Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.352
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(14): 3674-3688.e18, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34166616

RESUMO

PspA is the main effector of the phage shock protein (Psp) system and preserves the bacterial inner membrane integrity and function. Here, we present the 3.6 Å resolution cryoelectron microscopy (cryo-EM) structure of PspA assembled in helical rods. PspA monomers adopt a canonical ESCRT-III fold in an extended open conformation. PspA rods are capable of enclosing lipids and generating positive membrane curvature. Using cryo-EM, we visualized how PspA remodels membrane vesicles into µm-sized structures and how it mediates the formation of internalized vesicular structures. Hotspots of these activities are zones derived from PspA assemblies, serving as lipid transfer platforms and linking previously separated lipid structures. These membrane fusion and fission activities are in line with the described functional properties of bacterial PspA/IM30/LiaH proteins. Our structural and functional analyses reveal that bacterial PspA belongs to the evolutionary ancestry of ESCRT-III proteins involved in membrane remodeling.


Assuntos
Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas de Choque Térmico/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/ultraestrutura , Microscopia Crioeletrônica , Endocitose , Complexos Endossomais de Distribuição Requeridos para Transporte/química , Escherichia coli/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/ultraestrutura , Bicamadas Lipídicas/metabolismo , Modelos Moleculares , Domínios Proteicos , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos , Lipossomas Unilamelares/metabolismo
2.
Annu Rev Biochem ; 89: 821-851, 2020 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-32228045

RESUMO

Natural rubber (NR), principally comprising cis-1,4-polyisoprene, is an industrially important natural hydrocarbon polymer because of its unique physical properties, which render it suitable for manufacturing items such as tires. Presently, industrial NR production depends solely on latex obtained from the Pará rubber tree, Hevea brasiliensis. In latex, NR is enclosed in rubber particles, which are specialized organelles comprising a hydrophobic NR core surrounded by a lipid monolayer and membrane-bound proteins. The similarity of the basic carbon skeleton structure between NR and dolichols and polyprenols, which are found in most organisms, suggests that the NR biosynthetic pathway is related to the polyisoprenoid biosynthetic pathway and that rubber transferase, which is the key enzyme in NR biosynthesis, belongs to the cis-prenyltransferase family. Here, we review recent progress in the elucidation of molecular mechanisms underlying NR biosynthesis through the identification of the enzymes that are responsible for the formation of the NR backbone structure.


Assuntos
Hemiterpenos/biossíntese , Hevea/metabolismo , Látex/biossíntese , Proteínas de Plantas/química , Borracha/química , Transferases/química , Antígenos de Plantas/genética , Antígenos de Plantas/metabolismo , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Hemiterpenos/química , Hemiterpenos/metabolismo , Hevea/química , Hevea/genética , Látex/química , Látex/metabolismo , Modelos Moleculares , Compostos Organofosforados/química , Compostos Organofosforados/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Borracha/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Terpenos/química , Terpenos/metabolismo , Transferases/genética , Transferases/metabolismo
3.
Cell ; 174(5): 1188-1199.e14, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30057118

RESUMO

In stationary-phase Escherichia coli, Dps (DNA-binding protein from starved cells) is the most abundant protein component of the nucleoid. Dps compacts DNA into a dense complex and protects it from damage. Dps has also been proposed to act as a global regulator of transcription. Here, we directly examine the impact of Dps-induced compaction of DNA on the activity of RNA polymerase (RNAP). Strikingly, deleting the dps gene decompacted the nucleoid but did not significantly alter the transcriptome and only mildly altered the proteome during stationary phase. Complementary in vitro assays demonstrated that Dps blocks restriction endonucleases but not RNAP from binding DNA. Single-molecule assays demonstrated that Dps dynamically condenses DNA around elongating RNAP without impeding its progress. We conclude that Dps forms a dynamic structure that excludes some DNA-binding proteins yet allows RNAP free access to the buried genes, a behavior characteristic of phase-separated organelles.


Assuntos
DNA Bacteriano , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Transcrição Gênica , Proteínas da Membrana Bacteriana Externa/metabolismo , Enzimas de Restrição do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Holoenzimas/metabolismo , Microscopia de Fluorescência , Poliestirenos/química , Proteoma , Análise de Sequência de RNA , Estresse Mecânico , Transcriptoma
4.
Cell ; 155(6): 1270-81, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24315097

RESUMO

Enzymatic cleavage of transmembrane anchors to release proteins from the membrane controls diverse signaling pathways and is implicated in more than a dozen diseases. How catalysis works within the viscous, water-excluding, two-dimensional membrane is unknown. We developed an inducible reconstitution system to interrogate rhomboid proteolysis quantitatively within the membrane in real time. Remarkably, rhomboid proteases displayed no physiological affinity for substrates (K(d) ~190 µM/0.1 mol%). Instead, ~10,000-fold differences in proteolytic efficiency with substrate mutants and diverse rhomboid proteases were reflected in k(cat) values alone. Analysis of gate-open mutant and solvent isotope effects revealed that substrate gating, not hydrolysis, is rate limiting. Ultimately, a single proteolytic event within the membrane normally takes minutes. Rhomboid intramembrane proteolysis is thus a slow, kinetically controlled reaction not driven by transmembrane protein-protein affinity. These properties are unlike those of other studied proteases or membrane proteins but are strikingly reminiscent of one subset of DNA-repair enzymes, raising important mechanistic and drug-design implications.


Assuntos
Membrana Celular/metabolismo , Endopeptidases/metabolismo , Escherichia coli/citologia , Escherichia coli/metabolismo , Proteólise , Sequência de Aminoácidos , Bactérias/enzimologia , Membrana Celular/química , Membrana Celular/enzimologia , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Endopeptidases/química , Escherichia coli/enzimologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Cinética , Lipossomos/química , Lipossomos/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Alinhamento de Sequência
5.
Mol Cell ; 75(1): 66-75.e5, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31175012

RESUMO

Liquid granules rich in intrinsically disordered proteins and RNA play key roles in critical cellular functions such as RNA processing and translation. Many details of the mechanism via which this occurs remain to be elucidated. Motivated by the lacuna in the field and by the prospects of developing de novo artificial granules that provide extrinsic control of translation, we report a bottom-up approach to engineer ribonucleoprotein granules composed of a recombinant RNA-binding IDP that exhibits phase behavior in water. We developed a kinetic model to illustrate that these granules inhibit translation through reversible or irreversible sequestration of mRNA. Within monodisperse droplets capable of transcription and translation, we experimentally demonstrate temporal inhibition of translation by using designer IDPs that exhibit tunable phase behavior. This work lays the foundation for developing artificial granules that promise to further our mechanistic understanding of their naturally occurring counterparts.


Assuntos
Células Artificiais/metabolismo , Grânulos Citoplasmáticos/genética , Proteínas Intrinsicamente Desordenadas/genética , Peptidomiméticos/metabolismo , RNA Mensageiro/genética , Ribonucleoproteínas/genética , Sequência de Aminoácidos , Células Artificiais/citologia , Grânulos Citoplasmáticos/química , Grânulos Citoplasmáticos/metabolismo , Elastina/química , Elastina/genética , Elastina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Modelos Biológicos , Peptidomiméticos/química , Transição de Fase , Plasmídeos/genética , Plasmídeos/metabolismo , Biossíntese de Proteínas , Engenharia de Proteínas/métodos , RNA/genética , RNA/metabolismo , RNA Mensageiro/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo
6.
Nature ; 585(7823): 129-134, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32848250

RESUMO

Transmembrane channels and pores have key roles in fundamental biological processes1 and in biotechnological applications such as DNA nanopore sequencing2-4, resulting in considerable interest in the design of pore-containing proteins. Synthetic amphiphilic peptides have been found to form ion channels5,6, and there have been recent advances in de novo membrane protein design7,8 and in redesigning naturally occurring channel-containing proteins9,10. However, the de novo design of stable, well-defined transmembrane protein pores that are capable of conducting ions selectively or are large enough to enable the passage of small-molecule fluorophores remains an outstanding challenge11,12. Here we report the computational design of protein pores formed by two concentric rings of α-helices that are stable and monodisperse in both their water-soluble and their transmembrane forms. Crystal structures of the water-soluble forms of a 12-helical pore and a 16-helical pore closely match the computational design models. Patch-clamp electrophysiology experiments show that, when expressed in insect cells, the transmembrane form of the 12-helix pore enables the passage of ions across the membrane with high selectivity for potassium over sodium; ion passage is blocked by specific chemical modification at the pore entrance. When incorporated into liposomes using in vitro protein synthesis, the transmembrane form of the 16-helix pore-but not the 12-helix pore-enables the passage of biotinylated Alexa Fluor 488. A cryo-electron microscopy structure of the 16-helix transmembrane pore closely matches the design model. The ability to produce structurally and functionally well-defined transmembrane pores opens the door to the creation of designer channels and pores for a wide variety of applications.


Assuntos
Simulação por Computador , Genes Sintéticos/genética , Canais Iônicos/química , Canais Iônicos/genética , Modelos Moleculares , Biologia Sintética , Linhagem Celular , Microscopia Crioeletrônica , Cristalografia por Raios X , Condutividade Elétrica , Escherichia coli/genética , Escherichia coli/metabolismo , Hidrazinas , Canais Iônicos/metabolismo , Transporte de Íons , Lipossomos/metabolismo , Técnicas de Patch-Clamp , Porinas/química , Porinas/genética , Porinas/metabolismo , Engenharia de Proteínas , Estrutura Secundária de Proteína , Solubilidade , Água/química
7.
EMBO J ; 40(20): e107159, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34523144

RESUMO

Permeabilization of the outer mitochondrial membrane by pore-forming Bcl2 proteins is a crucial step for the induction of apoptosis. Despite a large set of data suggesting global conformational changes within pro-apoptotic Bak during pore formation, high-resolution structural details in a membrane environment remain sparse. Here, we used NMR and HDX-MS (Hydrogen deuterium exchange mass spectrometry) in lipid nanodiscs to gain important high-resolution structural insights into the conformational changes of Bak at the membrane that are dependent on a direct activation by BH3-only proteins. Furthermore, we determined the first high-resolution structure of the Bak transmembrane helix. Upon activation, α-helix 1 in the soluble domain of Bak dissociates from the protein and adopts an unfolded and dynamic potentially membrane-bound state. In line with this finding, comparative protein folding experiments with Bak and anti-apoptotic BclxL suggest that α-helix 1 in Bak is a metastable structural element contributing to its pro-apoptotic features. Consequently, mutagenesis experiments aimed at stabilizing α-helix 1 yielded Bak variants with delayed pore-forming activity. These insights will contribute to a better mechanistic understanding of Bak-mediated membrane permeabilization.


Assuntos
Lipossomos/química , Lipídeos de Membrana/química , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteína Killer-Antagonista Homóloga a bcl-2/química , Proteína bcl-X/química , Sítios de Ligação , Clonagem Molecular , Medição da Troca de Deutério , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Cinética , Lipossomos/metabolismo , Lipídeos de Membrana/metabolismo , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
8.
EMBO J ; 40(20): e107237, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34523147

RESUMO

BAK and BAX, the effectors of intrinsic apoptosis, each undergo major reconfiguration to an activated conformer that self-associates to damage mitochondria and cause cell death. However, the dynamic structural mechanisms of this reconfiguration in the presence of a membrane have yet to be fully elucidated. To explore the metamorphosis of membrane-bound BAK, we employed hydrogen-deuterium exchange mass spectrometry (HDX-MS). The HDX-MS profile of BAK on liposomes comprising mitochondrial lipids was consistent with known solution structures of inactive BAK. Following activation, HDX-MS resolved major reconfigurations in BAK. Mutagenesis guided by our HDX-MS profiling revealed that the BCL-2 homology (BH) 4 domain maintains the inactive conformation of BAK, and disrupting this domain is sufficient for constitutive BAK activation. Moreover, the entire N-terminal region preceding the BAK oligomerisation domains became disordered post-activation and remained disordered in the activated oligomer. Removal of the disordered N-terminus did not impair, but rather slightly potentiated, BAK-mediated membrane permeabilisation of liposomes and mitochondria. Together, our HDX-MS analyses reveal new insights into the dynamic nature of BAK activation on a membrane, which may provide new opportunities for therapeutic targeting.


Assuntos
Lipossomos/química , Lipídeos de Membrana/química , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteína Killer-Antagonista Homóloga a bcl-2/química , Animais , Sítios de Ligação , Clonagem Molecular , Medição da Troca de Deutério , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Cinética , Lipossomos/metabolismo , Lipídeos de Membrana/metabolismo , Camundongos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo
9.
Biochemistry ; 63(13): 1621-1635, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38607680

RESUMO

Polyethylene glycol (PEG) is a flexible, nontoxic polymer commonly used in biological and medical research, and it is generally regarded as biologically inert. PEG molecules of variable sizes are also used as crowding agents to mimic intracellular environments. A recent study with PEG crowders revealed decreased catalytic activity of Escherichia coli prolyl-tRNA synthetase (Ec ProRS), where the smaller molecular weight PEGs had the maximum impact. The molecular mechanism of the crowding effects of PEGs is not clearly understood. PEG may impact protein conformation and dynamics, thus its function. In the present study, the effects of PEG molecules of various molecular weights and concentrations on the conformation and dynamics of Ec ProRS were investigated using a combined experimental and computational approach including intrinsic tryptophan fluorescence spectroscopy, atomic force microscopy, and atomistic molecular dynamic simulations. Results of the present study suggest that lower molecular weight PEGs in the dilute regime have modest effects on the conformational dynamics of Ec ProRS but impact the catalytic function primarily via the excluded volume effect; they form large clusters blocking the active site pocket. In contrast, the larger molecular weight PEGs in dilute to semidilute regimes have a significant impact on the protein's conformational dynamics; they wrap on the protein surface through noncovalent interactions. Thus, lower-molecular-weight PEG molecules impact protein dynamics and function via crowding effects, whereas larger PEGs induce confinement effects. These results have implications for the development of inhibitors for protein targets in a crowded cellular environment.


Assuntos
Aminoacil-tRNA Sintetases , Escherichia coli , Simulação de Dinâmica Molecular , Polietilenoglicóis , Conformação Proteica , Polietilenoglicóis/química , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/metabolismo , Aminoacil-tRNA Sintetases/antagonistas & inibidores , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Microscopia de Força Atômica , Domínio Catalítico , Peso Molecular
10.
Biochemistry ; 63(13): 1663-1673, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38885634

RESUMO

The mono(2-hydroxyethyl) terephthalate hydrolase (MHETase) from Ideonella sakaiensis carries out the second step in the enzymatic depolymerization of poly(ethylene terephthalate) (PET) plastic into the monomers terephthalic acid (TPA) and ethylene glycol (EG). Despite its potential industrial and environmental applications, poor recombinant expression of MHETase has been an obstacle to its industrial application. To overcome this barrier, we developed an assay allowing for the medium-throughput quantification of MHETase activity in cell lysates and whole-cell suspensions, which allowed us to screen a library of engineered variants. Using consensus design, we generated several improved variants that exhibit over 10-fold greater whole-cell activity than wild-type (WT) MHETase. This is revealed to be largely due to increased soluble expression, which biochemical and structural analysis indicates is due to improved protein folding.


Assuntos
Burkholderiales , Burkholderiales/enzimologia , Burkholderiales/genética , Burkholderiales/metabolismo , Ácidos Ftálicos/metabolismo , Ácidos Ftálicos/química , Hidrolases/metabolismo , Hidrolases/genética , Hidrolases/química , Solubilidade , Polietilenotereftalatos/metabolismo , Polietilenotereftalatos/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Engenharia de Proteínas/métodos , Dobramento de Proteína , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Modelos Moleculares
11.
J Biol Chem ; 299(3): 102974, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36738791

RESUMO

In vivo and in vitro assays, particularly reconstitution using artificial membranes, have established the role of synaptic soluble N-Ethylmaleimide-sensitive attachment protein receptors (SNAREs) VAMP2, Syntaxin-1A, and SNAP-25 in membrane fusion. However, using artificial membranes requires challenging protein purifications that could be avoided in a cell-based assay. Here, we developed a synthetic biological approach based on the generation of membrane cisternae by the integral membrane protein Caveolin in Escherichia coli and coexpression of SNAREs. Syntaxin-1A/SNAP-25/VAMP-2 complexes were formed and regulated by SNARE partner protein Munc-18a in the presence of Caveolin. Additionally, Syntaxin-1A/SNAP-25/VAMP-2 synthesis provoked increased length of E. coli only in the presence of Caveolin. We found that cell elongation required SNAP-25 and was inhibited by tetanus neurotoxin. This elongation was not a result of cell division arrest. Furthermore, electron and super-resolution microscopies showed that synaptic SNAREs and Caveolin coexpression led to the partial loss of the cisternae, suggesting their fusion with the plasma membrane. In summary, we propose that this assay reconstitutes membrane fusion in a simple organism with an easy-to-observe phenotype and is amenable to structure-function studies of SNAREs.


Assuntos
Células Artificiais , Fusão de Membrana , Proteínas SNARE , Caveolinas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Qa-SNARE/metabolismo , Proteínas SNARE/genética , Sintaxina 1/genética , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Proteínas de Transporte Vesicular/metabolismo
12.
Proteins ; 92(7): 874-885, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38477414

RESUMO

Aquaporin (AQP) is a water channel protein from the family of transmembrane proteins which facilitates the movement of water across the cell membrane. It is ubiquitous in nature, however the understanding of the water transport mechanism, especially for AQPs in microbes adapted to low temperatures, remains limited. AQP also has been recognized for its ability to be used for water filtration, but knowledge of the biochemical features necessary for its potential applications in industrial processes has been lacking. Therefore, this research was conducted to express, extract, solubilize, purify, and study the functional adaptations of the aquaporin Z family from Pseudomonas sp. AMS3 via molecular approaches. In this study, AqpZ1 AMS3 was successfully subcloned and expressed in E. coli BL21 (DE3) as a recombinant protein. The AqpZ1 AMS3 gene was expressed under optimized conditions and the best optimized condition for the AQP was in 0.5 mM IPTG incubated at 25°C for 20 h induction time. A zwitterionic mild detergent [(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate was the suitable surfactant for the protein solubilization. The protein was then purified via affinity chromatography. Liposome and proteoliposome was reconstituted to determine the particle size using dynamic light scattering. This information obtained from this psychrophilic AQP identified provides new insights into the structural adaptation of this protein at low temperatures and could be useful for low temperature application and molecular engineering purposes in the future.


Assuntos
Aquaporinas , Proteínas de Bactérias , Clonagem Molecular , Escherichia coli , Pseudomonas , Proteínas Recombinantes , Pseudomonas/metabolismo , Pseudomonas/genética , Pseudomonas/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Escherichia coli/genética , Escherichia coli/metabolismo , Aquaporinas/química , Aquaporinas/genética , Aquaporinas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Expressão Gênica , Proteolipídeos/metabolismo , Proteolipídeos/química , Regiões Antárticas , Lipossomos/metabolismo , Lipossomos/química , Água/química , Água/metabolismo , Solubilidade , Sequência de Aminoácidos
13.
Mol Microbiol ; 120(4): 525-538, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37503768

RESUMO

Most bacteria use the tubulin homolog FtsZ to organize their cell division. FtsZ polymers initially assemble into mobile complexes that circle around a ring-like structure at the cell midpoint, followed by the recruitment of other proteins that will constrict the cytoplasmic membrane and synthesize septal peptidoglycan to divide the cell. Despite the need for FtsZ polymers to associate with the membrane, FtsZ lacks intrinsic membrane binding ability. Consequently, FtsZ polymers have evolved to interact with the membrane through adaptor proteins that both bind FtsZ and the membrane. Here, we discuss recent progress in understanding the functions of these FtsZ membrane tethers. Some, such as FtsA and SepF, are widely conserved and assemble into varied oligomeric structures bound to the membrane through an amphipathic helix. Other less-conserved proteins, such as EzrA and ZipA, have transmembrane domains, make extended structures, and seem to bind to FtsZ through two separate interactions. This review emphasizes that most FtsZs use multiple membrane tethers with overlapping functions, which not only attach FtsZ polymers to the membrane but also organize them in specific higher-order structures that can optimize cell division activity. We discuss gaps in our knowledge of these concepts and how future studies can address them.


Assuntos
Proteínas de Escherichia coli , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Transporte/metabolismo , Proteínas do Citoesqueleto/metabolismo , Polímeros/metabolismo
14.
Metab Eng ; 83: 52-60, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521489

RESUMO

2-Pyrone-4,6-dicarboxylic acid (PDC), a chemically stable pseudo-aromatic dicarboxylic acid, is a promising building block compound for manufacturing biodegradable polyesters. This study aimed to construct high-performance cell factories enabling the efficient production of PDC from glucose. Firstly, the effective enzymes of the PDC biosynthetic pathway were overexpressed on the chromosome of the 3-dehydroshikimate overproducing strain. Consequently, the one-step biosynthesis of PDC from glucose was achieved. Further, the PDC production was enhanced by multi-copy integration of the key gene PsligC encoding 4-carboxy-2-hydroxymuconate-6-semialdehyde dehydrogenase and co-expression of Vitreoscilla hemoglobin. Subsequently, the PDC production was substantially improved by redistributing the metabolic flux for cell growth and PDC biosynthesis based on dynamically downregulating the expression of pyruvate kinase. The resultant strain PDC50 produced 129.37 g/L PDC from glucose within 78 h under fed-batch fermentation conditions, with a yield of 0.528 mol/mol and an average productivity of 1.65 g/L/h. The findings of this study lay the foundation for the potential industrial production of PDC.


Assuntos
Escherichia coli , Engenharia Metabólica , Poliésteres , Pironas , Escherichia coli/genética , Escherichia coli/metabolismo , Poliésteres/metabolismo , Pironas/metabolismo , Glucose/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ácidos Dicarboxílicos/metabolismo
15.
Acc Chem Res ; 56(12): 1433-1444, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37191525

RESUMO

Protein engineering has emerged as a powerful methodology to tailor the properties of proteins. It empowers the design of biohybrid catalysts and materials, thereby enabling the convergence of materials science, chemistry, and medicine. The choice of a protein scaffold is an important factor for performance and potential applications. In the past two decades, we utilized the ferric hydroxamate uptake protein FhuA. FhuA is, from our point of view, a versatile scaffold due to its comparably large cavity and robustness toward temperature as well as organic cosolvents. FhuA is a natural iron transporter located in the outer membrane of Escherichia coli (E. coli). Wild-type FhuA consists of 714 amino acids and has a ß-barrel structure composed of 22 antiparallel ß-sheets, closed by an internal globular "cork" domain (amino acids 1-160). FhuA is robust in a broad pH range and toward organic cosolvents; therefore, we envisioned FhuA to be a suitable platform for various applications in (i) biocatalysis, (ii) materials science, and (iii) the construction of artificial metalloenzymes.(i) Applications in biocatalysis were achieved by removing the globular cork domain (FhuA_Δ1-160), thereby creating a large pore for the passive transport of otherwise difficult-to-import molecules through diffusion. Introducing this FhuA variant into the outer membrane of E. coli facilitates the uptake of substrates for downstream biocatalytic conversion. Furthermore, removing the globular "cork" domain without structural collapse of the ß-barrel protein allowed the use of FhuA as a membrane filter, exhibiting a preference for d-arginine over l-arginine.(ii) FhuA is a transmembrane protein, which makes it attractive to be used for applications in non-natural polymeric membranes. Inserting FhuA into polymer vesicles yielded so-called synthosomes (i.e., catalytic synthetic vesicles in which the transmembrane protein acted as a switchable gate or filter). Our work in this direction enables polymersomes to be used in biocatalysis, DNA recovery, and the controlled (triggered) release of molecules. Furthermore, FhuA can be used as a building block to create protein-polymer conjugates to generate membranes.(iii) Artificial metalloenzymes (ArMs) are formed by incorporating a non-native metal ion or metal complex into a protein. This combines the best of two worlds: the vast reaction and substrate scope of chemocatalysis and the selectivity and evolvability of enzymes. With its large inner diameter, FhuA can harbor (bulky) metal catalysts. Among others, we covalently attached a Grubbs-Hoveyda-type catalyst for olefin metathesis to FhuA. This artificial metathease was then used in various chemical transformations, ranging from polymerizations (ring-opening metathesis polymerization) to enzymatic cascades involving cross-metathesis. Ultimately, we generated a catalytically active membrane by copolymerizing FhuA and pyrrole. The resulting biohybrid material was then equipped with the Grubbs-Hoveyda-type catalyst and used in ring-closing metathesis.The number of reports on FhuA and its various applications indicates that it is a versatile building block to generate hybrid catalysts and materials. We hope that our research will inspire future research efforts at the interface of biotechnology, catalysis, and material science in order to create biohybrid systems that offer smart solutions for current challenges in catalysis, material science, and medicine.


Assuntos
Proteínas de Escherichia coli , Metaloproteínas , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Engenharia de Proteínas , Metaloproteínas/genética , Polímeros/metabolismo , Aminoácidos/metabolismo , Ferro/metabolismo
16.
Biomacromolecules ; 25(1): 444-454, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38135668

RESUMO

Polyhydroxyalkanoates (PHAs), aliphatic polyesters synthesized by microorganisms, have gained considerable attention as biodegradable plastics. Recently, α-carbon-methylated PHAs have been shown to exhibit several interesting properties that differ from those of conventional PHAs, such as their crystallization behavior and material properties. This study investigated α-carbon methylated (S)- and (R)-3-hydroxy-2-methylpropionate (3H2MP) as new repeating units. 3H2MP units were homopolymerized or copolymerized with (R)-3-hydroxybutyrate (3HB) by manipulating the culture conditions of recombinant Escherichia coli LSBJ. Consequently, PHAs with 3H2MP units ranging from 5 to 100 mol % were synthesized by external addition of (R)- and (S)-enantiomers or the racemic form of 3H2MPNa. The (S)-3H2MP precursor supplemented into the culture medium was almost directly polymerized into PHA while maintaining its chirality. Therefore, a highly isotactic P(3H2MP) (R:S = 1:99) was synthesized, which displayed a melting temperature of 114-119 °C and a relatively high enthalpy of fusion (68 J/g). In contrast, in cultures supplemented with (R)-3H2MP, the precursor was racemized and polymerized into PHA, resulting in the synthesis of the amorphous polymer atactic P(3H2MP) (R:S = 40:60). However, racemization was not observed at a low concentration of the (R)-3H2MP precursor, thereby synthesizing P(3HB-co-8 mol % 3H2MP) with 100% (R)-3H2MP units. The thermogravimetric analysis revealed that the thermal degradation temperatures at 5% weight loss of P(3H2MP)s occurred at approximately 313 °C, independent of tacticity, which is substantially higher than that of P(3HB) (257 °C). This study demonstrates a new concept for controlling the physical properties of biosynthesized PHA by manipulating the polymers' tacticity using 3H2MP units.


Assuntos
Poli-Hidroxialcanoatos , Poli-Hidroxialcanoatos/química , Poliésteres/metabolismo , Hidroxibutiratos , Temperatura , Escherichia coli/genética , Escherichia coli/metabolismo , Carbono/metabolismo
17.
Biomacromolecules ; 25(5): 2973-2979, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38588330

RESUMO

Polyhydroxyalkanoate (PHA) synthases (PhaCs) are useful and versatile tools for the production of aliphatic polyesters. Here, the chimeric PHA synthase PhaCAR was engineered to increase its capacity to incorporate unusual 6-hydroxyhexanoate (6HHx) units. Mutations at positions 149 and 314 in PhaCAR were previously found to increase the incorporation of an analogous natural monomer, 3-hydroxyhexanoate (3HHx). We attempted to repurpose the mutations to produce 6HHx-containing polymers. Site-directed saturation mutants at these positions were applied for P(3HB-co-6HHx) synthesis in Escherichia coli. As a result, the N149D and F314Y mutants effectively increased the 6HHx fraction. Moreover, the pairwise NDFY mutation further increased the 6HHx fraction, which reached 22 mol %. This increase was presumably caused by altered enzyme activity rather than altered expression levels, as assessed based on immunoblot analysis. The glass transition temperature and crystallinity of P(3HB-co-6HHx) decreased as the 6HHx fraction increased.


Assuntos
Aciltransferases , Caproatos , Escherichia coli , Aciltransferases/genética , Aciltransferases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Caproatos/química , Caproatos/metabolismo , Engenharia de Proteínas/métodos , Poliésteres/química , Poliésteres/metabolismo , Mutagênese Sítio-Dirigida , Poli-Hidroxialcanoatos/química , Poli-Hidroxialcanoatos/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química
18.
J Am Chem Soc ; 145(51): 28240-28250, 2023 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-38085801

RESUMO

Although fusogenic liposomes offer a promising approach for the delivery of antibiotic payloads across the cell envelope of Gram-negative bacteria, there is still a limited understanding of the individual nanocarrier interactions with the bacterial target. Using super-resolution microscopy, we characterize the interaction dynamics of positively charged fusogenic liposomes with Gram-negative (Escherichia coli) and Gram-positive (Bacillus subtilis) bacteria. The liposomes merge with the outer membrane (OM) of Gram-negative bacteria, while attachment or lipid internalization is observed in Gram-positive cells. Employing total internal reflection fluorescence microscopy, we demonstrated liposome fusion with model supported lipid bilayers. For whole E. coli cells, however, we observed heterogeneous membrane integrations, primarily involving liposome attachment and hemifusion events. With increasing lipopolysaccharide length, the likelihood of full-fusion events was reduced. The integration of artificial lipids into the OM of Gram-negative cells led to membrane destabilization, resulting in decreased bacterial vitality, membrane detachment, and improved codelivery of vancomycin─an effective antibiotic against Gram-positive cells. These findings provide significant insights into the interactions of individual nanocarriers with bacterial envelopes at the single-cell level, uncovering effects that would be missed in bulk measurements. This highlights the importance of conducting single-particle and single-cell investigations to assess the performance of next-generation drug delivery platforms.


Assuntos
Escherichia coli , Lipossomos , Lipossomos/metabolismo , Escherichia coli/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Sistemas de Liberação de Medicamentos , Membrana Celular/metabolismo , Bactérias Gram-Negativas
19.
Small ; 19(46): e2303384, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37452438

RESUMO

A bio-inspired membrane made of Pluronic L-121 is produced around Escherichia coli thanks to the simple co-extrusion of bacteria and polymer vesicles. The block copolymer-coated bacteria can withstand various harsh shocks, for example, temperature, pressure, osmolarity, and chemical agents. The polymer membrane also makes the bacteria resistant to enzymatic digestion and enables them to degrade toxic compounds, improving their performance as whole-cell biocatalysts. Moreover, the polymer membrane acts as an anchor layer for the surface modification of the bacteria. Being decorated with α-amylase or lysozyme, the cells are endowed with the ability to digest starch or self-predatory bacteria are created. Thus, without any genetic engineering, the phenotype of encapsulated bacteria is changed as they become sturdier and gain novel metabolic functionalities.


Assuntos
Escherichia coli , Polímeros , Polímeros/química , Escherichia coli/metabolismo , Membrana Celular , Bactérias
20.
Metab Eng ; 75: 29-46, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36343876

RESUMO

Pseudomonas putida KT2440 is an attractive bacterial host for biotechnological production of valuable chemicals from renewable lignocellulosic feedstocks as it can valorize lignin-derived aromatics or glucose obtainable from cellulose. P. putida EM42, a genome-reduced variant of strain KT2440 endowed with advantageous physiological properties, was recently engineered for growth on cellobiose, a major cellooligosaccharide product of enzymatic cellulose hydrolysis. Co-utilization of cellobiose and glucose was achieved in a mutant lacking periplasmic glucose dehydrogenase Gcd (PP_1444). However, the cause of the co-utilization phenotype remained to be understood and the Δgcd strain had a significant growth defect. In this study, we investigated the basis of the simultaneous uptake of the two sugars and accelerated the growth of P. putida EM42 Δgcd mutant for the bioproduction of valuable compounds from glucose and cellobiose. We show that the gcd deletion lifted the inhibition of the exogenous ß-glucosidase BglC from Thermobifida fusca exerted by the intermediates of the periplasmic glucose oxidation pathway. The additional deletion of hexR gene, which encodes a repressor of the upper glycolysis genes, failed to restore rapid growth on glucose. The reduced growth rate of the Δgcd mutant was partially compensated by the implantation of heterologous glucose and cellobiose transporters (Glf from Zymomonas mobilis and LacY from Escherichia coli, respectively). Remarkably, this intervention resulted in the accumulation of pyruvate in aerobic P. putida cultures. We demonstrated that the excess of this key metabolic intermediate can be redirected to the enhanced biosynthesis of ethanol and lactate. The pyruvate overproduction phenotype was then unveiled by an upgraded genome-scale metabolic model constrained with proteomic and kinetic data. The model pointed to the saturation of glucose catabolism enzymes due to unregulated substrate uptake and it predicted improved bioproduction of pyruvate-derived chemicals by the engineered strain. This work sheds light on the co-metabolism of cellulosic sugars in an attractive biotechnological host and introduces a novel strategy for pyruvate overproduction in bacterial cultures under aerobic conditions.


Assuntos
Proteínas de Escherichia coli , Pseudomonas putida , Simportadores , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Celobiose/metabolismo , Glucose/metabolismo , Ácido Pirúvico/metabolismo , Proteômica , Celulose/metabolismo , Escherichia coli/metabolismo , Engenharia Metabólica , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Simportadores/metabolismo , Proteínas de Escherichia coli/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA