Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612391

RESUMO

C19 steroids and C22 steroids are vital intermediates for the synthesis of steroid drugs. Compared with C19 steroids, C22 steroids are more suitable for synthesizing progesterone and adrenocortical hormones, albeit less developed. 9,22-dihydroxy-23,24-bisnorchol-4-ene-3-one(9-OHBA), due to its substituents at positions C-9 and C-22, is a beneficial and innovative steroid derivative for synthesizing corticosteroids. We focused on the C22 pathway in Mycobacterium fortuitum ATCC 35855, aiming to develop a productive strain that produces 9-OHBA. We used a mutant strain, MFΔkstD, that knocked out kstds from Mycobacterium fortuitum ATCC 35855 named MFKD in this study as the original strain. Hsd4A and FadA5 are key enzymes in controlling the C19 metabolic pathway of steroids in Mycobacterium fortuitum ATCC 35855. After knocking out hsd4A, MFKDΔhsd4A accumulated 81.47% 9-OHBA compared with 4.13% 9-OHBA in the strain MFKD. The double mutant MFKDΔhsd4AΔfadA5 further improved the selectivity of 9-OHBA to 95.13%, and 9α-hydroxy-4-androstenedione (9-OHAD) decreased to 0.90% from 4.19%. In the end, we obtained 6.81 g/L 9-OHBA from 10 g/L phytosterols with a molar yield of 80.33%, which showed the best performance compared with formerly reported strains.


Assuntos
Mycobacterium fortuitum , Fitosteróis , Mycobacterium fortuitum/genética , Androstenodiona , Dente Molar , Progesterona
2.
Mol Pharm ; 20(9): 4443-4452, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37492942

RESUMO

The high blood level of low-density lipoprotein cholesterol (LDL-C) is a primary risk factor for cardiovascular disease. Plant sterols, known as phytosterols (PSs), can reduce LDL-C in a range of 8-14%. The extent of LDL-C reduction depends on its formulation. Encapsulation into liposomes is one formulation strategy to enhance the efficiency of PSs. PSs (campesterol, stigmasterol, and ß-sitosterol) have frequently been assessed alone or in combination for their LDL-C-lowering ability. However, one naturally abundant PS, brassicasterol, has not yet been tested for its efficacy. We have previously developed a novel liposomal formulation containing the PS mixture present naturally in canola that is composed of brassicasterol, campesterol, and ß-sitosterol. In this work, the efficacy of our novel liposomal PS formulation that includes brassicasterol was assessed in a hamster model. Animals were divided into five groups: (i) liposomal PS in orange juice, (ii) liposomal PS in water, (iii) marketed PS in orange juice, (iv) control orange juice, and (v) control water. The animals were fed a high-fat, cholesterol-supplemented (0.5%) diet to induce hypercholesterolemia. The treatment was administered orally once daily for 4 weeks. Fasting blood samples were collected at baseline, week 2, and week 4. The extent of the reduction of total cholesterol, LDL-C, high-density lipoprotein cholesterol (HDL-C), and triglycerides was compared among the groups. Liposomal PSs in both orange juice and water significantly reduced LDL-C compared to their controls. Furthermore, the liposomal PS was as effective as a marketed PS-containing product in reducing LDL-C. Liposomal PSs in both orange juice and water showed similar efficacy in LDL-C reduction, highlighting that these vehicles/food matrices do not affect the efficacy of PSs. The liposomal formulation of a natural PS mixture extracted from canola oil, with brassicasterol as a major component, exhibited a significant LDL-C reduction in a hamster model.


Assuntos
Hipercolesterolemia , Hiperlipidemias , Fitosteróis , Animais , LDL-Colesterol , Hiperlipidemias/tratamento farmacológico , Hiperlipidemias/etiologia , Lipossomos , Fitosteróis/farmacologia , Colesterol , Hipercolesterolemia/tratamento farmacológico , Dieta
3.
Langmuir ; 38(14): 4396-4406, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35348341

RESUMO

Quatsomes are a class of nonphospholipid vesicles in which bilayers are formed from mixtures of quaternary ammonium (QA) amphiphiles and sterols. We describe the formation of oxidation and acid-sensitive quatsome-like vesicles and other bilayer assemblies from mixtures of a ferrocenylated QA amphiphile (FTDMA) and several cholesterol derivatives. The influence of the sterol and the preparation method (extrusion or probe sonication) on the stability and morphology of the resulting vesicles is explored; a variety of structures can be obtained from small (ca. 30 nm) spherical unilamellar and oligolamellar quatsome-like vesicles to large (ca. 200 nm) multilamellar onion-like vesicles to extended nanoribbons many micrometers long. FTDMA-sterol vesicles undergo drastic shifts in vesicle and membrane structure when treated with a chemical oxidant (Frémy's salt), a feature previously observed in liposomes containing FTDMA and now confirmed in nonphospholipid vesicles. Size distributions of spherical quatsome-like vesicles obtained from cryo-TEM are examined to estimate the membrane bending rigidity, and a hypothesis is presented to explain the underlying mechanism of the profound membrane alterations observed as a consequence of ferrocene oxidation.


Assuntos
Compostos de Amônio , Nanotubos de Carbono , Fitosteróis , Compostos Ferrosos , Lipossomos/química , Metalocenos , Cebolas , Esteróis/química
4.
Molecules ; 27(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35684341

RESUMO

New carriers of phytosterols; acylglycerols containing natural myristic acid at sn-1 and sn-3 positions and stigmasterol residue linked to sn-2 position by carbonate and succinate linker have been designed and synthesized in three-step synthesis from dihydroxyacetone (DHA). The synthetic pathway involved Steglich esterification of DHA with myristic acid; reduction of carbonyl group of 1,3-dimyristoylpropanone and esterification of 1,3-dimyristoylglicerol with stigmasterol chloroformate or stigmasterol hemisuccinate. The structure of the obtained hybrids was established by the spectroscopic methods (NMR; IR; HRMS). Obtained hybrid molecules were used to form new liposomes in the mixture with model phospholipid and their effect on their physicochemical properties was determined, including the polarity, fluidity, and main phase transition of liposomes using differential scanning calorimetry and fluorimetric methods. The results confirm the significant effect of both stigmasterol-containing acylglycerols on the hydrophilic and hydrophobic region of liposome membranes. They significantly increase the order in the polar heads of the lipid bilayer and increase the rigidity in the hydrophobic region. Moreover, the presence of both acylglycerols in the membranes shifts the temperature of the main phase transition towards higher temperatures. Our results indicate stabilization of the bilayer over a wide temperature range (above and below the phase transition temperature), which in addition to the beneficial effects of phytosterols on human health makes them more attractive components of novel lipid nanocarriers compared to cholesterol.


Assuntos
Lipossomos , Fitosteróis , Varredura Diferencial de Calorimetria , Glicerídeos , Humanos , Bicamadas Lipídicas/química , Lipossomos/química , Ácido Mirístico , Fitosteróis/química , Estigmasterol/química
5.
Molecules ; 24(23)2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31779240

RESUMO

Euphorbia species are characterized by a net of laticifers producing large amounts of triterpenes. These hydrocarbon-like metabolites can be converted into fuel by the methods of the oil industry. Euphorbia lathyris is easily grown at an industrial scale. In an attempt to increase its triterpene production, the metabolic pathways leading to isoprenoid were investigated by incorporation of 13C labeled glucose and mevalonate and 2H labeled deoxyxylulose as well as by natural abundance isotope ratio GC-MS. Latex triterpenes are exclusively synthesized via the mevalonate (MVA) pathway: this may orient future search for improving the triterpene production in E. lathyris. Phytosterols and their precursors are mainly derived from MVA pathway with a slight contribution of the methylerythritol phosphate (MEP) pathway, whereas phytol is issued from MEP pathway with a minor contribution of the MVA pathway: this is in accordance with the metabolic cross-talk between cytosolic and plastidial compartments in plants. In addition, hopenol B behaved differently from the other latex triterpenes. Its 13C isotope abundance after incorporation of 13C labeled glucose and its natural abundance δ2H signature clearly differed from those of the other latex triterpenes indicating another metabolic origin and suggesting that it may be synthesized by an endophytic fungus.


Assuntos
Butadienos/metabolismo , Eritritol/metabolismo , Euphorbia/metabolismo , Fungos/metabolismo , Hemiterpenos/metabolismo , Redes e Vias Metabólicas/fisiologia , Ácido Mevalônico/metabolismo , Fosfatos/farmacocinética , Glucose/metabolismo , Látex/metabolismo , Fitosteróis/metabolismo , Triterpenos/metabolismo , Xilulose/análogos & derivados , Xilulose/metabolismo
6.
Microb Pathog ; 120: 85-96, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29684541

RESUMO

The appearance of drug-resistant (DR) bacteria in the community is a crucial development, and is associated with increased morbidity, mortality, healthcare costs, and antibiotic use. Natural oil nanoemulsions (NEs) have potential for antimicrobial applications. In the present study, we determined the antimicrobial activity of an NE against DR bacterial pathogens in vitro. The NE comprised Cleome viscosa essential oil, Tween 80 nonionic surfactant, and water. We found that an NE with a droplet size of 7 nm and an oil:surfactant (v/v) ratio of 1:3 was effective against methicillin-resistant Staphylococcus aureus (MRSA), DR Streptococcus pyogenes, and DR extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Fourier-transform infrared (FTIR) spectroscopy revealed that NE treatment modified the functional groups of lipids, proteins, and nucleic acids in DR bacterial cells. Scanning electron microscopy (SEM) showed damage to the cell membranes and walls of NE-treated DR bacteria. These alterations were caused by bioactive compounds with wide-spectrum enzyme-inhibiting activity in the NE, such as ß-sitosterol, demecolcine, campesterol, and heneicosyl formate. The results suggest that the nanoemulsion is effective against DR bacteria, and acts by inhibiting the drug efflux mechanism of DR strains.


Assuntos
Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Emulsões/farmacologia , Nanoestruturas/química , Antibacterianos/química , Anti-Infecciosos/química , Colesterol/análogos & derivados , Colesterol/farmacologia , Cleome/química , Demecolcina/farmacologia , Escherichia coli/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Nanoestruturas/ultraestrutura , Óleos Voláteis/farmacologia , Tamanho da Partícula , Fitosteróis/farmacologia , Extratos Vegetais/farmacologia , Polissorbatos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Sitosteroides/farmacologia , Sonicação , Streptococcus pyogenes/efeitos dos fármacos , Tensoativos
7.
J Liposome Res ; 28(4): 275-284, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28826275

RESUMO

Transdermal drug delivery systems are a key technology for skin-related diseases and for cosmetics development. The delivery of active ingredients to an appropriate site or target cells can greatly improve the efficacy of medical and cosmetic agents. For this study, liposome-based transdermal delivery systems were developed using pH-responsive phytosterol derivatives as liposome components. Succinylated phytosterol (Suc-PS) and 2-carboxy-cyclohexane-1-carboxylated phytosterol (CHex-PS) were synthesized by esterification of hydroxy groups of phytosterol. Modification of phytosterol derivatives on 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) liposomes was confirmed by negatively zeta potentials at alkaline pH and the change of zeta potentials with decreasing pH. In response to acidic pH and temperatures higher than body temperature, Suc-PS-containing and CHex-PS-containing liposomes exhibited content release at intracellular acidic compartments of the melanocytes at the basement membrane of the skin. Phytosterol-derivative-containing liposomes were taken up by murine melanoma-derived B16-F10 cells. These liposomes delivered their contents into endosomes and cytosol of B16-F10 cells. Furthermore, phytosterol-derivative-containing liposomes penetrated the 3 D skin models and reached the basement membrane. Results show that pH-responsive phytosterol-derivative-containing DMPC liposomes are promising for use in transdermal medical or cosmetic agent delivery to melanocytes.


Assuntos
Sistemas de Liberação de Medicamentos , Fluoresceínas/química , Lipossomos , Fitosteróis , Administração Cutânea , Animais , Linhagem Celular Tumoral , Fluoresceínas/administração & dosagem , Lipossomos/química , Melanócitos/efeitos dos fármacos , Camundongos , Fitosteróis/química , Pele/efeitos dos fármacos , Pele/metabolismo
8.
Plant Mol Biol ; 95(4-5): 411-423, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28980117

RESUMO

KEY MESSAGE: Exploration with high throughput leaf metabolomics along with functional genomics in wild tomato unreveal potential role of steroidal glyco-alkaloids and phenylpropanoids during early blight resistance. Alternaria solani severely affects tomato (Solanum lycopersicum L.) yield causing early blight (EB) disease in tropical environment. Wild relative, Solanum arcanum Peralta could be a potential source of EB resistance; however, its underlying molecular mechanism largely remains unexplored. Hence, non-targeted metabolomics was applied on resistant and susceptible S. arcanum accessions upon A. solani inoculation to unravel metabolic dynamics during different stages of disease progression. Total 2047 potential metabolite peaks (mass signals) were detected of which 681 and 684 metabolites revealed significant modulation and clear differentiation in resistant and susceptible accessions, respectively. Majority of the EB-triggered metabolic changes were active from steroidal glycol-alkaloid (SGA), lignin and flavonoid biosynthetic pathways. Further, biochemical and gene expression analyses of key enzymes from these pathways positively correlated with phenotypic variation in the S. arcanum accessions indicating their potential role in EB. Additionally, transcription factors regulating lignin biosynthesis were also up-regulated in resistant plants and electrophoretic mobility shift assay revealed sequence-specific binding of rSaWRKY1 with MYB20 promoter. Moreover, transcript accumulation of key genes from phenylpropanoid and SGA pathways along with WRKY and MYB in WRKY1 transgenic tomato lines supported above findings. Overall, this study highlights vital roles of SGAs as phytoalexins and phenylpropanoids along with lignin accumulation unrevealing possible mechanistic basis of EB resistance in wild tomato.


Assuntos
Alcaloides/metabolismo , Alternaria/fisiologia , Regulação da Expressão Gênica de Plantas , Metabolômica , Doenças das Plantas/imunologia , Solanum/metabolismo , Alcaloides/química , Vias Biossintéticas , Resistência à Doença , Flavonoides/metabolismo , Glicóis/química , Glicóis/metabolismo , Lignina/metabolismo , Fenótipo , Fitosteróis/química , Fitosteróis/metabolismo , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Saponinas/metabolismo , Metabolismo Secundário , Solanum/genética , Solanum/imunologia , Solanum/microbiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
BMC Plant Biol ; 17(1): 88, 2017 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-28532507

RESUMO

BACKGROUND: Latex from the dandelion species Taraxacum brevicorniculatum contains many high-value isoprenoid end products, e.g. triterpenes and polyisoprenes such as natural rubber. The isopentenyl pyrophosphate units required as precursors for these isoprenoids are provided by the mevalonate (MVA) pathway. The key enzyme in this pathway is 3-hydroxy-methyl-glutaryl-CoA reductase (HMGR) and its activity has been thoroughly characterized in many plant species including dandelion. However, two enzymes acting upstream of HMGR have not been characterized in dandelion latex: ATP citrate lyase (ACL), which provides the acetyl-CoA utilized in the MVA pathway, and acetoacetyl-CoA thiolase (AACT), which catalyzes the first step in the pathway to produce acetoacetyl-CoA. Here we isolated ACL and AACT genes from T. brevicorniculatum latex and characterized their expression profiles. We also overexpressed the well-characterized HMGR, ACL and AACT genes from Arabidopsis thaliana in T. brevicorniculatum to determine their impact on isoprenoid end products in the latex. RESULTS: The spatial and temporal expression profiles of T. brevicorniculatum ACL and AACT revealed their pivotal role in the synthesis of precursors necessary for isoprenoid biosynthesis in latex. The overexpression of A. thaliana ACL and AACT and HMGR in T. brevicorniculatum latex resulted in the accumulation of all three enzymes, increased the corresponding enzymatic activities and ultimately increased sterol levels by ~5-fold and pentacyclic triterpene and cis-1,4-isoprene levels by ~2-fold. Remarkably high levels of the triterpene precursor squalene were also detected in the triple-transgenic lines (up to 32 mg/g root dry weight) leading to the formation of numerous lipid droplets which were observed in root cross-sections. CONCLUSIONS: We could show the effective expression of up to three transgenes in T. brevicorniculatum latex which led to increased enzymatic activity and resulted in high level squalene accumulation in the dandelion roots up to an industrially relevant amount. Our data provide insight into the regulation of the MVA pathway in dandelion latex and can be used as a basis for metabolic engineering to enhance the production of isoprenoid end products in this specialized tissue.


Assuntos
ATP Citrato (pro-S)-Liase/metabolismo , Acetil-CoA C-Acetiltransferase/metabolismo , Látex/metabolismo , Taraxacum/metabolismo , Terpenos/metabolismo , ATP Citrato (pro-S)-Liase/genética , Acetil-CoA C-Acetiltransferase/genética , Regulação da Expressão Gênica de Plantas , Hidroximetilglutaril-CoA-Redutases NADP-Dependentes/metabolismo , Ácido Mevalônico/metabolismo , Triterpenos Pentacíclicos/metabolismo , Fitosteróis/metabolismo , Esqualeno/metabolismo , Taraxacum/genética
10.
Br J Sports Med ; 49(13): 843-51, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26084524

RESUMO

The health, fitness and other advantages of youth sports participation are well recognised. However, there are considerable challenges for all stakeholders involved-especially youth athletes-in trying to maintain inclusive, sustainable and enjoyable participation and success for all levels of individual athletic achievement. In an effort to advance a more unified, evidence-informed approach to youth athlete development, the IOC critically evaluated the current state of science and practice of youth athlete development and presented recommendations for developing healthy, resilient and capable youth athletes, while providing opportunities for all levels of sport participation and success. The IOC further challenges all youth and other sport governing bodies to embrace and implement these recommended guiding principles.


Assuntos
Esportes Juvenis/fisiologia , Doença Aguda , Adolescente , Desenvolvimento do Adolescente/fisiologia , Aptidão/fisiologia , Traumatismos em Atletas/etiologia , Traumatismos em Atletas/prevenção & controle , Desempenho Atlético/fisiologia , Criança , Doença Crônica , Competência Clínica/normas , Diosgenina , Meio Ambiente , Exercício Físico/fisiologia , Fadiga/fisiopatologia , Feminino , Nível de Saúde , Humanos , Masculino , Força Muscular/fisiologia , Músculo Esquelético/metabolismo , Distúrbios Nutricionais/prevenção & controle , Consumo de Oxigênio/fisiologia , Abuso Físico/prevenção & controle , Educação Física e Treinamento/métodos , Aptidão Física/fisiologia , Fitosteróis , Puberdade/fisiologia , Delitos Sexuais/prevenção & controle , Sono/fisiologia , Medicina Esportiva/normas , Estresse Psicológico/etiologia
11.
Bioprocess Biosyst Eng ; 38(5): 939-46, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25575761

RESUMO

A water-in-ionic liquid microemulsion ([Bmim]PF6/Tween20/H2O) was applied as reusable reaction medium to esterify phytosterols with fatty acid by Candida rugosa lipase (CRL) successfully. Two kinds of commercial CRLs, AY30 and AYS which cannot effectively catalyze esterification in conventional reaction system were found effective in the microemulsion system. Effects of reaction parameters on esterification were investigated; results showed that the conversion rate of 87.9 and 95.1 % was obtained in 24 and 48 h of reaction, respectively, under the optimized condition: the molar ratio of water to Tween 20 (w 0 value) at 5.4, Tween 20 at a concentration of 305 mM, 50 °C,pH 7.4, 10 % of enzyme loading (w/w, with respect to total reactants), and phytosterols/lauric acid molar ratio of 1:2. Moreover, by using n-hexane as the extraction agent, the lipase-encapsulated microemulsion could be reused at least seven times (>168 h) without significant changes in the conversion rate, while achieving a purpose of simple separation and purification.


Assuntos
Candida/enzimologia , Ésteres/química , Lipase/metabolismo , Fitosteróis/biossíntese , Biocatálise , Catálise , Emulsões , Enzimas Imobilizadas/metabolismo , Hexanos/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Microbiologia Industrial , Íons , Ácidos Láuricos/química , Polissorbatos/química , Temperatura , Água/química
12.
J Org Chem ; 79(3): 888-900, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24447127

RESUMO

The third-generation designer amphiphile/surfactant, "Nok" (i.e., SPGS-550-M; ß-sitosterol methoxypolyethyleneglycol succinate), soon to be commercially available from Aldrich, can be prepared in two steps using an abundant plant feedstock and ß-sitosterol, together with succinic anhydride and PEG-550-M. Upon dissolution in water, it forms nanomicelles that serve as nanoreactors, which can be characterized by both cryo-TEM and dynamic light scattering analyses. Several transition-metal-catalyzed reactions have been run under micellar conditions to evaluate this surfactant relative to results obtained in nanoparticles composed of TPGS-750-M (i.e., a second-generation surfactant). It is shown that Nok usually affords yields that are, in general, as good or better than those typically obtained with TPGS-750-M, and yet is far less costly.


Assuntos
Nanopartículas/química , Fitosteróis/química , Sitosteroides/química , Sitosteroides/síntese química , Succinatos/química , Tensoativos/química , Elementos de Transição/química , Vitamina E/análogos & derivados , Água/química , Catálise , Interações Hidrofóbicas e Hidrofílicas , Polietilenoglicóis , Temperatura , Vitamina E/química
13.
Food Res Int ; 184: 114269, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609247

RESUMO

An O1/W/O2 double emulsion gel, as a functional fat substitute and based on nanoemulsions and hydrophobic Pickering particles, is prepared by two-step emulsification to co-encapsulate hydrophilic cyanidin and hydrophobic quercetin. Nanoemulsions loading quercetin are fabricated by Tween-80 and combining high-speed and high-pressure emulsification. Phytosterol nanoparticles stabilize the W-O2 interface of the secondary emulsion to load cyanidin in the W phase. The concentration of Tween-80 is optimized as 0.3% by the droplet size and viscosity of nanoemulsions. The structural stability of double emulsion gels will be weakened along with the increase of nanoemulsions, showing lower modulus and encapsulation efficiency (EE) and bigger droplets. In double emulsion gels, the EE of quercetin and cyanidin reaches 93% and 85.6%, respectively. Analysis of molecular interaction indicates that Tween-80 would decrease the in-situ hydrophobicity of phytosterol nanoparticles by hydrogen bonding adsorption, thereby weakening the emulsification. The pH-chromic 3D printing of double emulsion gels is designed according to the pH sensitivity of cyanidin. Texture profile analysis is performed to test the textural properties of 3D-printed objects. The simulated digestion is conducted on double emulsion gels. The double emulsion gel with fewer nanoemulsions is beneficial for protecting quercetin and improving the delivery due to the higher structural stability, while that with more nanoemulsions is conducive to the digestion of cyanidin and camellia oil due to weakened semi-solid properties. This double emulsion gel further simulates fat tissues by co-encapsulating hydrophilic and hydrophobic substances, promoting the application of fat substitutes in the food industry.


Assuntos
Antocianinas , Substitutos da Gordura , Fitosteróis , Emulsões , Polissorbatos , Quercetina , Géis
14.
Sci Rep ; 14(1): 4671, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409285

RESUMO

Plant sterols are used as a supplement or an additive to reduce LDL cholesterol. The poor dispersibility and instability of phytosterols are the main limitations of their application. So, we tried to overcome these problems through nanoencapsulation of them with colloidal natural RSs (SLNs) using an effective approach to achieve higher efficiency and less intrinsic coagulation. Phytosterols extracted from flax seeds oil with caffeine by a new method were encapsulated with a stable colloid of sheep fat and ostrich oil (1:2), soy lecithin, and glucose through co-sonicated coacervation. Characterization of the obtained SLNs was conducted using FTIR, UV-Vis, SEM, DLS, and GC analysis. The three-factor three-level Behnken design (BBD) was used to prioritize the factors affecting the coacervation process to optimize particle size and loading capacity of SLNs. Operational conditions were examined, revealing that the size of SLNs was below 100 nm, with a phytosterols content (EE %) of 85.46% with high positive zeta potential. The nanocapsules' anti-microbial activity and drug-release behavior were then evaluated using the CFU count method and Beer-Lambert's law, respectively. The controlled release of nanocapsules (below 20%) at ambient temperature has been tested. The stability of nano-encapsulated phytosterols was investigated for six months. All results show that this green optimal coacervation is a better way than conventional methods to produce stable SLNs for the nanoencapsulation of phytosterols.


Assuntos
Lipossomos , Nanocápsulas , Nanopartículas , Fitosteróis , Animais , Ovinos , Portadores de Fármacos , Lipídeos , Tamanho da Partícula
15.
J Biomater Sci Polym Ed ; 35(6): 799-822, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38289681

RESUMO

Nowadays, cartilage tissue engineering (CTE) is considered important due to lack of repair of cartilaginous lesions and the absence of appropriate methods for treatment. In this study, polycaprolactone (PCL) scaffolds were fabricated by three-dimensional (3D) printing and were then coated with fibrin (F) and acellular solubilized extracellular matrix (ECM). After extracting adipose-derived stem cells (ADSCs), 3D-printed scaffolds were characterized and compared to hydrogel groups. After inducing the chondrogenic differentiation in the presence of Piascledine and comparing it with TGF-ß3 for 28 days, the expression of genes involved in chondrogenesis (AGG, COLII) and the expression of the hypertrophic gene (COLX) were examined by real-time PCR. The expression of proteins COLII and COLX was also determined by immunohistochemistry. Glycosaminoglycan was measured by toluidine blue staining. 3D-printed scaffolds clearly improved cell proliferation, viability, water absorption and compressive strength compared to the hydrogel groups. Moreover, the use of compounds such as ECM and Piascledine in the process of ADSCs chondrogenesis induction increased cartilage-specific markers and decreased the hypertrophic marker compared to TGF-ß3. In Piascledine groups, the expression of COLL II protein, COLL II and Aggrecan genes, and the amount of glycosaminoglycan showed a significant increase in the PCL/F/ECM compared to the PCL and PCL/F groups.


Assuntos
Células-Tronco Mesenquimais , Fitosteróis , Extratos Vegetais , Poliésteres , Alicerces Teciduais , Vitamina E , Alicerces Teciduais/química , Condrogênese , Fator de Crescimento Transformador beta3/farmacologia , Cartilagem , Engenharia Tecidual/métodos , Matriz Extracelular/metabolismo , Glicosaminoglicanos , Diferenciação Celular , Impressão Tridimensional , Hidrogéis/metabolismo , Combinação de Medicamentos
16.
Crit Rev Food Sci Nutr ; 53(3): 287-95, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23216000

RESUMO

In the era of nutrition, much focus has been remunerated to functional and nutraceutical foodstuffs. The health endorsing potential of such provisions is attributed to affluent phytochemistry. These dynamic constituents have functional possessions that are imperative for cereal industry. The functional and nutraceutical significance of variety of foods is often accredited to their bioactive molecules. Numerous components have been considered but wheat straw and its diverse components are of prime consideration. In this comprehensive dissertation, efforts are directed to elaborate the functional and nutraceutical importance of wheat straw. Wheat straw is lignocellulosic materials including cellulose, hemicellulose and lignin. It hold various bioactive compounds such as policosanols, phytosterols, phenolics, and triterpenoids, having enormous nutraceutical properties like anti-allergenic, anti-artherogenic, anti-inflammatory, anti-microbial, antioxidant, anti-thrombotic, cardioprotective and vasodilatory effects, antiviral, and anticancer. These compounds are protecting against various ailments like hypercholesterolemia, intermittent claudication, benign prostatic hyperplasia and cardiovascular diseases. Additionally, wheat straw has demonstrated successfully, low cost, renewable, versatile, widely distributed, easily available source for the production of biogas, bioethanol, and biohydrogen in biorefineries to enhance the overall effectiveness of biomass consumption in protected and eco-friendly environment. Furthermore, its role in enhancing the quality and extending the shelf life of bakery products through reducing the progression of staling and retrogradation is limelight of the article.


Assuntos
Suplementos Nutricionais , Manipulação de Alimentos/métodos , Triticum/química , Biocombustíveis/análise , Biomassa , Celulose/análise , Celulose/química , Álcoois Graxos/análise , Lignina/análise , Lignina/química , Fenóis/análise , Fitosteróis/análise , Caules de Planta/química , Polissacarídeos/análise , Polissacarídeos/química , Triterpenos/análise
17.
Drug Deliv Transl Res ; 13(12): 3014-3029, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37454030

RESUMO

Although the introduction of glycerosomes has enriched strategies for efficient transdermal drug delivery, the inclusion of cholesterol as a membrane stabilizer has limited their clinical application. The current study describes the development and optimization of a new type of glycerosome (S-glycerosome) that is formed in glycerol solution with ß-sitosterol as the stabilizer. Moreover, the transdermal permeation properties of lappaconitine (LA)-loaded S-glycerosomes and peppermint oil (PO)-mediated S-glycerosomes (PO-S-glycerosomes) are evaluated, and the lipid alterations in the stratum corneum are analyzed via lipidomics. The LA-loaded S-glycerosomes prepared by the preferred formulation from the uniform design have a mean size of 145.3 ± 7.81 nm and an encapsulation efficiency of 73.14 ± 0.35%. Moreover, the addition of PO positively impacts transdermal flux, peaking at 0.4% (w/v) PO. Tracing of the fluorescent probe P4 further revealed that PO-S-glycerosomes penetrate deeper into the skin than S-glycerosomes and conventional liposomes. Additionally, treatment with PO-S-glycerosomes alters the isoform type, number, and composition of sphingolipids, glycerophospholipids, glycerolipids, and fatty acids in the stratum corneum, with the most notable effect observed for ceramides, the main component of sphingolipids. Furthermore, the transdermal administration of LA-loaded PO-S-glycerosomes improved the treatment efficacy of xylene-induced inflammation in mice without skin irritation. Collectively, these findings demonstrate the feasibility of ß-sitosterol as a stabilizer in glycerosomes. Additionally, the inclusion of PO improves the transdermal permeation of S-glycerosomes, potentially by altering the stratum corneum lipids.


Assuntos
Fitosteróis , Absorção Cutânea , Camundongos , Animais , Administração Cutânea , Fitosteróis/metabolismo , Fitosteróis/farmacologia , Pele/metabolismo , Lipossomos , Esfingolipídeos/metabolismo , Esfingolipídeos/farmacologia
18.
Int J Biol Macromol ; 243: 125235, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37290551

RESUMO

Phytosterol esters (PSE) have been shown to have cholesterol-lowering effects, but their insolubility in water limits their applications. Green tea polysaccharide conjugates (gTPC) have hypoglycemic and emulsifying effects. To address lipid dysregulation in diabetic patients, we developed PSE-loaded emulsions stabilized with gTPC and Tween-20 (gTPC-PSE emulsions) and evaluated their physicochemical properties. We subsequently investigated the lipid-regulating potential of these emulsions to in KKAy mice. The KKAy mice were randomly assigned to eight groups: the model group, the Lipitor (10 mg·kg-1)-acarbose (30 mg·kg-1) combination group, two gTPC groups, two PSE groups, and two gTPC-PSE groups with a 1:2 mass ratio of gTPC to PSE. The administered doses were 90 and 270 mg kg-1, respectively. Administration of a 270 mg·kg-1 dose of gTPC-PSE emulsions led to the most significant effects including increased levels of liver and serum high-density lipoprotein cholesterol (HDL-CH), reduced serum leptin and insulin, and improved liver superoxide dismutase (SOD) and reduced malondialdehyde (MDA). In general, gTPC and PSE demonstrated a synergistic effect on lipid regulation in mice. Our results indicate that gTPC-PSE emulsions hold potential as a nutritional intervention for diabetes by modulating lipid levels.


Assuntos
Fitosteróis , Chá , Camundongos , Animais , Polissorbatos/farmacologia , Emulsões , Colesterol , Fitosteróis/farmacologia , Polissacarídeos/farmacologia , Polissacarídeos/química , Ésteres
19.
J Biosci Bioeng ; 135(2): 160-166, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36494249

RESUMO

The preparation of steady-state phospholipid liposomes requires cholesterol as a stabilizer, but excessive intake of cholesterol may increase the risk of cardiovascular disease. The sulfated sterols extracted from sea cucumber, mainly including sulfated 24-methylene cholesterol and cholesterol sulfate, have been reported to have a variety of physiological activities. Sulfated sterols are similar to cholesterol in structure and have the potential to replace cholesterol to prepare novel stable multifunctional liposomes, allowing the liposomes to act as carriers for the delivery of less bioavailable nutrients while allowing sulfated sterols in the lipid bilayer to exert physiologically active effects. This study aimed to prepare a novel multifunctional nanoliposome stabilized with sulfated sterols from sea cucumber instead of cholesterol by ultrasound-assisted thin-film dispersion method. The results showed that stable and uniformly dispersed nanoliposomes could be formed when the substitution ratio of sea cucumber-derived cholesterol sulfate was 100% and the ratio of lecithin to cholesterol sulfate was 3:1. Fucoxanthin encapsulated liposome with egg yolk lecithin/sea cucumber-derived cholesterol sulfate/fucoxanthin mass ratio of 6:2:3 was successfully prepared, with an average particle size of 214 ± 3 nm, polydispersity index (PDI) value of 0.297 ± 0.006, the zeta potential of -57.2 ± 1.10 mV, and the encapsulation efficiency of 85.5 ± 0.8%. The results of digestion and absorption in vitro and in vivo showed that liposomes could significantly improve the bioavailability of fucoxanthin and prolong its residence time in serum. As an efficient multifunctional carrier, this novel liposome has great potential for applications in functional foods and biomedicine.


Assuntos
Fitosteróis , Pepinos-do-Mar , Animais , Lipossomos/química , Lecitinas , Pepinos-do-Mar/química , Colesterol/química , Esteróis , Tamanho da Partícula
20.
Food Chem ; 370: 131324, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34788959

RESUMO

A novel enzyme-catalyzed method was developed for the synthesis of phytosterol polyol esters from ß-sitosterol and polyols (sorbitol, mannitol and xylitol) by two-step transesterification using divinyl adipate (DVA) as a link. A high conversion (exceeding 94%) of ß-sitosterol with a vinyl group was achieved, in the presence of Candida rugosa lipase (CRL), at low temperature (35 °C) within 30 min. Subsequently, the maximum conversion of phytosterol polyol esters (>94%) was obtained using alkaline protease from Bacillus subtilis at 65 °C. Phytosterol polyol esters had enhanced thermal stability (up to an above 355 °C) and excellent water solubility (4.6-7.9 mM at 35 °C). Moreover, obvious increases in the bioaccessibility (41.5-63.6%) and intestinal uptake (5.2-6.5%) were observed using a simulated gastrointestinal digestion/Caco-2 cell model. These results highlighted the key role of hydrophilic structural modifications on physicochemical properties and absorption of phytosterols.


Assuntos
Fitosteróis , Células CACO-2 , Digestão , Ésteres , Humanos , Polímeros , Saccharomycetales
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA