorption sites for LDL, while the CD provides hydrophobic adsorption sites for LDL and weak binding sites for R. According to the Sips model, the maximum static LDL adsorption capacity of AA-CSA-CD-R is determined to be 614.73 mg/g. In dynamic simulated perfusion experiments, AA-CSA-CD-R exhibits an initial cycle LDL adsorption capacity of 150.97 mg/g. The study suggests that the weakened inflammatory response favors plaque stabilization. The anti-inflammatory property of the microspheres is verified through an inflammation model, wherein the microsphere extracts are cocultured with mouse macrophages. Both qualitative analysis of iNOS\TNF-α and quantitative analysis of IL-6\TNF-α collectively demonstrate the remarkable anti-inflammatory effect of the microspheres. Therefore, the current study presents a novel blood purification treatment of eliminating pathogenic factors and introducing therapeutic factors to stabilize AS plaque.


Assuntos
Resinas Acrílicas , Aterosclerose , Sulfatos de Condroitina , Lipoproteínas LDL , Rosiglitazona , Animais , Camundongos , Lipoproteínas LDL/química , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/isolamento & purificação , Sulfatos de Condroitina/química , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Resinas Acrílicas/química , Rosiglitazona/farmacologia , Rosiglitazona/química , Adsorção , Células RAW 264.7 , Microesferas , Ciclodextrinas/química
4.
J Biochem Mol Toxicol ; 38(1): e23597, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38037252

RESUMO

Effective drug distribution at the intended or particular location is a critical issue that researchers are now dealing. Nanosponges have significantly increased in importance in medication delivery using nanotechnology in recent years. An important step toward solving these problems has been the development of nanosponges. Recently created and proposed for use in drug delivery, nanosponge is a unique type of hyper-crosslinked polymer-based colloidal structures made up of solid nanoparticles with colloidal carriers. Nanosponges are solid porous particles that may hold pharmaceuticals and other actives in their nanocavities. They can be made into dosage forms for oral, parenteral, topical, or inhalation use. The targeted distribution of drugs in a regulated manner is greatly aided by nanosponge. The utilization of nanosponges, their benefits, their production processes, the polymers they are made of, and their characterization have all been covered in this review article.


Assuntos
Ciclodextrinas , Nanopartículas , Ciclodextrinas/química , Preparações Farmacêuticas/química , Princípios Ativos , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Polímeros
5.
J Environ Manage ; 351: 119830, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141340

RESUMO

Cyclodextrin (CD) and its derivatives are receiving attention as a new-generation adsorbent for water pollution treatment due to their external hydrophilic and internal hydrophobic properties. Among types of CD, ß-Cyclodextrin (ßCD) has been a material of choice with a proven track record for a range of utilities in distinct domains, owing to its unique cage-like structural conformations and inclusion complex-forming ability, especially to mitigate emerging contaminants (ECs). This article outlines ßCD composites in developing approaches of their melds and composites for purposes such as membranes for removal of the ECs in aqueous setups have been explored with emphasis on recent trends. Electrospinning has bestowed an entirely different viewpoint on polymeric materials, comprising ßCD, in the framework of diverse functions across a multitude of niches. Besides, this article especially discusses ßCD polymer composite membrane-based removal of contaminants such as pharmaceutical substances, endocrine disruptors chemicals, and dyes. Finally, in this article, the challenges and future directions of ßCD-based adsorbents are discussed, which may shed light on pragmatic commercial applications of ßCD polymer composite membranes.


Assuntos
Celulose , Ciclodextrinas , Disruptores Endócrinos , beta-Ciclodextrinas , Polímeros , Corantes , beta-Ciclodextrinas/química , Ciclodextrinas/química , Preparações Farmacêuticas
6.
AAPS PharmSciTech ; 25(5): 134, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862663

RESUMO

Inclusion complexes require higher concentration of Beta cyclodextrins (ßCD) resulting in increased formulation bulk, toxicity, and production costs. This systematic review offers a comprehensive analysis using Quality by design (QbD) as a tool to predict potential applications of Polyvinylpyrrolidone (PVP) as a ternary substance to address issues of inclusion complexes. We reviewed 623 documents from 2013 to 2023 and Eighteen (18) research papers were selected for statistical and meta-analysis using the QbD concept to identify the most critical factors for selecting drugs and effect of PVP on inclusion complexes. The QbD analysis revealed that Molecular weight (MW), Partition coefficient (Log P), and the auxiliary substance ratio directly affected complexation efficiency (CE), thermodynamic stability in terms of Gibbs free energy (ΔG), and percent drug release. However, Stability constant (Ks) remained unaffected by any of these parameters. The results showed that low MW (250), median Log P (6), and a ßCD: PVP ratio of 2:3 would result in higher CE, lower G, and improved drug release. PVP improves drug solubility, enhances delivery and therapeutic outcomes, and counteracts increased drug ionization due to decreased pH. In certain cases, its bulky nature and hydrogen bonding with CD molecules can form non-inclusion complexes. The findings of the study shows that there is potential molecular interaction between PVP and ß-cyclodextrins, which possibly enhances the stability of inclusion complexes for drug with low MW and log P values less than 9. The systematic review shows a comprehensive methodology based on QbD offers a replicable template for future investigations into drug formulation research.


Assuntos
Ciclodextrinas , Povidona , Solubilidade , beta-Ciclodextrinas , beta-Ciclodextrinas/química , Química Farmacêutica/métodos , Ciclodextrinas/química , Liberação Controlada de Fármacos , Excipientes/química , Peso Molecular , Projetos Piloto , Povidona/química , Termodinâmica
7.
Acc Chem Res ; 55(23): 3417-3429, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36380600

RESUMO

Hyaluronic acid (HA), which contains multiple carboxyl, hydroxyl, and acetylamino groups and is an agent that targets tumors, has drawn great attention in supramolecular diagnosis and treatment research. It can not only assemble directly with macrocyclic host-guest complexes through hydrogen bonding and electrostatic interactions but also can be modified with macrocyclic compounds or functional guest molecules by an amidation reaction and used for further assembly. Macrocycles play a main role in the construction of supramolecular drug carriers, targeted imaging agents, and hydrogels, such as cyclodextrins and cucurbit[n]urils, which can encapsulate photosensitizers, drugs, or other functional guest molecules via host-guest interactions. Therefore, the formed supramolecular assemblies can respond to various stimuli, such as enzymes, light, electricity, and magnetism for controlled drug delivery, enhance the luminescence intensity of the assembly, and improve drug loading capacity. In addition, the nanosupramolecular assembly formed with HA can also improve the biocompatibility of drugs, reduce drug toxicity and side effects, and enhance cell permeability; thus, the assembly has extensive application value in biomedical research. This Account mainly focuses on macrocyclic supramolecular assemblies based on HA, especially their biological applications and progress in the field, and these assemblies include (i) guest-modified HA, such as pyridinium-, adamantane-, peptide-, and other functional-group-modified HA, along with their cyclodextrin and cucurbit[n]uril assemblies; (ii) macrocycle-modified HA, such as HA modified with cyclodextrins and cucurbit[n]uril derivatives and their assembly with various guests; (iii) direct assembly between unmodified HA and cyclodextrin- or cucurbit[n]uril-based host-guest complexes. Particularly, we discussed the important role of macrocyclic host-guest complexes in HA-based supramolecular assembly, and the roles included improving the water solubility and efficacy of hydrophobic drugs, enhancing the luminescent intensity of assemblies, inducing room temperature phosphorescence and providing energy transfer systems, constructing multi-stimulus-responsive supramolecular assemblies, and in situ formation of hydrogels. Additionally, we believe that obtaining in-depth knowledge of these HA-based macrocyclic supramolecular assemblies and their biological applications encompasses many challenges regarding drug carriers, targeted imaging agents, wound healing, and biomedical soft materials and would certainly contribute to the rapid development of supramolecular diagnosis and treatment.


Assuntos
Ciclodextrinas , Compostos Macrocíclicos , Ácido Hialurônico , Ciclodextrinas/química , Hidrogéis/química , Portadores de Fármacos/química , Compostos Macrocíclicos/química , Materiais Biocompatíveis
8.
Chemistry ; 29(10): e202203071, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36415055

RESUMO

Herein, trimethyl-ß-cyclodextrin (TMe-ß-CDx) and γ-cyclodextrin (γ-CDx) could dissolve a tetraphenylethylene derivative (TPE-OH4 ) in water through high-speed vibration milling. The fluorescence intensity of the TMe-ß-CDx-TPE-OH4 complex was much higher than that of the γ-CDx-TPE-OH4 complex, as the rotation of the central C=C double bond of TPE-OH4 after photoactivation was inhibited in a smaller TMe-ß-CDx cavity in comparison with the γ-CDx cavity. In contrast, the fluorescence intensity of the γ-CDx-TPE-OH4 complex was very weak; nevertheless, it increased after the addition of liposomes due to the transfer of TPE-OH4 from the γ-CDx cavity to the lipid membrane as a "turn-on" phenomenon. Furthermore, to apply temperature sensor, it was demonstrated that the fluorescence intensity in the liposomes depended on the phase-transition temperature. By using the fluorescence turn-on phenomenon, TPE-OH4 could detect the presence of HeLa cells and E. coli by fluorescence.


Assuntos
Ciclodextrinas , Humanos , Ciclodextrinas/química , Lipossomos , Escherichia coli , Células HeLa
9.
Chem Soc Rev ; 51(11): 4786-4827, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35593232

RESUMO

Multicharged cyclodextrin (CD) supramolecular assemblies, including those based on positively/negatively charged modified mono-6-deoxy-CDs, per-6-deoxy-CDs, and random 2,3,6-deoxy-CDs, as well as parent CDs binding positively/negatively charged guests, have been extensively applied in chemistry, materials science, medicine, biological science, catalysis, and other fields. In this review, we primarily focus on summarizing the recent advances in positively/negatively charged CDs and parent CDs encapsulating positively/negatively charged guests, especially the construction process of supramolecular assemblies and their applications. Compared with uncharged CDs, multicharged CDs display remarkably high antiviral and antibacterial activity as well as efficient protein fibrosis inhibition. Meanwhile, charged CDs can interact with oppositely charged dyes, drugs, polymers, and biomacromolecules to achieve effective encapsulation and aggregation. Consequently, multicharged CD supramolecular assemblies show great advantages in improving drug-delivery efficiency, the luminescence properties of materials, molecular recognition and imaging, and the toughness of supramolecular hydrogels, in addition to enabling the construction of multistimuli-responsive assemblies. These features are anticipated to not only promote the development of CD-based supramolecular chemistry but also contribute to the rapid exploitation of these assemblies in diverse interdisciplinary applications.


Assuntos
Ciclodextrinas , Ciclodextrinas/química , Sistemas de Liberação de Medicamentos , Hidrogéis/química , Ciência dos Materiais , Polímeros/química
10.
Int J Mol Sci ; 24(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36768671

RESUMO

Voriconazole (VCZ) is a broad-spectrum antifungal agent used to treat ocular fungal keratitis. However, VCZ has low aqueous solubility and chemical instability in aqueous solutions. This study aimed to develop VCZ eye drop formulations using cyclodextrin (CD) and water-soluble polymers, forming CD complex aggregates to improve the aqueous solubility and chemical stability of VCZ. The VCZ solubility was greatly enhanced using sulfobutyl ether ß-cyclodextrin (SBEßCD). The addition of polyvinyl alcohol (PVA) showed a synergistic effect on VCZ/SBEßCD solubilization and a stabilization effect on the VCZ/SBEßCD complex. The formation of binary VCZ/SBEßCD and ternary VCZ/SBEßCD/PVA complexes was confirmed by spectroscopic techniques and in silico studies. The 0.5% w/v VCZ eye drop formulations were developed consisting of 6% w/v SBEßCD and different types and concentrations of PVA. The VCZ/SBEßCD systems containing high-molecular-weight PVA prepared under freeze-thaw conditions (PVA-H hydrogel) provided high mucoadhesion, sustained release, good ex vivo permeability through the porcine cornea and no sign of irritation. Additionally, PVA-H hydrogel was effective against the filamentous fungi tested. The stability study revealed that our VCZ eye drops provide a shelf-life of more than 2.5 years at room temperature, while a shelf-life of only 3.5 months was observed for the extemporaneous Vfend® eye drops.


Assuntos
Ciclodextrinas , Álcool de Polivinil , Animais , Suínos , Voriconazol/farmacologia , Solubilidade , Soluções Oftálmicas , Ciclodextrinas/química , Córnea , Hidrogéis
11.
Cryo Letters ; 44(2): 89-99, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37883159

RESUMO

BACKGROUND: Camptothecin (CPT) is an anticancer drug, and is not employed in the clinic because of its high hydrophobicity and low active form stability. CPT may also have potential for use in cold preservation. OBJECTIVE: To overcome these drawbacks, CPT solubility variations in the presence of cyclodextrins (CDs) and polyethylene glycol (PEG) were evaluated by Higuchi solubility experiments. MATERIALS AND METHODS: CPT was encapsulated in different cyclodextrins and polyethylene glycol using a co-evaporation method. The CPT interactions with CDs and PEG 6000 were investigated by Fourier-transformed infrared spectroscopy (FT-IR), and X-ray powder diffraction (XRPD). Then, CPT complexes were evaluated for in-vitro drug release. To evaluate the potential anticancer efficacy of the CPT complexes system, in-vitro cytotoxicity studies on human red blood cells were carried out using UV assay. The impact of the CPT complex systems on sperm motility protection during cold preservation at 4 degree C was studied using CASA. RESULTS: The dissolution profile of these preparations shows the improvement of the dissolution of the CPT following a fickien diffusion. The CPT solubility and stability improvement were the cause of the cytotoxicity on the red blood cells test. However, CPT alone, encapsulated, dispersed, and chemically modified protected spermatozoids during cold preservation. CONCLUSION: We confirm the interest in CPT encapsulated and dispersed in anticancer treatments. We also found that CPT encapsulated or dispersed could protect sperm against oxidative damage and improve the membrane integrity of human sperm. Consequently, CPT encapsulated our dispersed could eventually be beneficial for infertility therapy. Doi: 10.54680/fr23210110712.


Assuntos
Antineoplásicos Fitogênicos , Ciclodextrinas , Humanos , Masculino , Camptotecina/farmacologia , Camptotecina/química , Solubilidade , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/uso terapêutico , Liberação Controlada de Fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Criopreservação , Sêmen , Motilidade dos Espermatozoides , Ciclodextrinas/farmacologia , Ciclodextrinas/química , Polietilenoglicóis/farmacologia , Eritrócitos
12.
Biomacromolecules ; 23(3): 1030-1040, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35029368

RESUMO

Photoresponsive supramolecular hydrogels based on the host-guest interaction between cyclodextrin (CD) and azobenzene (Azo) are highly favored in "on-demand" biological applications. Nevertheless, most Azo/CD-based hydrogels are UV-responsive, exhibiting poor tissue penetrability and potential cytotoxicity; more importantly, the complete gel-sol transition under irradiation makes intelligent systems unstable. Here, we report a red-light-responsive semiconvertible hydrogel based on tetra-ortho-methoxy-substituted Azo (mAzo)- and CD-functionalized hyaluronic acid (HA). By integrating red-shifted-photoisomerized mAzo with HA, a biocompatible 625 nm-light-responsive polymeric guest with strengthened hydrogen bonding and weakened photoisomerization was synthesized. Upon alternating irradiation, mAzo-HA/CD-HA hydrogels obtained here exhibited reversible mechanical and structural dynamics, while avoiding complete gel-sol transition. This improved semiconvertibility remedies the lack of macroscopic resilience for dynamic system so as to endow supramolecular hydrogels with spatial-temporal mechanics, self-healing, and adhesion. Together with excellent cytocompatibility and manufacturability, these hydrogels show potential advantages in tissue engineering, especially for the regeneration of functional multi-tissue complex.


Assuntos
Ciclodextrinas , Hidrogéis , Ciclodextrinas/química , Ácido Hialurônico , Hidrogéis/química , Luz , Polímeros/química
13.
Crit Rev Food Sci Nutr ; 62(20): 5495-5510, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33605809

RESUMO

This review was focused on describing the combination of electrospinning and cyclodextrin inclusion complexes as one of the newest alternatives for the development of food packaging materials with antimicrobial and/or antioxidant properties. The advantages of this technological combination, the routes to design the active materials, the characterization and application of such materials were reviewed. Electrospinning has allowed developing active packaging materials composed by fibrillary structures with a high ratio surface-to-volume. On the other hand, cyclodextrin inclusion complexes have maintained the properties of active compounds when they have been incorporated in packaging materials. Both methods have been recently combined and novel active food packaging materials have been obtained through three different routes. Polymeric solutions containing preformed (route 1) or in-situ formed (route 2) cyclodextrin inclusion complexes have been electrospun to obtain packaging materials. Furthermore, cyclodextrin inclusion complexes solutions have been directly electrospun (route 3) in order to produce those materials. The developed packaging materials have exhibited a high active compound loading with a long lasting release. Therefore, the protection of different foodstuff against microbial growth, oxidation and quality decay as well as the maintenance of their physical and sensory properties have been achieved when those materials were applied as active packaging.


Assuntos
Anti-Infecciosos , Ciclodextrinas , Antibacterianos/química , Ciclodextrinas/química , Embalagem de Alimentos/métodos , Polímeros/química
14.
Soft Matter ; 18(46): 8885-8893, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36377482

RESUMO

The ABA-type triblock-copolymers (BCPs) of polylactide (PLA) and poly(ethylene glycol) (PEG) were synthesized as axle components for rotaxane formation. It is known that α-cyclodextrin (CD) exists near the PEG moiety in pseudo-polyrotaxane (PPRX), and the PLA moiety can form a stereocomplex (SC), by mixing with L- and D-isomers. In this study, various CDs, including ß-CD and γ-CD, were used as wheel components, and effects of CD structures on both PPRX and SC formations were studied. The solubility of CDs is influenced to form the PPRX, resulting in differing numbers of CDs in the axle. PPRX structures were investigated by 1H NMR, NOESY, and DOSY, and SC structures were investigated by FT-IR and XRD. Their thermal properties were also evaluated by DSC and TGA, to consider the physical properties of the simultaneous formation of PPRX and SC. This study gave insight into the complicated host-guest and polymer-polymer interactions.


Assuntos
Ciclodextrinas , Rotaxanos , Rotaxanos/química , Polietilenoglicóis/química , Espectroscopia de Infravermelho com Transformada de Fourier , Poliésteres/química , Ciclodextrinas/química , Polímeros/química
15.
Org Biomol Chem ; 20(21): 4278-4288, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35552579

RESUMO

Cyclodextrin (CD) and pillar[n]arene are significant macrocyclic host molecules in supramolecular chemistry, and have either similar or contrasting physicochemical properties, for example, both can provide capable cavities available for recognizing various favorite guest molecules, while they usually possess different solubility in aqueous solutions, and exhibit diverse chiral characteristics. To balance their similarity and differences inherited from each chemical structure and incorporate both advantages, the CD-pillar[n]arene hybrid macrocyclic system was recently developed. In this review, we will focus on the preparation and application of CD-pillar[n]arene hybrid macrocyclic systems. Both noncovalent interactions and covalent bonds were employed in the synthesis strategies of building the hybrid macrocyclic system, which was in the form of host-guest inclusion, self-assembly, conjugated molecules, and polymeric structures. Furthermore, the CD-pillar[n]arene hybrid macrocyclic system has been primarily applied for the removal of organic pollutants from water, induced chirality, as well as photocatalysis due to the integration of both cavities from CD and pillar[n]arene as hybrid hosts and chiral characteristics inherited from their chemical structures.


Assuntos
Ciclodextrinas , Ciclodextrinas/química , Polímeros/química , Solubilidade , Água/química
16.
Macromol Rapid Commun ; 43(14): e2100775, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34882882

RESUMO

Supramolecular polymers not only possess many advantages of traditional polymers, but also have many unique characteristics. Supramolecular polymers can be constructed by self-assembly of various noncovalent interactions. Host-guest interaction, as one important type of noncovalent interactions, has been widely applied to construct supramolecular polymers. From the perspective of classification of the recognition system motifs, host-guest recognition motifs mainly include crown ether, cyclodextrin, calixarene, cucurbituril, and pillararene-based host-guest recognition pairs. Crown ethers, as the first-generation macrocyclic hosts, have played a very important part in the development of supramolecular chemistry. Due to the easy modification of crown ethers, various crown ether derivatives have been prepared by attaching some functional groups to the edges of crown ethers, which endowed them with some interesting properties and made them ideal candidates for the fabrication of supramolecular polymers. This review gives a review of the preparation of crown ether-based supramolecular polymers (CSPs) and summarizes crown ether-based recognition pairs, organization methods, topological structures, stimuli-responsiveness, and functional characteristics.


Assuntos
Calixarenos , Éteres de Coroa , Ciclodextrinas , Éteres de Coroa/química , Ciclodextrinas/química , Estrutura Molecular , Polímeros/química
17.
Macromol Rapid Commun ; 43(16): e2200082, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35318772

RESUMO

Cyclodextrin (CD)-based polyrotaxanes (PR) are widely used to construct high-mechanical-performance materials because of the high degree of conformational freedom. However, strong hydrogen bonds between CDs greatly limit the application of CD-PR in the preparation of ductile neutral hydrogels. In this work, spiropyrane (SP) into α-CD-based PR is introduced to "visualize" the segment motion of the network in neutral water. The aggregation-induced cohesion and critical factors for the force transmission are disclosed. This system offers a new approach for the fundamental research for the complicated topologically cross-linked structures, which is important for the design of CD-PR-based biocompatible soft materials.


Assuntos
Ciclodextrinas , Rotaxanos , Materiais Biocompatíveis/química , Ciclodextrinas/química , Hidrogéis/química , Rotaxanos/química , Solventes
18.
Nature ; 529(7585): 190-4, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26689365

RESUMO

The global occurrence in water resources of organic micropollutants, such as pesticides and pharmaceuticals, has raised concerns about potential negative effects on aquatic ecosystems and human health. Activated carbons are the most widespread adsorbent materials used to remove organic pollutants from water but they have several deficiencies, including slow pollutant uptake (of the order of hours) and poor removal of many relatively hydrophilic micropollutants. Furthermore, regenerating spent activated carbon is energy intensive (requiring heating to 500-900 degrees Celsius) and does not fully restore performance. Insoluble polymers of ß-cyclodextrin, an inexpensive, sustainably produced macrocycle of glucose, are likewise of interest for removing micropollutants from water by means of adsorption. ß-cyclodextrin is known to encapsulate pollutants to form well-defined host-guest complexes, but until now cross-linked ß-cyclodextrin polymers have had low surface areas and poor removal performance compared to conventional activated carbons. Here we crosslink ß-cyclodextrin with rigid aromatic groups, providing a high-surface-area, mesoporous polymer of ß-cyclodextrin. It rapidly sequesters a variety of organic micropollutants with adsorption rate constants 15 to 200 times greater than those of activated carbons and non-porous ß-cyclodextrin adsorbent materials. In addition, the polymer can be regenerated several times using a mild washing procedure with no loss in performance. Finally, the polymer outperformed a leading activated carbon for the rapid removal of a complex mixture of organic micropollutants at environmentally relevant concentrations. These findings demonstrate the promise of porous cyclodextrin-based polymers for rapid, flow-through water treatment.


Assuntos
Celulose/química , Ciclodextrinas/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Água/química , Adsorção , Compostos Benzidrílicos/química , Compostos Benzidrílicos/isolamento & purificação , Celulose/síntese química , Carvão Vegetal/química , Ciclodextrinas/síntese química , Fenóis/química , Fenóis/isolamento & purificação , Porosidade , Reciclagem/economia , Reciclagem/métodos , Temperatura , Fatores de Tempo , Eliminação de Resíduos Líquidos/economia , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Purificação da Água/economia
19.
Int J Mol Sci ; 23(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36362293

RESUMO

Cyclodextrins (CDs) are cyclic oligosaccharide structures that could be used for theranostic applications in personalized medicine. These compounds have been widely utilized not only for enhancing drug solubility, stability, and bioavailability but also for controlled and targeted delivery of small molecules. These compounds can be complexed with various biomolecules, such as peptides or proteins, via host-guest interactions. CDs are amphiphilic compounds with water-hating holes and water-absorbing surfaces. Architectures of CDs allow the drawing and preparation of CD-based polymers (CDbPs) with optimal pharmacokinetic and pharmacodynamic properties. These polymers can be cloaked with protein corona consisting of adsorbed plasma or extracellular proteins to improve nanoparticle biodistribution and half-life. Besides, CDs have become famous in applications ranging from biomedicine to environmental sciences. In this review, we emphasize ongoing research in biomedical fields using CD-based centered, pendant, and terminated polymers and their interactions with protein corona for theranostic applications. Overall, a perusal of information concerning this novel approach in biomedicine will help to implement this methodology based on host-guest interaction to improve therapeutic and diagnostic strategies.


Assuntos
Ciclodextrinas , Coroa de Proteína , Ciclodextrinas/química , Medicina de Precisão , Distribuição Tecidual , Polímeros/química , Preparações Farmacêuticas , Água , Sistemas de Liberação de Medicamentos
20.
Int J Mol Sci ; 23(2)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35054867

RESUMO

Pseudopolyrotaxanes (PPRs) are supramolecular structures consisting of macrocycles able to thread on a linear polymer chain in a reversible, non-covalent way, often referred to in the literature as "molecular necklaces". While the synthesis and reaction mechanisms of these structures in solution have been widely described, their solvent-free production has received little attention, despite the advantages that this route may offer. We propose in this work a kinetic mechanism that describes the PPR formation in the solid phase as a process occurring in two consecutive stages. This mechanism has been used to investigate the spontaneous formation of a PPR that occurs when grinding α-Cyclodextrin (α-CD) with polyethylene glycol (PEG). In the threading stage, the inclusion of the polymer and subsequent release of the water molecules lodged in the cavity of the macrocycle cause vibrational changes that are reflected in the time-dependence of the FTIR-ATR spectra, while the further assembly of PPRs to form crystals produces characteristic reflections in the XRD patterns, due to the channel-like arrangement of CDs, that can be used to track the formation of the adduct in crystalline form. The effects that working variables have on the kinetics of the reaction, such as temperature, feed ratio, molar mass of the polymer and the introduction of an amorphous block in the polymer structure, have been investigated. The rate constants of the threading step increase with the temperature and the activation energy of the process increases at lower proportions of CD to PEG. This is attributed to the lower degree of covering of the polymer chain with CDs that reduces the hydrogen-bonding driven stabilization between adjacent macrocycles. The formation of crystalline PPR, which takes place slowly at room temperature, is markedly promoted at higher temperatures, with lower proportions of CD favoring both the formation and the growth of the crystals. The molar mass of the polymer does not modify the typical channel-like arrangement of packed PPRs but the conversion into crystalline PPR diminishes when using PEG1000 instead of PEG400. At a microscopic level, the crystals arrange into lamellar structures, in the order of hundreds of nm, embedded in an amorphous-like matrix. The introduction of a polypropylene oxide block in the structure of the polymer (Pluronic L62) renders poorer yields and a considerable loss of crystallinity of the product of the reaction. The methodology here proposed can be applied to the general case of inclusion complexes of CDs with drugs in the solid phase, or to multicomponent systems that contain polymers as excipients in pharmaceutical formulations along with CDs.


Assuntos
Ciclodextrinas/química , Poloxâmero/química , Polietilenoglicóis/química , Rotaxanos/química , Solventes/química , Cristalização , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , alfa-Ciclodextrinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA