Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nature ; 609(7927): 541-546, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35978194

RESUMO

The early history of deuterostomes, the group composed of the chordates, echinoderms and hemichordates1, is still controversial, not least because of a paucity of stem representatives of these clades2-5. The early Cambrian microscopic animal Saccorhytus coronarius was interpreted as an early deuterostome on the basis of purported pharyngeal openings, providing evidence for a meiofaunal ancestry6 and an explanation for the temporal mismatch between palaeontological and molecular clock timescales of animal evolution6-8. Here we report new material of S. coronarius, which is reconstructed as a millimetric and ellipsoidal meiobenthic animal with spinose armour and a terminal mouth but no anus. Purported pharyngeal openings in support of the deuterostome hypothesis6 are shown to be taphonomic artefacts. Phylogenetic analyses indicate that S. coronarius belongs to total-group Ecdysozoa, expanding the morphological disparity and ecological diversity of early Cambrian ecdysozoans.


Assuntos
Cordados , Filogenia , Animais , Cordados/anatomia & histologia , Fósseis , Boca , Paleontologia
2.
Dev Growth Differ ; 64(1): 67-82, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34964127

RESUMO

The larvacean Oikopleura dioica is a cosmopolitan planktonic chordate and is closely related to vertebrates. It is characterized by a tadpole-shaped morphology with notochord flanked by muscle in the tail and brain on the dorsal side, a short life cycle of five days, a compact genome of approximately 56 Mb, a simple and transparent body with a small number of cells (~4000 in functional juveniles), invariant embryonic cell lineages, and fast development that ensures complete morphogenesis and organ formation 10 h after fertilization. With these features, this marine chordate is a promising and advantageous animal model in which genetic manipulation is feasible. In this review, we introduce relevant resources and modern techniques that have been developed: (1) Genome and transcriptomes. Oikopleura dioica has the smallest genome among non-parasitic metazoans. Its genome databases have been generated using three geographically distant O. dioica populations, and several intra-species sequence differences are becoming evident; (2) Functional genetic knockdown techniques. Comprehensive screening of genes is feasible using ovarian microinjection and double-strand DNA-induced gene knockdown; and (3) Live imaging of embryos and larvae. Application of these techniques has uncovered novel aspects of development, including meiotic cell arrest, left-right patterning, epidermal cell patterning, and mouth formation involving the connection of ectoderm and endoderm sheets. Oikopleura dioca has become very useful for developmental and evolutionary studies in chordates.


Assuntos
Cordados , Urocordados , Animais , Biologia do Desenvolvimento , Genoma , Morfogênese , Urocordados/genética
3.
Mol Biol Rep ; 46(5): 5525-5530, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31209744

RESUMO

Patagonian toohfish (Dissostichus eleginoides), is a sub Antartic notothenioid fish key in the marine ecosystem that sustains fishery of higher commercial value in the world. However, there are a scarce knowledge or information about its population genetic background, product of the almost null information of molecular markers available for this species. Here, we use high-throughput sequencing technology (Illumina platform) to develop 1071 microsatellite loci, of which 22 loci were selected to evaluation. Polymorphism and genetic diversity of each locus was assessed in two locations distant by 2370 km. Considering both locations, a mean PIC value of 0.748 was estimated. Selected microsatellite loci showed among two to seventeen alleles by locus in the first location and two to twelve in the second. The observed heterozygosity varied from 0.18 to 0.91 and from 0.12 to 0.87 for the first and second location, respectively. While, the expected heterozygosity ranged from 0.15 to 0.92 and from 0.11 to 0.90. Three loci were monomorphic in only one location. Microsatellite markers developed here will be useful in future studies on conservation, fishery and population genetics of this species.


Assuntos
Repetições de Microssatélites/genética , Perciformes/genética , Alelos , Animais , Regiões Antárticas , Cordados/genética , Peixes/genética , Variação Genética/genética , Genética Populacional/métodos , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Polimorfismo Genético/genética
4.
BMC Evol Biol ; 14: 214, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25273382

RESUMO

BACKGROUND: Vetulicolians are one of the most problematic and controversial Cambrian fossil groups, having been considered as arthropods, chordates, kinorhynchs, or their own phylum. Mounting evidence suggests that vetulicolians are deuterostomes, but affinities to crown-group phyla are unresolved. RESULTS: A new vetulicolian from the Emu Bay Shale Konservat-Lagerstätte, South Australia, Nesonektris aldridgei gen. et sp. nov., preserves an axial, rod-like structure in the posterior body region that resembles a notochord in its morphology and taphonomy, with notable similarity to early decay stages of the notochord of extant cephalochordates and vertebrates. Some of its features are also consistent with other structures, such as a gut or a coelomic cavity. CONCLUSIONS: Phylogenetic analyses resolve a monophyletic Vetulicolia as sister-group to tunicates (Urochordata) within crown Chordata, and this holds even if they are scored as unknown for all notochord characters. The hypothesis that the free-swimming vetulicolians are the nearest relatives of tunicates suggests that a perpetual free-living life cycle was primitive for tunicates. Characters of the common ancestor of Vetulicolia + Tunicata include distinct anterior and posterior body regions - the former being non-fusiform and used for filter feeding and the latter originally segmented - plus a terminal mouth, absence of pharyngeal bars, the notochord restricted to the posterior body region, and the gut extending to the end of the tail.


Assuntos
Cordados/classificação , Cordados/genética , Fósseis , Animais , Austrália , Evolução Biológica , Cordados/anatomia & histologia , Brânquias/anatomia & histologia , Filogenia , Urocordados/classificação , Urocordados/genética
5.
Development ; 137(9): 1483-92, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20335363

RESUMO

Extracellular matrices play important, but poorly investigated, roles in morphogenesis. Extracellular cellulose is central to regulation of pattern formation in plants, but among metazoans only tunicates are capable of cellulose biosynthesis. Cellulose synthase (CesA) gene products are present in filter-feeding structures of all tunicates and also regulate metamorphosis in the ascidian Ciona. Ciona CesA is proposed to have been acquired by lateral gene transfer from a prokaryote. We identified two CesA genes in the sister-class larvacean Oikopleura dioica. Each has a mosaic structure of a glycoslyltransferase 2 domain upstream of a glycosyl hydrolase family 6 cellulase-like domain, a signature thus far unique to tunicates. Spatial-temporal expression analysis revealed that Od-CesA1 produces long cellulose fibrils along the larval tail, whereas Od-CesA2 is responsible for the cellulose scaffold of the post-metamorphic filter-feeding house. Knockdown of Od-CesA1 inhibited cellulose production in the extracellular matrix of the larval tail. Notochord cells either failed to align or were misaligned, the tail did not elongate properly and tailbud embryos also exhibited a failure to hatch. Knockdown of Od-CesA2 did not elicit any of these phenotypes and instead caused a mild delay in pre-house formation. Phylogenetic analyses including Od-CesAs indicate that a single lateral gene transfer event from a prokaryote at the base of the lineage conferred biosynthetic capacity in all tunicates. Ascidians possess one CesA gene, whereas duplicated larvacean genes have evolved distinct temporal and functional specializations. Extracellular cellulose microfibrils produced by the pre-metamorphic Od-CesA1 duplicate have a role in notochord and tail morphogenesis.


Assuntos
Cordados/embriologia , Cordados/genética , Evolução Molecular , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Células Procarióticas/metabolismo , Animais , Celulose/metabolismo , Cordados/classificação , Transferência Genética Horizontal/genética , Hibridização In Situ , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
Proc Biol Sci ; 280(1757): 20122963, 2013 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-23446527

RESUMO

The vertebrates share the ability to produce a skeleton made of mineralized extracellular matrix. However, our understanding of the molecular changes that accompanied their emergence remains scarce. Here, we describe the evolutionary history of the SPARC (secreted protein acidic and rich in cysteine) family, because its vertebrate orthologues are expressed in cartilage, bones and teeth where they have been proposed to bind calcium and act as extracellular collagen chaperones, and because further duplications of specific SPARC members produced the small calcium-binding phosphoproteins (SCPP) family that is crucial for skeletal mineralization to occur. Both phylogeny and synteny conservation analyses reveal that, in the eumetazoan ancestor, a unique ancestral gene duplicated to give rise to SPARC and SPARCB described here for the first time. Independent losses have eliminated one of the two paralogues in cnidarians, protostomes and tetrapods. Hence, only non-tetrapod deuterostomes have conserved both genes. Remarkably, SPARC and SPARCB paralogues are still linked in the amphioxus genome. To shed light on the evolution of the SPARC family members in chordates, we performed a comprehensive analysis of their embryonic expression patterns in amphioxus, tunicates, teleosts, amphibians and mammals. Our results show that in the chordate lineage SPARC and SPARCB family members were recurrently recruited in a variety of unrelated tissues expressing collagen genes. We propose that one of the earliest steps of skeletal evolution involved the co-expression of SPARC paralogues with collagenous proteins.


Assuntos
Calcificação Fisiológica/genética , Evolução Molecular , Duplicação Gênica , Osteonectina/química , Animais , Sequência de Bases , Cordados/embriologia , Cordados/genética , Cordados/metabolismo , Clonagem Molecular , Sequência Conservada , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Osteonectina/genética , Filogenia , Sintenia
7.
J Anat ; 222(1): 19-31, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22414251

RESUMO

Urochordates (ascidians) have recently supplanted cephalochordates (amphioxus) as the extant sister taxon of vertebrates. Given that urochordates possess migratory cells that have been classified as 'neural crest-like'- and that cephalochordates lack such cells--this phylogenetic hypothesis may have significant implications with respect to the origin of the neural crest and neural crest-derived skeletal tissues in vertebrates. We present an overview of the genes and gene regulatory network associated with specification of the neural crest in vertebrates. We then use these molecular data--alongside cell behaviour, cell fate and embryonic context--to assess putative antecedents (latent homologues) of the neural crest or neural crest cells in ascidians and cephalochordates. Ascidian migratory mesenchymal cells--non-pigment-forming trunk lateral line cells and pigment-forming 'neural crest-like cells' (NCLC)--are unlikely latent neural crest cell homologues. Rather, Snail-expressing cells at the neural plate of border of urochordates and cephalochordates likely represent the extent of neural crest elaboration in non-vertebrate chordates. We also review evidence for the evolutionary origin of two neural crest-derived skeletal tissues--cartilage and dentine. Dentine is a bona fide vertebrate novelty, and dentine-secreting odontoblasts represent a cell type that is exclusively derived from the neural crest. Cartilage, on the other hand, likely has a much deeper origin within the Metazoa. The mesodermally derived cellular cartilages of some protostome invertebrates are much more similar to vertebrate cartilage than is the acellular 'cartilage-like' tissue in cephalochordate pharyngeal arches. Cartilage, therefore, is not a vertebrate novelty, and a well-developed chondrogenic program was most likely co-opted from mesoderm to the neural crest along the vertebrate stem. We conclude that the neural crest is a vertebrate novelty, but that neural crest cells and their derivatives evolved and diversified in a step-wise fashion--first by elaboration of neural plate border cells, then by the innovation or co-option of new or ancient metazoan cell fates.


Assuntos
Osso e Ossos/anatomia & histologia , Cordados/anatomia & histologia , Crista Neural/anatomia & histologia , Animais , Evolução Biológica , Cartilagem/citologia , Condrócitos/citologia , Dentina/anatomia & histologia , Marcadores Genéticos , Crista Neural/citologia , Odontoblastos/citologia , Urocordados/anatomia & histologia
8.
Zootaxa ; 3686: 183-200, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-26473214

RESUMO

Sphagesaurus montealtensis is a sphagesaurid whose original description was based on a comparison with Sphagesaurus huenei, the only species of the clade described to that date. Better preparation of the holotype and the discovery of a new specimen have allowed the review of some characteristics and the identification of several synapomorphies of S. montealtensis with the genus Caipirasuchus: presence of antorbital fenestra; external nares bordered only by the premaxillae; premaxilla with four teeth and one diastema (between the 3rd-4th teeth); one diastema between the 4th premaxillary tooth and the 1" maxillary tooth; dentary with ten teeth and two diastemata (between the 4th-5th and 5th-6th teeth); nasal with a groove parallel to the suture with the frontal bone; nasal long, with an acute anterior margin touching anterolaterally the premaxilla, jugal is a straight bar in the lateral view; frontal is longer than wide; a dorsoventrally expanded and vertically oriented quadrate with a groove separating the medial and lateral condyles; the frontal has a discrete sagittal crest; dentary with six posterior sphagesauriform teeth and four anterior conical teeth, the first three are the smallest of the series and the fourth is slightly laterally compressed. The referral of S. montealtensis to the genus Caipirasuchus, as Caipirasuchus montealtensis comb. nov. is proposed here, based on the new taxonomic observations and the results of a phylogenetic analysis.


Assuntos
Cordados/classificação , Animais , Brasil , Cordados/anatomia & histologia , Fósseis/anatomia & histologia , Maxila/anatomia & histologia , Crânio/anatomia & histologia
9.
Dev Biol ; 344(1): 138-49, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20438724

RESUMO

The relative positions of the brain and mouth are of central importance for models of chordate evolution. The dorsal hollow neural tube and the mouth have often been thought of as developmentally distinct structures that may have followed independent evolutionary paths. In most chordates however, including vertebrates and ascidians, the mouth primordia have been shown to fate to the anterior neural boundary. In ascidians such as Ciona there is a particularly intimate relationship between brain and mouth development, with a thin canal connecting the neural tube lumen to the mouth primordium at larval stages. This so-called neurohypophyseal canal was previously thought to be a secondary connection that formed relatively late, after the independent formation of the mouth primordium and the neural tube. Here we show that the Ciona neurohypophyseal canal is present from the end of neurulation and represents the anteriormost neural tube, and that the future mouth opening is actually derived from the anterior neuropore. The mouth thus forms at the anterior midline transition between neural tube and surface ectoderm. In the vertebrate Xenopus, we find that although the mouth primordium is not topologically continuous with the neural tube lumen, it nonetheless forms at this same transition point. This close association between the mouth primordium and the anterior neural tube in both ascidians and amphibians suggests that the evolution of these two structures may be more closely linked than previously appreciated.


Assuntos
Evolução Biológica , Regulação da Expressão Gênica no Desenvolvimento , Boca/embriologia , Crista Neural/metabolismo , Animais , Padronização Corporal , Encéfalo/embriologia , Linhagem da Célula , Cordados/genética , Cordados/fisiologia , Ciona intestinalis/fisiologia , Proteínas ELAV/metabolismo , Modelos Biológicos , Modelos Genéticos , Xenopus , Proteínas de Xenopus/metabolismo
10.
PLoS Genet ; 4(3): e1000025, 2008 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-18369444

RESUMO

The skeleton is one of the most important features for the reconstruction of vertebrate phylogeny but few data are available to understand its molecular origin. In mammals the Runt genes are central regulators of skeletogenesis. Runx2 was shown to be essential for osteoblast differentiation, tooth development, and bone formation. Both Runx2 and Runx3 are essential for chondrocyte maturation. Furthermore, Runx2 directly regulates Indian hedgehog expression, a master coordinator of skeletal development. To clarify the correlation of Runt gene evolution and the emergence of cartilage and bone in vertebrates, we cloned the Runt genes from hagfish as representative of jawless fish (MgRunxA, MgRunxB) and from dogfish as representative of jawed cartilaginous fish (ScRunx1-3). According to our phylogenetic reconstruction the stem species of chordates harboured a single Runt gene and thereafter Runt locus duplications occurred during early vertebrate evolution. All newly isolated Runt genes were expressed in cartilage according to quantitative PCR. In situ hybridisation confirmed high MgRunxA expression in hard cartilage of hagfish. In dogfish ScRunx2 and ScRunx3 were expressed in embryonal cartilage whereas all three Runt genes were detected in teeth and placoid scales. In cephalochordates (lancelets) Runt, Hedgehog and SoxE were strongly expressed in the gill bars and expression of Runt and Hedgehog was found in endo- as well as ectodermal cells. Furthermore we demonstrate that the lancelet Runt protein binds to Runt binding sites in the lancelet Hedgehog promoter and regulates its activity. Together, these results suggest that Runt and Hedgehog were part of a core gene network for cartilage formation, which was already active in the gill bars of the common ancestor of cephalochordates and vertebrates and diversified after Runt duplications had occurred during vertebrate evolution. The similarities in expression patterns of Runt genes support the view that teeth and placoid scales evolved from a homologous developmental module.


Assuntos
Desenvolvimento Ósseo/genética , Cordados/crescimento & desenvolvimento , Cordados/genética , Evolução Molecular , Animais , Sequência de Bases , Galinhas/genética , Galinhas/crescimento & desenvolvimento , Condrogênese/genética , Cordados não Vertebrados/genética , Cordados não Vertebrados/crescimento & desenvolvimento , Subunidades alfa de Fatores de Ligação ao Core/genética , Primers do DNA/genética , Cação (Peixe)/genética , Cação (Peixe)/crescimento & desenvolvimento , Duplicação Gênica , Regulação da Expressão Gênica no Desenvolvimento , Feiticeiras (Peixe)/genética , Feiticeiras (Peixe)/crescimento & desenvolvimento , Proteínas Hedgehog/genética , Humanos , Modelos Genéticos , Odontogênese/genética , Osteogênese/genética , Filogenia , Urocordados/genética , Urocordados/crescimento & desenvolvimento
11.
Nanomedicine (Lond) ; 14(7): 871-887, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30895865

RESUMO

AIM: To provide multilayered combination therapies encompassing nanoparticles and organic peptides and to assess their efficacy in the treatment of arthritis. MATERIALS & METHODS: Fish oil protein (FP) was isolated from fish oil glands and tagged with spherical gold nanoparticles (GNPs). Tagged GNPs were encapsulated in DPPC liposomes (FP-GNP-DPPC) and characterized. RESULTS & CONCLUSION: FP increased the hydrophilicity of GNP, while encapsulation of FP-GNP within liposomes increased the hydrophobicity. In vitro release studies of FP-GNP-DPPC exhibited sustained release of FP in simulated synovial fluid. FP-GNP-DPPC injected into intra-articular joints of rats displayed anti-osteoarthritic effects in osteoarthritic rat model. This is the first study to report the anti-osteoarthritic activity of FP and DPPC encapsulated FP-GNP liposomes.


Assuntos
Óleos de Peixe/química , Ouro/química , Articulações/efeitos dos fármacos , Nanopartículas Metálicas/química , Osteoartrite/tratamento farmacológico , Proteínas/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cordados , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lipossomos/química , Tamanho da Partícula , Fosfolipídeos/química , Proteínas/farmacologia , Ratos Wistar , Propriedades de Superfície
12.
Mech Dev ; 124(7-8): 532-42, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17624741

RESUMO

To gain insights into the relation between evolution of cis-regulatory DNA and evolution of gene function, we identified tissue-specific enhancers of the engrailed gene of the basal chordate amphioxus (Branchiostoma floridae) and compared their ability to direct expression in both amphioxus and its nearest chordate relative, the tunicate Ciona intestinalis. In amphioxus embryos, the native engrailed gene is expressed in three domains - the eight most anterior somites, a few cells in the central nervous system (CNS) and a few ectodermal cells. In contrast, in C. intestinalis, in which muscle development is highly divergent, engrailed expression is limited to the CNS. To characterize the tissue-specific enhancers of amphioxus engrailed, we first showed that 7.8kb of upstream DNA of amphioxus engrailed directs expression to all three domains in amphioxus that express the native gene. We then identified the amphioxus engrailed muscle-specific enhancer as the 1.2kb region of upstream DNA with the highest sequence identity to the mouse en-2 jaw muscle enhancer. This amphioxus enhancer directed expression to both the somites in amphioxus and to the larval muscles in C. intestinalis. These results show that even though expression of the native engrailed has apparently been lost in developing C. intestinalis muscles, they express the transcription factors necessary to activate transcription from the amphioxus engrailed enhancer, suggesting that gene networks may not be completely disrupted if an individual component is lost.


Assuntos
Cordados/metabolismo , Elementos Facilitadores Genéticos , Evolução Molecular , Proteínas de Homeodomínio/metabolismo , Animais , Cordados/embriologia , Cordados/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Desenvolvimento Muscular , Músculos/embriologia , Músculos/metabolismo
13.
Brain Res Bull ; 75(2-4): 319-23, 2008 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-18331892

RESUMO

Basic features of the anterior nerve cord in amphioxus larvae are summarized to highlight its essential similarity with the vertebrate brain. Except for a pineal homolog, the amphioxus brain consists of a much simplified version of the ventral brainstem, including a region probably homologous with the hypothalamus, and a locomotory control center roughly comparable to the vertebrate tegmentum and reticulospinal system. Amphioxus has direct pathways for activating its locomotory circuits in response to mechanical stimuli via epithelial sensory cells, but this response is evidently modulated by inputs from diverse sensory-type cells located in the putative hypothalamic homolog, and from the lamellar body, the pineal homolog. This implies that a basic function of the amphioxus brain is to switch between locomotory activities, of which there are several, and the principal non-locomotory one, namely feeding. A similar involvement in switching between behavioral modes may thus have been a core brain function in ancestral chordates. Currently, however, incomplete knowledge of the physiology and behavior of amphioxus limits how effectively it can be used as an evolutionary model. Eye evolution is briefly discussed to illustrate how a better understanding of living forms can inform the evolutionary debate. An account of recent data on dorsoventral inversion is also included, as this bears directly on the question of where the chordate brain originated in relation to other structures. It now appears likely that key components of the ancestral brain were originally located around the mouth. A secondary repositioning of the latter would therefore have been required before a unitary brain could be assembled and internalized. This association between the mouth and the evolving brain reinforces the idea of a fundamental early connection between core brain structures and the control of feeding activity.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/embriologia , Cordados/anatomia & histologia , Animais , Evolução Biológica , Cordados/embriologia , História Antiga
14.
PLoS One ; 13(12): e0207887, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30540765

RESUMO

A new deep-water catshark, Bythaelurus stewarti, is described based on 121 examined specimens caught on the Error Seamount (Mount Error Guyot) in the northwestern Indian Ocean. The new species differs from all congeners in the restricted distribution, a higher spiral valve turn count and in the morphology of the dermal denticles. It is distinguished from its morphologically and geographically closest congener, B. hispidus (Alcock), by the larger size (maximum size 44 vs. 39 cm TL, maturity size of males 35-39 vs. 21-28 cm TL), darker fresh coloration and dark grayish-brown mottling of the ventral head (vs. ventral head typically uniformly yellowish or whitish). Furthermore, it has a strongly different morphology of dermal denticles, in particular smaller and less elongate branchial, trunk and lateral caudal denticles that are set much less densely and have a surface that is very strongly and fully structured by reticulations (vs. structured by reticulations only in basal fourth). In addition, the new species differs from B. hispidus in having more slender claspers that are gradually narrowing to the bluntly pointed tip without knob-like apex (vs. claspers broader and with distinct knob-like apex), more spiral valve turns (11-12 vs. 8-10) and numerous statistical differences in morphometrics. A review of and a key to the species of Bythaelurus are given.


Assuntos
Tubarões/classificação , Especificidade da Espécie , Squalus/classificação , Distribuição Animal , Animais , Biometria , Cordados , Ecologia , Comportamento Alimentar , Feminino , Especiação Genética , Cabeça , Oceano Índico , Masculino , Pigmentação , Pele , Tronco
15.
Biol Rev Camb Philos Soc ; 92(1): 316-325, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26486096

RESUMO

The chordates are usually characterized as bilaterians showing deuterostomy, i.e. the mouth developing as a new opening between the archenteron and the ectoderm, serial gill pores/slits, and the complex of chorda and neural tube. Both numerous molecular studies and studies of morphology and embryology demonstrate that the neural tube must be considered homologous to the ventral nerve cord(s) of the protostomes, but the origin of the 'new' mouth of the deuterostomes has remained enigmatic. However, deuterostomy is known to occur in several protostomian groups, such as the chaetognaths and representatives of annelids, molluscs, arthropods and priapulans. This raises the question whether the deuterostomian mouth is in fact homologous with that of the protostomes, viz. the anterior opening of the ancestral blastopore divided through lateral blastopore fusion, i.e. amphistomy. A few studies of gene expression show identical expression patterns around mouth and anus in protostomes and deuterostomes. Closer studies of the embryology of ascidians and vertebrates show that the mouth/stomodaeum differentiates from the anterior edge of the neural plate. Together this indicates that the chordate mouth has moved to the anterior edge of the blastopore, so that the anterior loop of the ancestral circumblastoporal nerve cord, which is narrow in the protostomes, has become indistinguishable. In the vertebrates, the mouth has moved further around the anterior pole to the 'ventral' side. The conclusion must be that the chordate mouth (and that of the deuterostomes in general) is homologous to the protostomian mouth and that the latest common ancestor of protostomes and deuterostomes developed through amphistomy, as suggested by the trochaea theory.


Assuntos
Evolução Biológica , Padronização Corporal/fisiologia , Cordados/classificação , Cordados/embriologia , Animais
16.
Mar Pollut Bull ; 124(1): 147-154, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28716475

RESUMO

The Mediterranean is an ecosystem that faces more and more microplastic pollution every day. This causes the whole of the Mediterranean to face the negative effects of plastic pollution. This study examines the state of plastic debris and fouling organisms found on it in one of the areas most affected by plastic pollution, Mersin Bay. As a result, a total of 3.88kg plastic (mean=0,97kg; n=120; 2670item/km2; 86,3kg/km2) was collected and based on the ATR-FTIR analysis, it was determined that this total contained 9 types of plastics. 17 different fouling species belonging to 6 phylum (Annelida, Arthropoda, Bryozoa, Chordata, Cnidaria, Mollusca) 7 class and 11 order were discovered on plastics. Spirobranchus triqueter, Hydroides sp. and Neopycnodonte cochlear were the most abundant species. In the end, the example of Mersin Bay shows that plastic debris as a substrate can contain a very high diversity of life just like natural substrates.


Assuntos
Cordados , Invertebrados , Plásticos/análise , Resíduos/análise , Poluentes Químicos da Água/análise , Animais , Baías , Ecossistema , Turquia
17.
PLoS One ; 11(10): e0162945, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27706191

RESUMO

We describe two new cynodonts from the early Late Triassic of southern Brazil. One taxon, Bonacynodon schultzi gen. et sp. nov., comes from the lower Carnian Dinodontosaurus AZ, being correlated with the faunal association at the upper half of the lower member of the Chañares Formation (Ischigualasto-Villa Unión Basin, Argentina). Phylogenetically, Bonacynodon is a closer relative to Probainognathus jenseni than to any other probainognathian, bearing conspicuous canines with a denticulate distal margin. The other new taxon is Santacruzgnathus abdalai gen. et sp. nov. from the Carnian Santacruzodon AZ. Although based exclusively on a partial lower jaw, it represents a probainognathian close to Prozostrodon from the Hyperodapedon AZ and to Brasilodon, Brasilitherium and Botucaraitherium from the Riograndia AZ. The two new cynodonts and the phylogenetic hypothesis presented herein indicate the degree to which our knowledge on probainognathian cynodonts is incomplete and also the relevance of the South American fossil record for understanding their evolutionary significance. The taxonomic diversity and abundance of probainognathians from Brazil and Argentina will form the basis of deep and complex studies to address the evolutionary transformations of cynodonts leading to mammals.


Assuntos
Cordados/anatomia & histologia , Fósseis , Animais , Brasil , Cordados/classificação , Arco Dental/anatomia & histologia , Arcada Osseodentária/anatomia & histologia , Filogenia , Crânio/anatomia & histologia
18.
Zh Obshch Biol ; 65(5): 371-88, 2004.
Artigo em Russo | MEDLINE | ID: mdl-15559569

RESUMO

The paper is an attempt to attack the old problem of the origin of Bilateria by the methods of evolutionary tetrad (i.e. combination of comparative anatomy, comparative embryology, paleontology, and molecular biology). Three groups of theories of classical comparative anatomy (planulod-turbellarian, archicoelomate, and metameric) are discussed. Comparative embryology brings out clearly that the ventral side of embryo comes from the blastoporal region in all groups of Bilateria (except Chordata, where the blastoporal region corresponds to the dorsal side that is come out of the upside-down morphology of chordates) and mouth and anus comes from the anterior and posterior ends of elongated blastopore. From the point of view of paleontology, some of vendian metazoans demonstrate transitional conditions between the Radiata and Bilateria. Vendian bilaterians are metameric organisms with normal or asymmetric position of segments and could be pictured as "bilateral coelenterates" creeping on the oral surface. In Cnidaria, the expression of homologues of "Brachyury", "goosecoid", and "fork head" genes are revealed in the circular region around the mouth. In Bilateria, these genes are expressed along the elongated blastopore and around the mouth and anus. These results support the old conception on the amphistomic origin of mouth and anus as well as the homology between the oral disc of cnidarians and ventral side of Bilateria. The combination of four mentioned approaches enables us to propose the conception of the origin of Bilateria from vendian bilateral coelenterates with numerous metameric pouches of gastral cavity. Bilaterian ancestors crawled on the oral disc (= ventral side). These ancestors gave rise to both phanerosoic cnidarians and triploblastic bilaterians. Cnidarian ancestors attached to bottom by the aboral pole with the resulting degradation of aboral nerve ganglion. Bilateral symmetry of anthozoans is considered to be primitive feature for cnidarians. In case of triploblastic Bilateria, the elongated blastopore closed in the middle and subdivided into mouth and anus (amphistomy) and gastral pouches separated from the central part of gastral cavity and transformed to metameric coelomic chambers. The primary bilaterians are supposed to be complicated organisms having coelom and segmentation. The complexity of primary Bilateria provides an explanation for the abundance of highly organized organisms (arthropods, mollusks etc.) in Cambrian time. It is postulated that Ctenophora is the only group recent eumetazoans with primary axial symmetry.


Assuntos
Evolução Biológica , Invertebrados/anatomia & histologia , Animais , Antozoários , Cordados , Cnidários , Ctenóforos , Genes Homeobox , Invertebrados/embriologia , Invertebrados/genética , Morfogênese , Paleontologia
19.
J Comp Neurol ; 521(12): 2756-71, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23386364

RESUMO

We analyzed the mouth of three species, representative of the three orders of the class Thaliacea (Tunicata)--Pyrosoma atlanticum (Pyrosomatida), Doliolum nationalis (Doliolida), and Thalia democratica (Salpida)--to verify the presence of mechanoreceptors, particularly hair cells. In vertebrates, hair cells are well-known mechanoreceptors of the inner ear and lateral line, typically exhibiting an apical hair bundle composed of a cilium and stereovilli but lacking an axon. For a long time, hair cells were thought to be exclusive to vertebrates. However, evidence of a mechanosensory organ (the coronal organ) employing hair cells in the mouth of tunicates, considered the sister group of vertebrates, suggests that tunicate and vertebrate hair cells may share a common origin. This study on thaliaceans, a tunicate group not yet investigated, shows that both P. atlanticum and D. nationalis possess a coronal organ, in addition to sensory structures containing peripheral neurons (i.e., cupular organs and triads of sensory cells). In contrast, in T. democratica, we did not recognize any oral multicellular sensory organ. We hypothesize that in T. democratica, hair cells were secondarily lost, concomitantly with the loss of branchial fissures, the acquisition of a feeding mechanism based on muscle activity, and a mechanosensory apparatus based on excitable epithelia. Our data are consistent with the hypothesis that hair cells were present in the common ancestor of tunicates and vertebrates, from which hair cells progressively evolved.


Assuntos
Evolução Biológica , Cordados/anatomia & histologia , Células Ciliadas Auditivas/fisiologia , Mecanorreceptores/fisiologia , Urocordados/anatomia & histologia , Vias Aferentes/fisiologia , Animais , Axônios/ultraestrutura , Cílios/ultraestrutura , Células Ciliadas Auditivas/ultraestrutura , Mecanorreceptores/ultraestrutura , Microscopia Eletrônica , Boca/fisiologia
20.
PLoS One ; 7(4): e36230, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22558396

RESUMO

Early periods in Earth's history have seen a progressive increase in complexity of the ecosystems, but also dramatic crises decimating the biosphere. Such patterns are usually considered as large-scale changes among supra-specific groups, including morphological novelties, radiation, and extinctions. Nevertheless, in the same time, each species evolved by the way of micro-evolutionary processes, extended over millions of years into the evolution of lineages. How these two evolutionary scales interacted is a challenging issue because this requires bridging a gap between scales of observation and processes. The present study aims at transferring a typical macro-evolutionary approach, namely disparity analysis, to the study of fine-scale evolutionary variations in order to decipher what processes actually drove the dynamics of diversity at a micro-evolutionary level. The Late Frasnian to Late Famennian period was selected because it is punctuated by two major macro-evolutionary crises, as well as a progressive diversification of marine ecosystem. Disparity was estimated through this period on conodonts, tooth-like fossil remains of small eel-like predators that were part of the nektonic fauna. The study was focused on the emblematic genus of the period, Palmatolepis. Strikingly, both crises affected an already impoverished Palmatolepis disparity, increasing risks of random extinction. The major disparity signal rather emerged as a cycle of increase and decrease in disparity during the inter-crises period. The diversification shortly followed the first crisis and might correspond to an opportunistic occupation of empty ecological niche. The subsequent oriented shrinking in the morphospace occupation suggests that the ecological space available to Palmatolepis decreased through time, due to a combination of factors: deteriorating climate, expansion of competitors and predators. Disparity changes of Palmatolepis thus reflect changes in the structure of the ecological space itself, which was prone to evolve during this ancient period where modern ecosystems were progressively shaped.


Assuntos
Fenômenos Ecológicos e Ambientais , Fósseis , Animais , Biodiversidade , Evolução Biológica , Cordados , Extinção Biológica , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA