Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 49(19): 10835-10850, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34614184

RESUMO

Liposomes are widely used as synthetic analogues of cell membranes and for drug delivery. Lipid-binding DNA nanostructures can modify the shape, porosity and reactivity of liposomes, mediated by cholesterol modifications. DNA nanostructures can also be designed to switch conformations by DNA strand displacement. However, the optimal conditions to facilitate stable, high-yield DNA-lipid binding while allowing controlled switching by strand displacement are not known. Here, we characterized the effect of cholesterol arrangement, DNA structure, buffer and lipid composition on DNA-lipid binding and strand displacement. We observed that binding was inhibited below pH 4, and above 200 mM NaCl or 40 mM MgCl2, was independent of lipid type, and increased with membrane cholesterol content. For simple motifs, binding yield was slightly higher for double-stranded DNA than single-stranded DNA. For larger DNA origami tiles, four to eight cholesterol modifications were optimal, while edge positions and longer spacers increased yield of lipid binding. Strand displacement achieved controlled removal of DNA tiles from membranes, but was inhibited by overhang domains, which are used to prevent cholesterol aggregation. These findings provide design guidelines for integrating strand displacement switching with lipid-binding DNA nanostructures. This paves the way for achieving dynamic control of membrane morphology, enabling broader applications in nanomedicine and biophysics.


Assuntos
DNA de Cadeia Simples/metabolismo , DNA/metabolismo , Lipossomos/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Colesterol/química , Colesterol/metabolismo , DNA/química , DNA de Cadeia Simples/química , Concentração de Íons de Hidrogênio , Cinética , Lipossomos/química , Cloreto de Magnésio/química , Cloreto de Magnésio/metabolismo , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Conformação de Ácido Nucleico , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Cloreto de Sódio/química , Cloreto de Sódio/metabolismo , Soluções , Termodinâmica
2.
Appl Microbiol Biotechnol ; 106(21): 7173-7185, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36156161

RESUMO

A synergistic approach using cultivation methods, chemical, and bioinformatic analyses was applied to explore the potential of Pseudoalteromonas sp. S8-8 in the production of extracellular polymeric substances (EPSs) and the possible physiological traits related to heavy metal and/or antibiotic resistance. The effects of different parameters (carbon source, carbon source concentration, temperature, pH and NaCl supplement) were tested to ensure the optimization of growth conditions for EPS production by the strain S8-8. The highest yield of EPS was obtained during growth in culture medium supplemented with glucose (final concentration 2%) and NaCl (final concentration 3%), at 15 °C and pH 7. The EPS was mainly composed of carbohydrates (35%), followed by proteins and uronic acids (2.5 and 2.77%, respectively) and showed a monosaccharidic composition of glucose: mannose: galactosamine: galactose in the relative molar proportions of 1:0.7:0.5:0.4, as showed by the HPAE-PAD analysis. The detection of specific molecular groups (sulfates and uronic acid content) supported the interesting properties of EPSs, i.e. the emulsifying and cryoprotective action, heavy metal chelation, with interesting implication in bioremediation and biomedical fields. The analysis of the genome allowed to identify a cluster of genes involved in cellulose biosynthesis, and two additional gene clusters putatively involved in EPS biosynthesis. KEY POINTS: • A cold-adapted Pseudoalteromonas strain was investigated for EPS production. • The EPS showed emulsifying, cryoprotective, and heavy metal chelation functions. • Three gene clusters putatively involved in EPS biosynthesis were evidenced by genomic insights.


Assuntos
Metais Pesados , Pseudoalteromonas , Pseudoalteromonas/metabolismo , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Cloreto de Sódio/metabolismo , Polissacarídeos Bacterianos/metabolismo , Galactose/metabolismo , Manose/metabolismo , Regiões Antárticas , Ácidos Urônicos/metabolismo , Metais Pesados/metabolismo , Sulfatos/metabolismo , Glucose/metabolismo , Carbono/metabolismo , Galactosamina , Celulose/metabolismo
3.
Plant Cell Rep ; 41(7): 1549-1560, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35562569

RESUMO

KEY MESSAGE: Nuclear-localized Arabidopsis MYB3 functions as a transcriptional repressor for regulation of lignin and anthocyanin biosynthesis under high salt conditions. Salinity stress is a major factor which reduces plant growth and crop yield worldwide. To improve growth of crops in high salinity environments, plant responses to salinity stress must be tightly controlled. Here, to further understand the regulation of plant responses under high salinity conditions, the function of the MYB3 transcription factor was studied as a repressor to control accumulation of lignin and anthocyanin under salt stress conditions. Nuclear-localized MYB3 forms a homodimer. It is ubiquitously expressed, especially in vascular tissues, with expression highly induced by NaCl in tissues such as roots, leaves, stems, and flowers. myb3 mutant plants exhibited longer root growth in high NaCl conditions than wild-type plants. However, several NaCl responsive genes were not significantly altered in myb3 compared to wild-type. Interestingly, high accumulation of lignin and anthocyanin occurred in myb3 under NaCl treatment, as well as increased expression of genes involved in lignin and anthocyanin biosynthesis, such as phenylalanine ammonia lyase 1 (PAL1), cinnamate 4-hydroxylase (C4H), catechol-O-methyltransferase (COMT), 4-coumaric acid-CoA ligase (4CL3), dihydroflavonol reductase (DFR), and leucoanthocyanidin dioxygenase (LDOX). According to yeast two-hybrid screenings, various transcription factors, including anthocyanin regulators Transparent Testa 8 (TT8) and Enhancer of Glabra 3 (EGL3), were isolated as MYB3 interacting proteins. MYB3 was characterized as a transcriptional repressor, with its repressor domain located in the C-terminus. Overall, these results suggest that nuclear-localized MYB3 functions as a transcriptional repressor to control lignin and anthocyanin accumulation under salinity stress conditions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Antocianinas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Catecol O-Metiltransferase/genética , Catecol O-Metiltransferase/metabolismo , Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , Estresse Salino/genética , Cloreto de Sódio/metabolismo , Cloreto de Sódio/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Biotechnol Lett ; 44(3): 429-438, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35199255

RESUMO

OBJECTIVES: To develop a method for in vitro assembly of recombinant proteins expressed in E. coli into chimeric virus-like particles (cVLPs). RESULTS: A fusion protein (Bepi-Cap-A) between capsid protein (Cap) of PCV2b and B cell epitope (Bepi) of IBDV was expressed in E. Coli, and purified. For assembling them into cVLPs (Bepi-Cap-VLP), the Bepi-Cap-A was suspended in buffer C [0.03% ("%" stands for "v/v" unless otherwise indicated) polyethylene glycol, 0.4 M Tris, 10 mM ß-mercaptoethanol, 5% glycerol, 0.02% (w/v) gellan gum, 0.1 M glycine, 0.03% Tween 80, 500 mM NaCl], and incubated. After centrifugation, the pellet was resuspended in buffer D [50 mM Na2HPO4, 50 mM NaH2PO4, 0.01% (w/v) gellan gum, 0.05 mM EDTA, 500 mM NaCl, 0.03% Tween 80, pH 6.5], and then dialyzed against dialysis buffer (50 mM Na2HPO4, 50 mM NaH2PO4, 500 mM NaCl, 0.03% Tween 80, pH 6.5). The procedure resulted in typical and immunogenic Bepi-Cap-VLP. CONCLUSIONS: The data provide a method which is feasible for in vitro assembly of recombinant proteins into chimeric virus-like particles.


Assuntos
Circovirus , Vírus da Doença Infecciosa da Bursa , Animais , Anticorpos Antivirais/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Circovirus/genética , Epitopos de Linfócito B/genética , Epitopos de Linfócito B/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Vírus da Doença Infecciosa da Bursa/genética , Vírus da Doença Infecciosa da Bursa/metabolismo , Polissorbatos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Cloreto de Sódio/metabolismo , Suínos
5.
Molecules ; 27(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36144543

RESUMO

Estrogen contamination is widespread and microbial degradation is a promising removal method; however, unfavorable environments can hinder microbial function. In this study, a natural estrogen 17ß-estradiol (E2) was introduced as a degradation target, and a new combination of bacterial carrier was investigated. We found the best combination of polyvinyl alcohol (PVA) and sodium alginate (SA) was 4% total concentration, PVA:SA = 5:5, with nano-Fe3O4 at 2%, and maltose and glycine added to promote degradation, for which the optimal concentrations were 5 g·L-1 and 10 g·L-1, respectively. Based on the above exploration, the bacterial carrier was made, and the degradation efficiency of the immobilized bacteria reached 92.3% in 5 days. The immobilized bacteria were reused for three cycles, and the degradation efficiency of each round could exceed 94%. Immobilization showed advantages at pH 5, pH 11, 10 °C, 40 °C, and 40 g·L-1 NaCl, and the degradation efficiency of the immobilized bacteria was higher than 90%. In the wastewater, the immobilized bacteria could degrade E2 to about 1 mg·L-1 on the 5th day. This study constructed a bacterial immobilization carrier using a new combination, explored the application potential of the carrier, and provided a new choice of bacterial immobilization carrier.


Assuntos
Álcool de Polivinil , Águas Residuárias , Alginatos/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Estradiol/metabolismo , Estrogênios/metabolismo , Glicina/metabolismo , Fenômenos Magnéticos , Maltose/metabolismo , Cloreto de Sódio/metabolismo
6.
J Am Chem Soc ; 143(33): 13056-13064, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34374536

RESUMO

Liquid-liquid phase separation (LLPS) of proteins into biomolecular condensates has emerged as a fundamental principle underpinning cellular function and malfunction. Indeed, many human pathologies, including protein misfolding diseases, are linked to aberrant liquid-to-solid phase transitions, and disease-associated protein aggregates often nucleate through phase separation. The molecular level determinants that promote pathological phase transitions remain, however, poorly understood. Here we study LLPS of the microtubule-associated protein Tau, whose aberrant aggregation is associated with a number of neurodegenerative diseases, including Alzheimer's disease. Using single molecule spectroscopy, we probe directly the conformational changes that the protein undergoes as a result of LLPS. We perform single-molecule FRET and fluorescence correlation spectroscopy experiments to monitor the intra- and intermolecular changes and demonstrate that the N- and C-terminal regions of Tau become extended, thus exposing the microtubule-binding region. These changes facilitate intermolecular interactions and allow for the formation of nanoscale clusters of Tau. Our results suggest that these clusters can promote the fibrillization of Tau, which can be dramatically accelerated by disease-related mutations P301L and P301S. Our findings thus provide important molecular insights into the mechanism of protein phase separation and the conversion of protein condensates from functional liquid assemblies to pathological aggregates.


Assuntos
Agregação Patológica de Proteínas/metabolismo , Proteínas tau/metabolismo , Condensados Biomoleculares , Humanos , Polietilenoglicóis/química , Polietilenoglicóis/metabolismo , Conformação Proteica , Cloreto de Sódio/química , Cloreto de Sódio/metabolismo , Proteínas tau/química
7.
Int J Mol Sci ; 21(17)2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32878293

RESUMO

Reverse electrodialysis (RED) is an electro-membrane process for the conversion of mixing energy into electricity. One important problem researchers' face when modeling the RED process is the choice of the proper membrane transport equations. In this study, using experimental data that describe the membrane Nafion 120 in contact with NaCl aqueous solutions, the linear transport equation of irreversible thermodynamics was applied to calculate the power density of the RED system. Various simplifying assumptions about transport equation (i.e., four-, three-, and two-coefficients approaches) are proposed and discussed. We found that the two-coefficients approach, using the membrane conductivity and the apparent transport number of ions, describes the power density with good accuracy. In addition, the influence of the membrane thickness and the concentration polarization on the power density is also demonstrated.


Assuntos
Condutividade Elétrica , Eletrólise/métodos , Membranas Artificiais , Cloreto de Sódio/metabolismo , Termodinâmica , Transporte de Íons
8.
Physiol Rev ; 92(1): 39-74, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22298651

RESUMO

Fluid and HCO(3)(-) secretion is a vital function of all epithelia and is required for the survival of the tissue. Aberrant fluid and HCO(3)(-) secretion is associated with many epithelial diseases, such as cystic fibrosis, pancreatitis, Sjögren's syndrome, and other epithelial inflammatory and autoimmune diseases. Significant progress has been made over the last 20 years in our understanding of epithelial fluid and HCO(3)(-) secretion, in particular by secretory glands. Fluid and HCO(3)(-) secretion by secretory glands is a two-step process. Acinar cells secrete isotonic fluid in which the major salt is NaCl. Subsequently, the duct modifies the volume and electrolyte composition of the fluid to absorb the Cl(-) and secrete HCO(3)(-). The relative volume secreted by acinar and duct cells and modification of electrolyte composition of the secreted fluids varies among secretory glands to meet their physiological functions. In the pancreas, acinar cells secrete a small amount of NaCl-rich fluid, while the duct absorbs the Cl(-) and secretes HCO(3)(-) and the bulk of the fluid in the pancreatic juice. Fluid secretion appears to be driven by active HCO(3)(-) secretion. In the salivary glands, acinar cells secrete the bulk of the fluid in the saliva that is driven by active Cl(-) secretion and contains high concentrations of Na(+) and Cl(-). The salivary glands duct absorbs both the Na(+) and Cl(-) and secretes K(+) and HCO(3)(-). In this review, we focus on the molecular mechanism of fluid and HCO(3)(-) secretion by the pancreas and salivary glands, to highlight the similarities of the fundamental mechanisms of acinar and duct cell functions, and to point out the differences to meet gland-specific secretions.


Assuntos
Bicarbonatos/metabolismo , Pâncreas/fisiologia , Glândulas Salivares/fisiologia , Animais , Humanos , Saliva/metabolismo , Cloreto de Sódio/metabolismo , Equilíbrio Hidroeletrolítico/fisiologia
9.
J Exp Bot ; 69(21): 5157-5168, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30053124

RESUMO

Plant organ growth results from cell production and cell expansion. Deciphering the contribution of each of these processes to growth rate is an important issue in developmental biology. Here, we investigated the cellular processes governing root elongation rate, considering two sources of variation: genotype and disturbance by chemicals (NaCl, polyethylene glycol, H2O2, abscisic acid). Exploiting the adventitious rooting capacity of the Populus genus, and using time-lapse imaging under infrared-light, particle image velocimetry, histological analysis, and kinematics, we quantified the cellular processes involved in root growth variation, and analysed the covariation patterns between growth parameters. The rate of cell production by the root apical meristem and the number of dividing cells were estimated in vivo without destructive measurement. We found that the rate of cell division contributed more to the variation in cell production rate than the number of dividing cells. Regardless of the source of variation, the length of the elongation zone was the best proxy for growth rate, summarizing rates of cell production and cell elongation into a single parameter. Our results demonstrate that cell production rate is the main driver of growth rate, whereas elemental elongation rate is a key driver of short-term growth adjustments.


Assuntos
Divisão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Populus/crescimento & desenvolvimento , Ácido Abscísico/metabolismo , Genótipo , Peróxido de Hidrogênio/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Polietilenoglicóis/metabolismo , Populus/efeitos dos fármacos , Populus/genética , Cloreto de Sódio/metabolismo
10.
J Appl Microbiol ; 125(5): 1343-1357, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29928771

RESUMO

AIM: This study aimed at unprecedented physical and chemical evaluation of the 'green plastics' polyhydroxyalkanoates (PHAs), in an extremely halotolerant Halomonas elongata strain 2FF under high-salt concentration. METHODS AND RESULTS: The investigated bacterial strain was isolated from the surface water of the hypersaline Fara Fund Lake. The 16S rRNA gene sequence phylogeny and phenotypic analysis indicated that the isolate belonged to H. elongata. PHA inclusions were observed by Sudan Black B, Nile Red staining, and transmission electron microscopy during growth at high salinity (10%, w/v, NaCl) on 1% (w/v) d-glucose. The produced polymer was quantitatively and qualitatively assessed using crotonic acid assay, elemental analysis, Fourier transform infrared and Raman spectroscopies. Additionally, X-ray powder diffraction, 1 H-NMR spectroscopy, and differential scanning calorimetry were applied. The investigations showed that the intracellular polymer was polyhydroxybutyrate (PHB) of which the strain produced up to 40 wt% of total cell dry weight after 48 h. The analysis of phaC gene from the isolated H. elongata strain indicated that the encoded PHA synthase belongs to Class I PHA synthase family. CONCLUSIONS: Overall, our investigations pointed out that the halotolerant H. elongata strain 2FF was capable to produce significant amounts of PHB from d-glucose, and PHAs from various carbon substrates at high-salt concentrations. SIGNIFICANCE AND IMPACT OF THE STUDY: The tested strain showed the ability for significant production of natural, biodegradable polymers under nutrient limitation and hypersaline conditions suggesting its potentiality for further metabolic and molecular investigations towards enhanced biopolymer production. Additionally, this study reports on the unprecedented use of Raman and XPRD techniques to investigate PHAs of an extremely halotolerant bacterium, thus expanding the repertoire of physical methods to study green plastics derived from extremophilic microorganisms.


Assuntos
Halomonas/metabolismo , Lagos/microbiologia , Poli-Hidroxialcanoatos/biossíntese , Biopolímeros/biossíntese , Halomonas/genética , Halomonas/isolamento & purificação , Filogenia , Poli-Hidroxialcanoatos/química , RNA Ribossômico 16S/genética , Romênia , Cloreto de Sódio/metabolismo
11.
Plant Biotechnol J ; 15(1): 107-121, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27368149

RESUMO

Plant MYB transcription factors control diverse biological processes, such as differentiation, development and abiotic stress responses. In this study, we characterized BplMYB46, an MYB gene from Betula platyphylla (birch) that is involved in both abiotic stress tolerance and secondary wall biosynthesis. BplMYB46 can act as a transcriptional activator in yeast and tobacco. We generated transgenic birch plants with overexpressing or silencing of BplMYB46 and subjected them to gain- or loss-of-function analysis. The results suggest that BplMYB46 improves salt and osmotic tolerance by affecting the expression of genes including SOD, POD and P5CS to increase both reactive oxygen species scavenging and proline levels. In addition, BplMYB46 appears to be involved in controlling stomatal aperture to reduce water loss. Overexpression of BplMYB46 increases lignin deposition, secondary cell wall thickness and the expression of genes in secondary cell wall formation. Further analysis indicated that BplMYB46 binds to MYBCORE and AC-box motifs and may directly activate the expression of genes involved in abiotic stress responses and secondary cell wall biosynthesis whose promoters contain these motifs. The transgenic BplMYB46-overexpressing birch plants, which have improved salt and osmotic stress tolerance, higher lignin and cellulose content and lower hemicellulose content than the control, have potential applications in the forestry industry.


Assuntos
Betula/genética , Parede Celular/química , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Fatores de Transcrição/genética , Arabidopsis/genética , Morte Celular , Núcleo Celular , Celulose/metabolismo , Técnicas de Silenciamento de Genes , Inativação Gênica , Vetores Genéticos , Lignina/metabolismo , Cebolas/citologia , Cebolas/genética , Pressão Osmótica , Proteínas de Plantas/genética , Estômatos de Plantas/genética , Estômatos de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Polissacarídeos/metabolismo , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo , Tolerância ao Sal/genética , Cloreto de Sódio/metabolismo , Estresse Fisiológico/genética , Ativação Transcricional/genética , Água , Xilema/citologia , Xilema/genética
12.
J Plant Res ; 130(3): 611-624, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28290079

RESUMO

This study was conducted to determine effect and mechanism of exogenous silicon (Si) on salt and drought tolerance of Glycyrrhiza uralensis seedling by focusing on the pathways of antioxidant defense and osmotic adjustment. Seedling growth, lipid peroxidation, antioxidant metabolism, osmolytes concentration and Si content of G. uralensis seedlings were analyzed under control, salt and drought stress [100 mM NaCl with 0, 10 and 20% of PEG-6000 (Polyethylene glycol-6000)] with or without 1 mM Si. Si addition markedly affected the G. uralensis growth in a combined dose of NaCl and PEG dependent manner. In brief, Si addition improved germination rate, germination index, seedling vitality index and biomass under control and NaCl; Si also increased radicle length under control, NaCl and NaCl-10% PEG, decreased radicle length, seedling vitality index and germination parameters under NaCl-20% PEG. The salt and drought stress-induced-oxidative stress was modulated by Si application. Generally, Si application increased catalase (CAT) activity under control and NaCl-10% PEG, ascorbate peroxidase (APX) activity under all treatments and glutathione (GSH) content under salt combined drought stress as compared with non-Si treatments, which resisted to the increase of superoxide radicals and hydrogen peroxide caused by salt and drought stress and further decreased membrane permeability and malondialdehyde (MDA) concentration. Si application also increased proline concentration under NaCl and NaCl-20% PEG, but decreased it under NaCl-10% PEG, indicating proline play an important role in G. uralensis seedling response to osmotic stress. In conclusion, Si could ameliorate adverse effects of salt and drought stress on G. uralensis likely by reducing oxidative stress and osmotic stress, and the oxidative stress was regulated through enhancing of antioxidants (mainly CAT, APX and GSH) and osmotic stress was regulated by proline.


Assuntos
Antioxidantes/metabolismo , Secas , Glycyrrhiza uralensis/efeitos dos fármacos , Glycyrrhiza uralensis/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Silício/farmacologia , Cloreto de Sódio/metabolismo , Ascorbato Peroxidases/efeitos dos fármacos , Biomassa , Catalase/efeitos dos fármacos , Catalase/metabolismo , Germinação/efeitos dos fármacos , Glutationa/efeitos dos fármacos , Glycyrrhiza uralensis/enzimologia , Glycyrrhiza uralensis/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Malondialdeído/metabolismo , Modelos Biológicos , Pressão Osmótica/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Polietilenoglicóis/farmacologia , Prolina/efeitos dos fármacos , Tolerância ao Sal/efeitos dos fármacos , Estresse Fisiológico , Superóxidos/metabolismo
13.
Int Endod J ; 50(4): 367-376, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26993055

RESUMO

AIM: To describe the application of a newly-developed in vitro model in which the diffusion of antimicrobials in oral biofilms can be studied. METHODOLOGY: In a flow chamber consisting of three parallel feeding channels connected with each other by eight perpendicular side channels, multispecies biofilms were grown from saliva of a single donor for 48 h. The dimensions of the side channels were 100 µm × 100 µm × 5130 µm (H × W × L). When one or more side channels were filled with biofilm, the biofilms were stained with fluorescent stains. Then, one side-channel biofilm was selected and treated with phosphate buffered saline, 2% sodium hypochlorite (NaOCl), 17% ethylenediaminetetra-acetic acid (EDTA) or modified salt solution (MSS). Diffusion of the irrigants was observed by acquiring fluorescence images at 10× objective every 15 s for 30 min. RESULTS: It was possible to culture biofilms in the narrow (100 µm) channels. The biofilms varied in phenotype. In this model, no diffusion of NaOCl into the biofilms was seen after its application. Seventeen-percentage EDTA only diffused into the biofilm up to 200 µm in 30 min. MSS did diffuse in the biofilm over a distance of 450 µm within 2 min after a single application. CONCLUSIONS: This new model enables the investigation of the diffusion of antimicrobials in biofilms. Other applications to improve our understanding of the characteristics of biofilms are now possible.


Assuntos
Anti-Infecciosos/metabolismo , Biofilmes , Biofilmes/efeitos dos fármacos , Corantes/metabolismo , Ácido Edético/metabolismo , Humanos , Técnicas In Vitro , Modelos Biológicos , Saliva/metabolismo , Cloreto de Sódio/metabolismo , Hipoclorito de Sódio/metabolismo
14.
Water Sci Technol ; 73(4): 716-24, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26901712

RESUMO

This work aims to assess the acclimation of microorganisms to a gradual increase of salinity and hydrocarbons, during the start-up of two moving bed membrane bioreactors (MB-MBRs) fed with saline oily wastewater. In both systems an ultrafiltration membrane was used and two types of carriers were employed: polyurethane sponge cubes (MB-MBRI) and polyethylene cylindrical carriers (MB-MBRII). A decreasing dilution factor of slops has been adopted in order to allow biomass acclimation. The simultaneous effect of salinity and hydrocarbons played an inhibitory role in biomass growth and this resulted in a decrease of the biological removal efficiencies. A reduction of bound extracellular polymeric substances and a simultaneous release of soluble microbial products (SMPs) were observed, particularly in the MB-MBRII system, probably due to the occurrence of a greater suspended biomass stress as response to the recalcitrance of substrate. On the one hand, a clear attachment of biomass occurred only in MB-MBRI and this affected the fouling deposition on the membrane surface. The processes of detachment and entrapment of biomass, from and into the carriers, significantly influenced the superficial cake deposition and its reversibility. On the other hand, in MB-MBRII, the higher production of SMPs implied a predominance of the pore blocking.


Assuntos
Bactérias/metabolismo , Reatores Biológicos/microbiologia , Hidrocarbonetos/metabolismo , Águas Residuárias/química , Poluentes Químicos da Água/metabolismo , Purificação da Água/métodos , Biodegradação Ambiental , Membranas Artificiais , Salinidade , Cloreto de Sódio/metabolismo , Purificação da Água/instrumentação
15.
Izv Akad Nauk Ser Biol ; (2): 136-45, 2016.
Artigo em Russo | MEDLINE | ID: mdl-27396174

RESUMO

The summarized experimental data on ombrophilic bacteria isolated from dystrophic waters formed by a mycobacterial community during the process of spruce wood decomposition are presented. It was demonstrated that the ombrophilic microbial community was characterized by wide phylogenetic diversity at the initial stage of spruce wood decomposition by xylotrophic fungi under low mineralization conditions. It was noted that bacteria were able to grow under acidic and ultrafresh conditions and most of them were referred to oligotrophs. It was determined that all isolated ombrophilic bacteria divided into three groups depending on the substrate specifity: saccharolytic, acidotrophic bacteria, and bacteria, which used C1-compounds as the substrate. The position of the ombrophilic bacteria in the trophic chain was determined.


Assuntos
Bactérias/metabolismo , Consórcios Microbianos , Madeira/microbiologia , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/isolamento & purificação , Carbono/metabolismo , Celulose/metabolismo , Ecossistema , Hidrólise , Filogenia , Cloreto de Sódio/metabolismo , Cloreto de Sódio/farmacologia , Madeira/metabolismo
16.
Appl Environ Microbiol ; 81(21): 7610-4, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26319879

RESUMO

Three out of five outbreaks of foot-and-mouth disease (FMD) since 2010 in the Republic of Korea have occurred in the winter. At the freezing temperatures, it was impossible to spray disinfectant on the surfaces of vehicles, roads, and farm premises because the disinfectant would be frozen shortly after discharge and the surfaces of the roads or machines would become slippery in cold weather. In this study, we added chemical deicers (ethylene glycol, propylene glycol, sodium chloride, calcium chloride, ethyl alcohol, and commercial windshield washer fluid) to keep disinfectants (0.2% citric acid and 4% sodium carbonate) from freezing, and we tested their virucidal efficacies under simulated cold temperatures in a tube. The 0.2% citric acid could reduce the virus titer 4 logs at -20°C with all the deicers. On the other hand, 4% sodium carbonate showed little virucidal activity at -20°C within 30 min, although it resisted being frozen with the function of the deicers. In conclusion, for the winter season, we may recommend the use of citric acid (>0.2%) diluted in 30% ethyl alcohol or 25% sodium chloride solvent, depending on its purpose.


Assuntos
Carbonatos/metabolismo , Ácido Cítrico/metabolismo , Desinfetantes/metabolismo , Vírus da Febre Aftosa/efeitos dos fármacos , Inativação de Vírus , Temperatura Baixa , Etanol/metabolismo , República da Coreia , Cloreto de Sódio/metabolismo , Fatores de Tempo , Carga Viral
17.
Food Microbiol ; 46: 443-451, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25475314

RESUMO

This research aimed to determine whether the SigB (σ(B)) regulon and osmolytes impact the survival of the foodborne pathogen, Listeria monocytogenes, during desiccation in simulated food soils with varying salt and nutrient contents on food grade stainless steel (SS) surfaces. L. monocytogenes 568 (Lm568, serotype 1/2a), its isogenic sigB mutant (ΔsigB) and the back-complemented ΔsigB were desiccated in BHI, TSB with 1% glucose (TSB-glu), peptone physiological saline (PPS) and minimal media (MM) for 21 days at 43% relative humidity (RH) and 15 °C on SS. The effect of food related osmolytes (proline, betaine and carnitine) on desiccation survival was studied by (a) pre-culturing strains in MM with an osmolyte followed by desiccation in MM and (b) by desiccating strains in MM with an osmolyte. Desiccation survival of L. monocytogenes was positively correlated to the nutrient and osmolyte concentrations in the desiccation substrates. Initial Lm568 levels of 8 Log(CFU/cm(2)) decreased by 0.9 Log(CFU/cm(2)) in BHI and 1.1-2.9 Log(CFU/cm(2)) in TSB-glu, PPS and MM after 21 days. Comparatively, the initial survival of ΔsigB was reduced in PS and MM, while no differences were observed among the three strains in BHI and TSB-glu. Pre-culture in osmolyte containing MM enhanced (p < 0.05) desiccation survival of all strains. Desiccation in osmolyte-containing MM improved desiccation survival of all strains, albeit the protection was less than that observed after pre-culture with the osmolytes. Complementation of the ΔsigB mutant restored the wildtype phenotype. In conclusion, this work shows the protective effect of osmolytes in desiccation survival of L. monocytogenes, while the σ(B) regulon only improved the initial survival in nutrient and osmolyte poor environments.


Assuntos
Proteínas de Bactérias/metabolismo , Aditivos Alimentares/farmacologia , Listeria monocytogenes/crescimento & desenvolvimento , Fator sigma/metabolismo , Cloreto de Sódio/metabolismo , Proteínas de Bactérias/genética , Betaína/farmacologia , Carnitina/farmacologia , Dessecação/instrumentação , Dessecação/métodos , Manipulação de Alimentos/instrumentação , Manipulação de Alimentos/métodos , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Viabilidade Microbiana/efeitos dos fármacos , Modelos Biológicos , Concentração Osmolar , Prolina/farmacologia , Fator sigma/genética , Aço Inoxidável/análise
18.
Chem Senses ; 39(6): 515-28, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24846212

RESUMO

Genetic ablation of calcium homeostasis modulator 1 (CALHM1), which releases adenosine triphosphate from Type 2 taste cells, severely compromises the behavioral and electrophysiological responses to tastes detected by G protein-coupled receptors, such as sweet and bitter. However, the contribution of CALHM1 to salty taste perception is less clear. Here, we evaluated several salty taste-related phenotypes of CALHM1 knockout (KO) mice and their wild-type (WT) controls: 1) In a conditioned aversion test, CALHM1 WT and KO mice had similar NaCl avoidance thresholds. 2) In two-bottle choice tests, CALHM1 WT mice showed the classic inverted U-shaped NaCl concentration-preference function but CALHM1 KO mice had a blunted peak response. 3) In brief-access tests, CALHM1 KO mice showed less avoidance than did WT mice of high concentrations of NaCl, KCl, NH(4)Cl, and sodium lactate (NaLac). Amiloride further ameliorated the NaCl avoidance of CALHM1 KO mice, so that lick rates to a mixture of 1000 mM NaCl + 10 µM amiloride were statistically indistinguishable from those to water. 4) Relative to WT mice, CALHM1 KO mice had reduced chorda tympani nerve activity elicited by oral application of NaCl, NaLac, and sucrose but normal responses to HCl and NH(4)Cl. Chorda tympani responses to NaCl and NaLac were amiloride sensitive in WT but not KO mice. These results reinforce others demonstrating that multiple transduction pathways make complex, concentration-dependent contributions to salty taste perception. One of these pathways depends on CALHM1 to detect hypertonic NaCl in the mouth and signal the aversive taste of concentrated salt.


Assuntos
Canais de Cálcio/genética , Sais/metabolismo , Paladar , Amilorida/metabolismo , Animais , Canais de Cálcio/metabolismo , Nervo da Corda do Tímpano/fisiologia , Feminino , Preferências Alimentares , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Cloreto de Potássio/metabolismo , Cloreto de Sódio/metabolismo , Lactato de Sódio/metabolismo , Papilas Gustativas/fisiologia , Percepção Gustatória
19.
J Appl Microbiol ; 117(4): 1056-65, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25048168

RESUMO

AIMS: Morphological, biochemical and genotypic characterization of a halophilic bacterium isolated from hypersaline ponds located at Las Coloradas (Río Lagartos, Yucatán, Mexico). Characterization of polymer produced by this strain was also performed. METHODS AND RESULTS: Twenty strains were isolated from water samples of salt ponds and selected based on both morphological features and their PHA storage capacity, which were determined by SEM and staining methods with Nile red and Nile blue, respectively; strains were also analysed by the fluorescence imaging technique. Among them, JCCOL25.8 strain showed the highest production of PHA's reason why phenotypic and genotypic characterization was performed; this strain was identified as Halomonas nitroreducens. Polymer produced by this strain was characterized by FTIR, DSC, GPC and EDX spectroscopy. Results indicated that the biosynthesized polymer was polyhydroxybutyrate (PHB) which had a melting peak at 170°C and a crystallinity percentage of about 36%. CONCLUSIONS: Based on phenotypic and genotypic aspects, JCCOL25.8 strain was identified as H. nitroreducens and it was capable to accumulate PHB. SIGNIFICANCE AND IMPACT OF THE STUDY: To our knowledge, there is only one study published on the biosynthesis of PHA's by H. nitroreducens strains, although the characterization of the obtained polymer was not reported.


Assuntos
Plásticos Biodegradáveis/metabolismo , Halomonas/classificação , Halomonas/isolamento & purificação , Poli-Hidroxialcanoatos/biossíntese , Lagoas/microbiologia , Halomonas/crescimento & desenvolvimento , Halomonas/ultraestrutura , México , Dados de Sequência Molecular , Filogenia , Cloreto de Sódio/metabolismo
20.
World J Microbiol Biotechnol ; 30(12): 3081-90, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25217027

RESUMO

The extracellular polymeric substance (EPS) and surface properties of unsaturated biofilms of a heavy metal-resistant rhizobacterium Pseudomonas putida CZ1, in response to aging, pH, temperature and osmotic stress, were studied by quantitative analysis of EPS and atomic force microscope. It was found that EPS production increased approximately linearly with culture time, cells in the air-biofilm interface enhanced EPS production and decreased cell volume to cope with nutrient depletion during aging. Low pH, high temperature and certain osmotic stress (120 mM NaCl) distinctly stimulated EPS production, and the main component enhanced was extracellular protein. In addition to the enhancement of EPS production in response to high osmotic (328 mM NaCl) stress, cells in the biofilm adhere tightly together to maintain a particular microenvironment. These results indicated the variation of EPS composition and the cooperation of cells in the biofilms is important for the survival of Pseudomonas putida CZ1 from environmental stresses in the unsaturated environments such as rhizosphere.


Assuntos
Biofilmes/crescimento & desenvolvimento , Biopolímeros/metabolismo , Pseudomonas putida/fisiologia , Estresse Fisiológico , Propriedades de Superfície , Aderência Bacteriana , Concentração de Íons de Hidrogênio , Microscopia de Força Atômica , Pressão Osmótica , Pseudomonas putida/efeitos dos fármacos , Pseudomonas putida/efeitos da radiação , Cloreto de Sódio/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA