Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Immunol ; 208(5): 1001-1005, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35121642

RESUMO

Advanced age is a main risk factor for severe COVID-19. However, low vaccination efficacy and accelerated waning immunity have been reported in this age group. To elucidate age-related differences in immunogenicity, we analyzed human cellular, serological, and salivary SARS-CoV-2 spike glycoprotein-specific immune responses to the BNT162b2 COVID-19 vaccine in old (69-92 y) and middle-aged (24-57 y) vaccinees compared with natural infection (COVID-19 convalescents, 21-55 y of age). Serological humoral responses to vaccination excee-ded those of convalescents, but salivary anti-spike subunit 1 (S1) IgA and neutralizing capacity were less durable in vaccinees. In old vaccinees, we observed that pre-existing spike-specific CD4+ T cells are associated with efficient induction of anti-S1 IgG and neutralizing capacity in serum but not saliva. Our results suggest pre-existing SARS-CoV-2 cross-reactive CD4+ T cells as a predictor of an efficient COVID-19 vaccine-induced humoral immune response in old individuals.


Assuntos
Envelhecimento/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vacina BNT162/imunologia , Linfócitos T CD4-Positivos/imunologia , SARS-CoV-2/imunologia , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , COVID-19/imunologia , Feminino , Humanos , Imunoglobulina A/sangue , Imunoglobulina A/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Masculino , Pessoa de Meia-Idade , Casas de Saúde , Saliva/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação , Eficácia de Vacinas , Adulto Jovem
2.
Pathog Dis ; 822024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38862192

RESUMO

To begin to optimize the immunization routes for our reported PLGA-rMOMP nanovaccine [PLGA-encapsulated Chlamydia muridarum (Cm) recombinant major outer membrane protein (rMOMP)], we compared two prime-boost immunization strategies [subcutaneous (SC) and intramuscular (IM-p) prime routes followed by two SC-boosts)] to evaluate the nanovaccine-induced protective efficacy and immunogenicity in female BALB/c mice. Our results showed that mice immunized via the SC and IM-p routes were protected against a Cm genital challenge by a reduction in bacterial burden and with fewer bacteria in the SC mice. Protection of mice correlated with rMOMP-specific Th1 (IL-2 and IFN-γ) and not Th2 (IL-4, IL-9, and IL-13) cytokines, and CD4+ memory (CD44highCD62Lhigh) T-cells, especially in the SC mice. We also observed higher levels of IL-1α, IL-6, IL-17, CCL-2, and G-CSF in SC-immunized mice. Notably, an increase of cytokines/chemokines was seen after the challenge in the SC, IM-p, and control mice (rMOMP and PBS), suggesting a Cm stimulation. In parallel, rMOMP-specific Th1 (IgG2a and IgG2b) and Th2 (IgG1) serum, mucosal, serum avidity, and neutralizing antibodies were more elevated in SC than in IM-p mice. Overall, the homologous SC prime-boost immunization of mice induced enhanced cellular and antibody responses with better protection against a genital challenge compared to the heterologous IM-p.


Assuntos
Anticorpos Antibacterianos , Vacinas Bacterianas , Infecções por Chlamydia , Chlamydia muridarum , Citocinas , Camundongos Endogâmicos BALB C , Animais , Feminino , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Chlamydia muridarum/imunologia , Citocinas/metabolismo , Infecções por Chlamydia/prevenção & controle , Infecções por Chlamydia/imunologia , Camundongos , Anticorpos Antibacterianos/sangue , Injeções Intramusculares , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/administração & dosagem , Imunização Secundária , Modelos Animais de Doenças , Imunogenicidade da Vacina , Injeções Subcutâneas , Nanopartículas/administração & dosagem , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/administração & dosagem , Eficácia de Vacinas , Células Th1/imunologia , Nanovacinas
3.
Virology ; 596: 110103, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38781710

RESUMO

In order to develop a safe and effective broad-spectrum vaccine for foot-and-mouth disease (FMDV), here, we developed a recombinant FMD multiple-epitope trivalent vaccine based on three distinct topotypes of FMDV. Potency of the vaccine was evaluated by immune efficacy in pigs. The results showed that the vaccine with no less than 25 µg of antigen elicited FMDV serotype O specific antibodies and neutralization antibodies by primary-booster regime, and offered immune protection to pigs. More importantly, the vaccine elicited not only the same level of neutralization antibodies against the three distinct topotypes of FMDV, but also provided complete protection in pigs from the three corresponding virus challenge. None of the fully protected pigs were able to generate anti-3ABC antibodies throughout the experiment, which implied the vaccine can offer sterilizing immunity. The vaccine elicited lasting-long high-level antibodies and effectively protected pigs from virulent challenge within six months of immunization. Therefore, we consider that this vaccine may be used in the future for the prevention and control of FMD.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Epitopos , Vírus da Febre Aftosa , Febre Aftosa , Sorogrupo , Doenças dos Suínos , Vacinas Sintéticas , Vacinas Virais , Animais , Vírus da Febre Aftosa/imunologia , Vírus da Febre Aftosa/genética , Febre Aftosa/prevenção & controle , Febre Aftosa/imunologia , Febre Aftosa/virologia , Suínos , Vacinas Virais/imunologia , Vacinas Virais/genética , Vacinas Virais/administração & dosagem , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/virologia , Doenças dos Suínos/imunologia , Epitopos/imunologia , Epitopos/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Eficácia de Vacinas
4.
Influenza Other Respir Viruses ; 18(4): e13288, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38644564

RESUMO

BACKGROUND: Adults ≥ 65 years of age have suboptimal influenza vaccination responses compared to younger adults due to age-related immunosenescence. Two vaccines were specifically developed to enhance protection: MF59-adjuvanted trivalent influenza vaccine (aIIV3) and high-dose egg-based trivalent influenza vaccine (HD-IIV3e). METHODS: In a retrospective cohort study conducted using US electronic medical records linked to claims data during the 2019-2020 influenza season, we compared the relative vaccine effectiveness (rVE) of aIIV3 with HD-IIV3e and a standard-dose non-adjuvanted egg-based quadrivalent inactivated influenza vaccine (IIV4e) for the prevention of cardiorespiratory hospitalizations, including influenza hospitalizations. We evaluated outcomes in the "any" diagnosis position and the "admitting" position on the claim. A doubly robust methodology using inverse probability of treatment weighting and logistic regression was used to adjust for covariate imbalance. rVE was calculated as 100 * (1 - ORadjusted). RESULTS: The study included 4,299,594 adults ≥ 65 years of age who received aIIV3, HD-IIV3e, or IIV4e. Overall, aIIV3 was associated with lower proportions of cardiorespiratory hospitalizations with diagnoses in any position compared to HD-IIV3e (rVE = 3.9% [95% CI, 2.7-5.0]) or IIV4e (9.0% [95% CI, 7.7-10.4]). Specifically, aIIV3 was more effective compared with HD-IIV3e and IIV4e in preventing influenza hospitalizations (HD-IIV3e: 9.7% [95% CI, 1.9-17.0]; IIV4e: 25.3% [95% CI, 17.7-32.2]). Consistent trends were observed for admitting diagnoses. CONCLUSION: Relative to both HD-IIV3e and IIV4e, aIIV3 provided improved protection from cardiorespiratory or influenza hospitalizations.


Assuntos
Adjuvantes Imunológicos , Hospitalização , Vacinas contra Influenza , Influenza Humana , Polissorbatos , Esqualeno , Humanos , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Idoso , Hospitalização/estatística & dados numéricos , Masculino , Estudos Retrospectivos , Feminino , Esqualeno/administração & dosagem , Polissorbatos/administração & dosagem , Pessoa de Meia-Idade , Estados Unidos/epidemiologia , Adjuvantes Imunológicos/administração & dosagem , Idoso de 80 Anos ou mais , Eficácia de Vacinas , Estações do Ano , Adulto , Vacinação/estatística & dados numéricos
5.
Ann Parasitol ; 67(3): 367-386, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34953114

RESUMO

Leishmaniosis is caused by different species of Leishmania parasites. The available treatments for this disease have not provided strong consistent results yet. The weak response of current chemotherapeutics can be attributed to their deficient effects on stealth parasites inside macrophages, rapid clearance from the site of action, and systemic side effects in high doses. To enhance leishmaniosis vaccine efficacy, it is a valuable strategy to use liposomes as vaccine delivery systems due to combined increase in technological advances and understanding of the immune system. Liposomes that contain and deliver immunostimulators and antigens are now being developed to target diseases that require stimulation of both humoral and cell-mediated immune responses. Hence, using particulate adjuvants, like liposomes for effective delivery to the antigen presenting cells (APCs) is important for improving leishmaniosis vaccine efficacy. This study aimed at reviewing liposomal adjuvants in vaccine development with specific accentuation on their adjuvant mechanism and surface charge. It also examined how specific physicochemical qualities of liposomes and the particle size during formulation design can affect the immune response.


Assuntos
Vacinas contra Leishmaniose , Lipossomos , Adjuvantes Imunológicos , Desenvolvimento de Vacinas , Eficácia de Vacinas
6.
Vaccine ; 39(51): 7446-7456, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34852943

RESUMO

Adjuvants have long been explored to enhance vaccine efficacy. Current adjuvants approved for human vaccines are mostly studied for their ability to improve antibody responses. There remains a need for development of novel adjuvants, especially those able to enhance cell-mediated immunity (CMI). In this preclinical study we assessed the effect of two novel adjuvants, a delta inulin microparticle Advax formulated with or without a toll-like receptor 9 (TLR9) agonist CpG oligonucleotide, and a Merck & Co., Inc., Kenilworth, NJ, USA proprietary lipid nanoparticle (LNP), on immune responses elicited by V160, an experimental replication-defective human cytomegalovirus vaccine. Adult rhesus macaques were immunized with a low dose of V160 (10 units) either alone or in combination with the adjuvants as compared to those immunized with a high dose of V160 alone (100 units). While neither adjuvant conferred a significant benefit to vaccine-elicited humoral immune responses at the dose tested, both enhanced cellular immune responses to V160, where Advax promoted both CD4+ and CD8+ T cells and LNP predominantly impacted the CD4+ T cell response. Transcriptome analyses of peripheral blood samples demonstrated different modes of action for these adjuvants. One day post vaccination, LNP induced upregulation of a large number of genes involved in the innate immune response similar to those triggered by viral infection. In contrast, Advax did not activate any known inflammatory pathways and did not significantly impact gene expression pattern until day 7 post administration, suggesting a unique, non-inflammatory mechanism. These data warrant further exploration of Advax and LNP as adjuvants in clinical trials for vaccines desiring to elicit both humoral and T cell responses.


Assuntos
Vacinas contra Citomegalovirus , Adjuvantes Imunológicos , Animais , Anticorpos Antivirais , Linfócitos T CD8-Positivos , Citomegalovirus , Humanos , Imunidade Humoral , Lipossomos , Macaca mulatta , Nanopartículas , Vacinação , Eficácia de Vacinas
7.
JCI Insight ; 6(4)2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33444288

RESUMO

Prime-boost immunization strategies are required to control the global tuberculosis (TB) pandemic, which claims approximately 3 lives every minute. Here, we have generated an immunogenic complex against Mycobacterium tuberculosis (M.tb), consisting of promiscuous T cell epitopes (M.tb peptides) and TLR ligands assembled in liposomes. Interestingly, this complex (peptide-TLR agonist-liposomes; PTL) induced significant activation of CD4+ T cells and IFN-γ production in the PBMCs derived from PPD+ healthy individuals as compared with PPD- controls. Furthermore, intranasal delivery of PTL significantly reduced the bacterial burden in the infected mice by inducing M.tb-specific polyfunctional (IFN-γ+IL-17+TNF-α+IL-2+) immune responses and long-lasting central memory responses, thereby reducing the risk of TB recurrence in DOTS-treated infected animals. The transcriptome analysis of peptide-stimulated immune cells unveiled the molecular basis of enhanced protection. Furthermore, PTL immunization significantly boosted the Bacillus Calmette-Guerin-primed (BCG-primed) immune responses against TB. The greatly enhanced efficacy of the BCG-PTL vaccine model in controlling pulmonary TB projects PTL as an adjunct vaccine against TB.


Assuntos
Administração Intranasal , Vacina BCG/imunologia , Peptídeos/imunologia , Vacinas contra a Tuberculose/imunologia , Tuberculose/imunologia , Eficácia de Vacinas , Animais , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Epitopos de Linfócito T , Memória Imunológica , Interferon gama/imunologia , Leucócitos Mononucleares/imunologia , Lipossomos , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/imunologia , Peptídeos/genética , Tuberculose/patologia , Tuberculose/prevenção & controle , Tuberculose Pulmonar/imunologia
8.
Biomed Pharmacother ; 143: 112212, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34649345

RESUMO

Coxsackievirus A10 (CVA10) is the main pathogen of hand, foot, and mouth disease in China. However, there are no CVA10-specific drugs and vaccines, and the pathogenesis and effects of this virus in the body are unknown. We investigated the effect of a clinically isolated CVA10 virus strain (CVA10-25) to investigate its effect in suckling mice through different infection routes. We observed the dynamic distribution and proliferation of the virus in mouse tissues by infecting suckling mice with different doses of the virus and mice of different ages with the same dose of the virus. We also analysed the pathological characteristics after infection. A formaldehyde-inactivated experimental vaccine was prepared to immunise 5-week-old BALB/c female mice three times, and newborn suckling mice were tested for the presence of maternally transmitted antibodies. The viral load in each organ after intracerebral administration was higher than that after intraperitoneal administration; the peroral administration route did not cause disease in mice. Mouse paralysis and death after infection were related to age. The skeletal muscles, heart, and lung showed histopathological changes after infection. We established a 2-day-old BALB/c suckling mouse model that could be infected intracranially to study the pathogenesis and pathology of CVA10. Maternally transmitted antibodies protected the mice against the virus. This study provides a reference for CVA10-related pathogenesis and vaccine research.


Assuntos
Enterovirus/crescimento & desenvolvimento , Doença de Mão, Pé e Boca/prevenção & controle , Vacinas Virais/administração & dosagem , Animais , Animais Lactentes , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Chlorocebus aethiops , Modelos Animais de Doenças , Enterovirus/imunologia , Feminino , Doença de Mão, Pé e Boca/imunologia , Doença de Mão, Pé e Boca/virologia , Interações Hospedeiro-Patógeno , Imunogenicidade da Vacina , Camundongos Endogâmicos BALB C , Vacinação , Eficácia de Vacinas , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia , Células Vero , Carga Viral , Vacinas Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA