Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 115(48): E11284-E11293, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30413621

RESUMO

Proteins that fold cotranslationally may do so in a restricted configurational space, due to the volume occupied by the ribosome. How does this environment, coupled with the close proximity of the ribosome, affect the folding pathway of a protein? Previous studies have shown that the cotranslational folding process for many proteins, including small, single domains, is directly affected by the ribosome. Here, we investigate the cotranslational folding of an all-ß Ig domain, titin I27. Using an arrest peptide-based assay and structural studies by cryo-EM, we show that I27 folds in the mouth of the ribosome exit tunnel. Simulations that use a kinetic model for the force dependence of escape from arrest accurately predict the fraction of folded protein as a function of length. We used these simulations to probe the folding pathway on and off the ribosome. Our simulations-which also reproduce experiments on mutant forms of I27-show that I27 folds, while still sequestered in the mouth of the ribosome exit tunnel, by essentially the same pathway as free I27, with only subtle shifts of critical contacts from the C to the N terminus.


Assuntos
Conectina/química , Ribossomos/metabolismo , Conectina/genética , Conectina/metabolismo , Humanos , Cinética , Proteínas dos Microfilamentos , Modelos Moleculares , Biossíntese de Proteínas , Dobramento de Proteína , Ribossomos/química , Ribossomos/genética
2.
Biochem Soc Trans ; 43(5): 850-5, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26517893

RESUMO

Titin is a gigantic filamentous protein of the muscle sarcomere that plays roles in myofibril mechanics and homoeostasis. 3D-structures of multi-domain fragments of titin are now available that start revealing the molecular mechanisms governing its mechanical and scaffolding functions. This knowledge is now being translated into the fabrication of self-assembling biopolymers. Here we review the structural advances on titin, the novel concepts derived from these and the emerging translational avenues.


Assuntos
Conectina/química , Modelos Moleculares , Miofibrilas/química , Animais , Sítios de Ligação , Materiais Biocompatíveis/química , Conectina/genética , Conectina/metabolismo , Humanos , Miofibrilas/metabolismo , Miofibrilas/ultraestrutura , Nanoestruturas/química , Conformação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Sarcômeros/química , Sarcômeros/metabolismo , Sarcômeros/ultraestrutura
3.
Nat Commun ; 12(1): 5182, 2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34462443

RESUMO

Manmade high-performance polymers are typically non-biodegradable and derived from petroleum feedstock through energy intensive processes involving toxic solvents and byproducts. While engineered microbes have been used for renewable production of many small molecules, direct microbial synthesis of high-performance polymeric materials remains a major challenge. Here we engineer microbial production of megadalton muscle titin polymers yielding high-performance fibers that not only recapture highly desirable properties of natural titin (i.e., high damping capacity and mechanical recovery) but also exhibit high strength, toughness, and damping energy - outperforming many synthetic and natural polymers. Structural analyses and molecular modeling suggest these properties derive from unique inter-chain crystallization of folded immunoglobulin-like domains that resists inter-chain slippage while permitting intra-chain unfolding. These fibers have potential applications in areas from biomedicine to textiles, and the developed approach, coupled with the structure-function insights, promises to accelerate further innovation in microbial production of high-performance materials.


Assuntos
Conectina/química , Conectina/genética , Escherichia coli/metabolismo , Fibras Musculares Esqueléticas/química , Animais , Fenômenos Biomecânicos , Conectina/metabolismo , Cristalização , Escherichia coli/genética , Expressão Gênica , Peso Molecular , Fibras Musculares Esqueléticas/metabolismo , Polimerização , Polímeros/química , Polímeros/metabolismo , Dobramento de Proteína , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA