Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pharm ; 21(7): 3502-3512, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38861472

RESUMO

Paclitaxel (PTX) is one of the first-line drugs for prostate cancer (PC) treatment. However, the poor water solubility, inadequate specific targeting ability, multidrug resistance, and severe neurotoxicity are far from being fully resolved, despite diverse PTX formulations in the market, such as the gold-standard PTX albumin nanoparticle (Abraxane) and polymer micelles (Genexol-PM). Some studies attempting to solve the multiple problems of chemotherapy delivery fall into the trap of an extremely complicated formulation design and sacrifice druggability. To better address these issues, this study designed an efficient, toxicity-reduced paclitaxel-ginsenoside polymeric micelle (RPM). With the aid of the inherent amphiphilic molecular structure and pharmacological effects of ginsenoside Rg5, the prepared RPM enhances the water solubility and active targeting of PTX, inhibiting chemotherapy resistance in cancer cells. Moreover, the polymeric micelles demonstrated favorable anti-inflammatory and neuroprotective effects, providing ideas for the development of new clinical anti-PC preparations.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Ginsenosídeos , Micelas , Paclitaxel , Ginsenosídeos/química , Ginsenosídeos/farmacologia , Paclitaxel/farmacologia , Paclitaxel/química , Humanos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Animais , Masculino , Camundongos , Linhagem Celular Tumoral , Neoplasias da Próstata/tratamento farmacológico , Portadores de Fármacos/química , Solubilidade , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Sistemas de Liberação de Medicamentos/métodos , Polímeros/química
2.
Analyst ; 149(14): 3765-3772, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38842353

RESUMO

Molecularly imprinted polymer (MIP)-based chromatographic separation materials, owing to their advantages of unique selectivity, low cost, suitable reproducibility, and acceptable stability, have attracted a great deal of research in different fields. In this investigation, a new type of MIP-coated silica (MIP/SiO2) separation material was developed using sulfamethoxazole as a template; the specific recognition ability of MIP and appropriate physicochemical properties (abundant Si-OH, suitable pore structure, good stability, etc.) of SiO2 microbeads were combined. The MIP/SiO2 separation materials were characterized carefully. Then, various compounds (such as sulfonamides, ginsenosides, nucleosides, and several pesticides) were used to comprehensively evaluate the chromatographic performances of the MIP/SiO2 column. Furthermore, the chromatographic performances of the MIP/SiO2 column were compared with those of other separation materials (such as non-imprinted polymer-coated silica, C18/SiO2, and bare silica) packed columns. The resolution value of all measured compounds was more than 1.51. The column efficiencies of 13 510 plates per meter (N m-1) for sulfamethoxazole, 11 600 N m-1 for ginsenoside Rd, and 10 510 N m-1 for 2'-deoxyadenosine were obtained. The acceptable results verified that the MIP/SiO2 column can be applied to separate highly polar drugs such as sulfonamides, ginsenosides, nucleosides, and pesticides.


Assuntos
Microesferas , Polímeros Molecularmente Impressos , Dióxido de Silício , Dióxido de Silício/química , Cromatografia Líquida de Alta Pressão/métodos , Polímeros Molecularmente Impressos/química , Ginsenosídeos/química , Ginsenosídeos/análise , Ginsenosídeos/isolamento & purificação , Impressão Molecular/métodos , Nucleosídeos/química , Nucleosídeos/isolamento & purificação , Nucleosídeos/análise , Praguicidas/análise , Praguicidas/química , Praguicidas/isolamento & purificação , Polímeros/química
3.
J Nanobiotechnology ; 22(1): 420, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014462

RESUMO

Triple negative breast cancer (TNBC) has the characteristics of low immune cell infiltration, high expression of tumor programmed death ligand 1 (PD-L1), and abundant cancer stem cells. Systemic toxicity of traditional chemotherapy drugs due to poor drug selectivity, and chemotherapy failure due to tumor drug resistance and other problems, so it is particularly important to find new cancer treatment strategies for TNBC with limited treatment options. Both the anti-tumor natural drugs curcumin and ginsenoside Rg3 can exert anti-tumor effects by inducing immunogenic cell death (ICD) of tumor cells, reducing PD-L1 expression, and reducing cancer stem cells. However, they have the disadvantages of poor water solubility, low bioavailability, and weak anti-tumor effect of single agents. We used vinyl ether bonds to link curcumin (Cur) with N-O type zwitterionic polymers and at the same time encapsulated ginsenoside Rg3 to obtain hyperbranched zwitterionic drug-loaded micelles OPDEA-PGED-5HA@Cur@Rg3 (PPH@CR) with pH response. In vitro cell experiments and in vivo animal experiments have proved that PPH@CR could not only promote the maturation of dendritic cells (DCs) and increase the CD4+ T cells and CD8+ T cells by inducing ICD in tumor cells but also reduce the expression of PD-L1 in tumor tissues, and reduce cancer stem cells and showed better anti-tumor effects and good biological safety compared with free double drugs, which is a promising cancer treatment strategy.


Assuntos
Antineoplásicos , Antígeno B7-H1 , Curcumina , Ginsenosídeos , Animais , Curcumina/farmacologia , Curcumina/química , Ginsenosídeos/química , Ginsenosídeos/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Feminino , Antígeno B7-H1/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Micelas , Camundongos Endogâmicos BALB C , Polímeros/química , Polímeros/farmacologia , Células Dendríticas/efeitos dos fármacos , Nanopartículas/química , Células-Tronco Neoplásicas/efeitos dos fármacos , Portadores de Fármacos/química , Óxidos/química , Óxidos/farmacologia
4.
J Sep Sci ; 46(10): e2200825, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36892410

RESUMO

The molecular imprinting technique has aroused great interest in preparing novel stationary phases, and the resulting materials named molecularly imprinted polymers coated silica packing materials exhibit good performance in separating diverse analytes based on their good characteristics (including high selectivity, simple synthesis, and good chemical stability). To date, mono-template is commonly used in synthesizing molecularly imprinted polymers-based stationary phases. The resulting materials always own the disadvantages of low column efficiency and restricted analytes, and the price of ginsenosides with high purity was very high. In this study, to overcome the weaknesses of molecularly imprinted polymers-based stationary phases mentioned above, the multi-templates (total saponins of folium ginseng) strategy was used to prepare ginsenosides imprinted polymer-based stationary phase. The resulting ginsenosides imprinted polymer-coated silica stationary phase has a good spherical shape and suitable pore structures. Additionally, the total saponins of folium ginseng were cheaper than other kinds of ginsenosides. Moreover, the ginsenosides imprinted polymer-coated silica stationary phase-packed column performed well in the separation of ginsenosides, nucleosides, and sulfonamides. The ginsenosides imprinted polymer-coated silica stationary phase possesses good reproducibility, repeatability, and stability for seven days. Therefore, a multi-templates strategy for synthesizing the ginsenosides imprinted polymer-coated silica stationary phase is considered in the future.


Assuntos
Ginsenosídeos , Saponinas , Ginsenosídeos/química , Polímeros/química , Polímeros Molecularmente Impressos , Reprodutibilidade dos Testes , Cromatografia Líquida de Alta Pressão/métodos , Dióxido de Silício/química
5.
Molecules ; 26(7)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917440

RESUMO

Periodontitis is a set of chronic inflammatory diseases caused by the accumulation of Gram-negative bacteria on teeth, resulting in gingivitis, pocket formation, alveolar bone loss, tissue destruction, and tooth loss. In this study, the contents of ginsenosides isolated from Panax ginseng fruit extract were quantitatively analyzed, and the anti-inflammatory effects were evaluated in human periodontal ligament cells. The major ginsenosides, Re, Ra8, and Rf, present in ginseng fruit were simultaneously analyzed by a validated method using high-performance liquid chromatography with a diode-array detector; Re, Ra8, and Rf content per 1 g of P. ginseng fruit extract was 1.01 ± 0.03, 0.33 ± 0.01, and 0.55 ± 0.04 mg, respectively. Ginsenosides-Re, -Ra8, and -Rf inhibited the production of pro-inflammatory factors and the expression of important cytokines in periodontitis by inducing the expression of heme oxygenase 1 (HO-1), promoting osteoblast differentiation of periodontal ligament cells, suppressing alveolar bone loss, and promoting the expression of osteoblast-specific genes, such as alp, opn, and runx2. An inhibitory effect of these ginsenosides on periodontitis and alveolar bone loss was observed via the regulation of HO-1 and subsequent epidermal growth factor receptor (EGFR) signaling. Silencing EGFR with EGFR siRNA confirmed that the effect of ginsenosides on HO-1 is mediated by EGFR. In conclusion, this study evaluated the contents of ginsenosides-Re, -Ra8, and -Rf isolated from P. ginseng fruit extract. Therefore, these results provide important basic data for future P. ginseng fruit component studies and suggest that ginsenosides Re, Ra8, and Rf have potential as future treatment options for periodontitis.


Assuntos
Anti-Inflamatórios/farmacologia , Receptores ErbB/metabolismo , Ginsenosídeos/isolamento & purificação , Ginsenosídeos/farmacologia , Heme Oxigenase-1/metabolismo , Osteogênese/efeitos dos fármacos , Panax/química , Ligamento Periodontal/citologia , Diferenciação Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Frutas/química , Regulação da Expressão Gênica/efeitos dos fármacos , Ginsenosídeos/química , Humanos , Mediadores da Inflamação/metabolismo , Limite de Detecção , Lipopolissacarídeos/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Extratos Vegetais/química , Porphyromonas gingivalis/química , Análise de Regressão , Transdução de Sinais/efeitos dos fármacos
6.
Biomed Microdevices ; 21(1): 18, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30783757

RESUMO

Colorectal cancer (CRC) is a major malignancy characterized by a high metastasis rate. Systematic chemotherapy is important for patients with advanced CRC. However, many limitations (e.g., side effects to normal organs, shorter circulation time, and unsatisfactory tumor inhibition results) of traditional chemotherapy restrict its further application. Thus, it is necessary to find a method to overcome these challenges and improve the efficacy of CRC treatment. In this study, 20(S)-ginsenoside (Rg3) co-loaded poly(ethylene glycol)-block-poly(L-glutamic acid-co-L-phenylalanine) (mPEG-b-P(Glu-co-Phe)) nanoparticles (Rg3-NPs) were prepared. mPEG-b-P(Glu-co-Phe)-based drug delivery systems are pH sensitive that can target cancer cells and circulate for longer in blood. Rg3 could be released rapidly from the nanoparticles within tumor cells. A subcutaneous colon cancer mouse model was developed to evaluate the anticancer efficiency of the Rg3-NPs. The in vivo study indicated that the Rg3-NPs could significantly inhibit tumor proliferation by decreasing the expressions of proliferating cell nuclear antigen, resulting in tumor apoptosis through the increased expressions of caspase-3. Our study demonstrated the marked potential of the Rg3-NPs to treat CRC.


Assuntos
Neoplasias do Colo , Sistemas de Liberação de Medicamentos/métodos , Ginsenosídeos , Nanopartículas , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Ginsenosídeos/química , Ginsenosídeos/farmacocinética , Ginsenosídeos/farmacologia , Humanos , Masculino , Camundongos Nus , Nanopartículas/química , Nanopartículas/uso terapêutico , Peptídeos/química , Peptídeos/farmacocinética , Peptídeos/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Polietilenoglicóis/farmacologia , Ácido Poliglutâmico/química , Ácido Poliglutâmico/farmacocinética , Ácido Poliglutâmico/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Biomed Microdevices ; 21(4): 78, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31414228

RESUMO

Postoperative peritoneal adhesions are one of the most common surgical complications. In this study, we developed a 20(S)-ginsenoside Rg3-loaded methoxy poly (ethylene glycol)-block-poly(L-lactide-co-glycolide) (mPEG-b-PLGA) electrospun membrane (PEM/Rg3) that could not only serve as a physical barrier, but also as a drug delivery system that releases 20(S)-ginsenoside Rg3 constantly to prevent postoperative peritoneal adhesions. The characteristics of PEM/Rg3, including scanning electron microscopy, water contact angle, and mechanical analyses, were assessed. Degradation and drug release assays of PEM/Rg3 were performed. The anti-adhesion efficacy of PEM/Rg3 was evaluated in an abdomen-cecum mouse model. The adhesion scores, adhesion areas, hematoxylin and eosin (H&E) staining, immunofluorescence, and western blotting were assessed. The 20(S)-ginsenoside Rg3 loaded mPEG-b-PLGA electrospun fibers were successfully fabricated. The fibers were smooth, with no obvious drug crystals. PEM/Rg3 membranes were biodegradable and could be degraded gradually to release 20(S)-Ginsenoside Rg3 constantly from the membranes. The animal study showed that PEM/Rg3 exhibited an excellent adhesion prevention ability when compared with the control group, the PEM group, and polylactic acid (PLA) commercial membrane (Surgiwrap™) group. Immunofluorescence and western blotting studies showed that PEM/Rg3 inhibited the expressions of interleukin 1 (IL-1), interleukin 6 (IL-6), and reactive oxygen species modulator-1 (ROMO1). The 20(S)-ginsenoside Rg3-loaded mPEG-b-PLGA electrospun membranes exhibited satisfactory anti-adhesion efficacy by inhibiting inflammatory responses and oxidative stress. This composite represents a promising strategy to prevent postoperative peritoneal adhesions.


Assuntos
Eletricidade , Ginsenosídeos/química , Ginsenosídeos/farmacologia , Membranas Artificiais , Doenças Peritoneais/prevenção & controle , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Nanofibras/química , Doenças Peritoneais/metabolismo , Doenças Peritoneais/patologia , Poliésteres/química , Polietilenoglicóis/química , Aderências Teciduais/metabolismo , Aderências Teciduais/patologia , Aderências Teciduais/prevenção & controle
8.
Molecules ; 24(23)2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31795352

RESUMO

Low solubility and tumor-targeted delivery of ginsenosides to avoid off-target cytotoxicity are challenges for clinical trials. In the present study, we report on a methodology for the synthesis of polyethylene glycol (PEG)-ginsenoside conjugates through a hydrolysable ester bond using the hydrophilic polymer polyethylene glycol with the hydrophobic ginsenosides Rh1 and Rh2 to enhance water solubility and passive targeted delivery. The resulting conjugates were characterized by 1H nuclear magnetic resonance (1H NMR) and Fourier-transform infrared spectroscopy (FT-IR). 1H NMR revealed that the C-6 and C-3 sugar hydroxyl groups of Rh1 and Rh2 were esterified. The conjugates showed spherical shapes that were monitored by field-emission transmission electron microscopy (FE-TEM), and the average sizes of the particles were 62 ± 5.72 nm and 134 ± 8.75 nm for PEG-Rh1and PEG-Rh2, respectively (measured using a particle size analyzer). Owing to the hydrophilic enhancing properties of PEG, PEG-Rh1 and PEG-Rh2 solubility was greatly enhanced compared to Rh1 and Rh2 alone. The release rates of Rh1 and Rh2 were increased in lower pH conditions (pH 5.0), that for pathophysiological sites as well as for intracellular endosomes and lysosomes, compared to normal-cell pH conditions (pH 7.4). In vitro cytotoxicity assays showed that the PEG-Rh1conjugates had greater anticancer activity in a human non-small cell lung cancer cell line (A549) compared to Rh1 alone, whereas PEG-Rh2 showed lower cytotoxicity in lung cancer cells. On the other hand, both PEG-Rh1 and PEG-Rh2 showed non-cytotoxicity in a nondiseased murine macrophage cell line (RAW 264.7) compared to free Rh1 and Rh2, but PEG-Rh2 exhibited increased efficacy against inflammation by greatly inhibiting nitric oxide production. Thus, the overall conclusion of our study is that PEG conjugation promotes the properties of Rh1 for anticancer and Rh2 for inflammation treatments. Depends on the disease models, they could be potential drug candidates for further studies.


Assuntos
Antineoplásicos Fitogênicos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Ginsenosídeos , Neoplasias Pulmonares/tratamento farmacológico , Polietilenoglicóis , Células A549 , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Ginsenosídeos/química , Ginsenosídeos/farmacologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Células RAW 264.7
9.
J Sep Sci ; 40(3): 744-752, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27935252

RESUMO

Ginsenoside Rg1 is a valuable bioactive molecule but its high polarity and low concentration in complex mixtures makes it a challenge to separate Ginsenoside Rg1 from other saponins with similar structures, resulting in low extraction efficiency. The successful development of effective Rg1 molecularly imprinted polymers that exhibit high selectivity and adsorption may offer an improved method for the enrichment of active compounds. In this work, molecularly imprinted polymers were prepared with two different methods, precipitation polymerization or surface imprinted polymerization. Comparison of the adsorption abilities showed higher adsorption of the surface molecularly imprinted polymers prepared by surface imprinted polymerization, 46.80 mg/g, compared to the 27.74 mg/g observed for the molecularly imprinted polymers prepared by precipitation polymerization. Therefore, for higher adsorption of the highly polar Rg1, surface imprinted polymerization is a superior technique to make Rg1 molecularly imprinted polymers. The prepared surface molecularly imprinted polymers were tested as a solid-phase extraction column to directionally enrich Rg1 and its analogues from ginseng tea and total ginseng extracts. The column with surface molecularly imprinted polymers showed higher enrichment efficiency and better selectivity than a C18 solid-phase extraction column. Overall, a new, innovative method was developed to efficiently enrich high-polarity bioactive molecules present at low concentrations in complex matrices.


Assuntos
Técnicas de Química Analítica/métodos , Ginsenosídeos/isolamento & purificação , Adsorção , Ginsenosídeos/química , Impressão Molecular , Polímeros/química , Saponinas/química , Saponinas/isolamento & purificação , Extração em Fase Sólida
10.
Drug Dev Ind Pharm ; 43(10): 1734-1741, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28581836

RESUMO

OBJECTIVE: The objective of this study is to investigate the encapsulation of 20(R)-ginsenoside Rg3 (20(R)-Rg3) using polylactic-co-glycolic acid (PLGA) and promotion for its antitumor activity. SIGNIFICANCE: Preparation and evaluation of the antitumor efficacy of 20(R)-Rg3-loaded PLGA nanoparticles were the first reported. The data will be helpful to apply 20(R)-Rg3 efficiently and broadly in new drug form development and clinical cancer treatment. METHODS: The nanoparticles were prepared using emulsion and solvent evaporation methods. The uniform particle size and good dispersion were further confirmed by scanning electron microscopy. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was applied to detect cell proliferation after 20(R)-Rg3-loaded PLGA nanoparticles treatment. Western blotting and immunofluorescent staining were used for observation of key proteins related with proliferation and apoptosis. Cell cycle and apoptosis were analyzed by flow cytometer technology. RESULTS AND DISCUSSION: The results showed that the size of 20(R)-Rg3-loaded PLGA was 97.5 nm in diameter, and zeta potential was -28 mV detected by Malvern particle size analyzer. The encapsulation efficiency was 97.5%, and drug loading was 70.2% measured by high-performance liquid chromatography. The in vitro study showed that the encapsulated 20(R)-Rg3 was consecutively released and the release ratio reached to the highest value (19.36%) at the time point of 96 h. The encapsulated 20(R)-Rg3 significantly inhibited the proliferation and induced apoptosis in A431 cancer cells compared with the unencapsulated 20(R)-Rg3, control and PLGA alone. CONCLUSION: 20(R)-Rg3-loaded PLGA nanoparticles was well prepared and characterized. The antitumor activity was increased after PLGA encapsulation. The data will be beneficial to the development of new dosage forms of 20(R)-Rg3 and extensive application.


Assuntos
Antineoplásicos/farmacologia , Ginsenosídeos/farmacologia , Ácido Láctico/química , Nanopartículas/química , Ácido Poliglicólico/química , Sais de Tetrazólio/química , Tiazóis/química , Antineoplásicos/química , Proliferação de Células , Ginsenosídeos/química , Humanos , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Sais de Tetrazólio/farmacologia , Tiazóis/farmacologia
11.
Zhongguo Zhong Yao Za Zhi ; 42(1): 113-118, 2017 Jan.
Artigo em Zh | MEDLINE | ID: mdl-28945034

RESUMO

To prepare the intrauterine slow release silicone rubber bar made of Panax notoginseng and Rubia cordifolia, and finish its preliminary evaluation of in vitro releasing properties. The open mill method was used for plasticating of silicone rubber. The process parameters of the silicone rubber and drugs mixing were optimized by orthogonal test. The parameters of silicone rubber vulcanization was optimized by single factor test. The preliminary evaluation of in vitro release performance of the silicone rubber bar was conducted with ginsenoside Rg1, ginsenoside Rb1, notoginsenoside R1, purpurin and rubimaillin as the indexes. The results showed that optimum technologic parameters for silicone rubber and drugs mixing:the roller spacing 2 mm; speed ratio 1∶1.2; front roller temperature 55-60 ℃; rear roll temperature 50-55 ℃; and mixing time 20 min. The optimum parameters for silicone rubber vulcanization:temperature 90 ℃, and time 60 min. The studies on release process in vitro revealed that the release process of silicone rubber bar was in line with the Higuchi equations. After 90 days, the cumulative release of ginsenoside Rg1, ginsenoside Rb1 and notoginsenoside R1 was 46.7%, and the cumulative release of purpurin and rubimaillin was 51.9%. The preparation method can be applied to the preparation of silicone rubber bar, with slow release characteristics.


Assuntos
Liberação Controlada de Fármacos , Medicamentos de Ervas Chinesas/química , Ginsenosídeos/química , Panax notoginseng/química , Rubia/química , Elastômeros de Silicone/química
12.
J Nanosci Nanotechnol ; 15(8): 5660-2, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26369134

RESUMO

Red ginseng (the steamed root of Panax ginseng C. A. Mayer), which contains ginsenosides as its main constituents, is frequently used to treat tumor, inflammation, diabetes, stress and acquired immunodeficiency syndrome in Asian countries. Ginsenoside Rhl, a bacterial metabolite of ginsenoside Rgl, is a protopanaxatriol type of ginsenosides. Liposomes do not deeply penetrate the skin and remain confined to the stratum corneum.Thus, new vesicular colloidal carriers such as ethosomes and transfersomes have been developed as an enhanced type of liposomes, recently. The aim of this study was to improve the topical delivery of ginsenoside Rhl isolated from red ginseng employing new vesicular system of ethosomes and transfersomes compared to conventional liposome. Characterization of ginsenoside Rhl-loaded vesicles were prepared and evaluated for particle size, zeta potential, entrapment efficiency (% EE), and transmission electron microscopy (TEM) studies. In addition, skin permeation profile was obtained using frantz diffusion cells and rat dorsal skin treated with ethosome and transfersome compared with conventional iposome. The size of vesicles range from 108.5 to 322.9 nm, and negatively charged from -20.95 to -31.37 mV. The % EE of ginsenoside Rh1 was obtained between 45.0 to 65.0%. Transfersomes provided a significantly higher skin permeation of ginsenoside Rhl compared to ethosome and conventional liposome. Therefore, based on the current study, ginsenoside Rhl-loaded transfersomes can act as a topical therapeutic effects potential.


Assuntos
Preparações de Ação Retardada/síntese química , Ginsenosídeos/administração & dosagem , Ginsenosídeos/farmacocinética , Lipossomos/síntese química , Absorção Cutânea/fisiologia , Pele/metabolismo , Administração Cutânea , Preparações de Ação Retardada/administração & dosagem , Difusão , Ginsenosídeos/química , Humanos , Teste de Materiais , Taxa de Depuração Metabólica , Tamanho da Partícula , Propriedades de Superfície
13.
Biosci Biotechnol Biochem ; 78(3): 466-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25036835

RESUMO

The ginsenosides in Panax ginseng have vast structural and pharmacological efficacies. We covalently conjugated polyethylene glycol on the surface of CK (PEG-CK) through an acid-labile ester-linkage that showed increased solubility of CK. HPLC analysis showed that the release of CK was enhanced at acidic pH 5, whereas it was dramatically decreased at physiological pH 7.4. This might enhance the efficacy of CK.


Assuntos
Ginsenosídeos/síntese química , Panax/química , Polietilenoglicóis/síntese química , Cromatografia Líquida de Alta Pressão , Ésteres/química , Ginsenosídeos/química , Ginsenosídeos/farmacocinética , Concentração de Íons de Hidrogênio , Polietilenoglicóis/química , Propriedades de Superfície
14.
Planta Med ; 80(13): 1143-50, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25197955

RESUMO

This work describes an immunochemical approach for the quality control of Panax ginseng and a pharmacological study of ginsenoside Re, a major bioactive constituent in P. ginseng, using an enzyme-linked immunosorbent assay. A hybridoma secreting monoclonal antibody against ginsenoside Re was produced by fusing splenocytes immunized with a ginsenoside Re-bovine serum albumin conjugate with the hypoxanthine-aminopterin-thymidine-sensitive mouse myeloma SP2/0 cell line. The method, at an effective measuring range of 7.8-500 ng ·â€ŠmL(-1) of ginsenoside Re, successfully detected ginsenoside Re in Chinese traditional herb prescriptions. The results demonstrate that we generated a novel and reliable assay system for measuring ginsenoside Re in Chinese medicines more efficiently. Futhermore, we determined the ginsenoside Re concentrations in the saliva of six healthy adults after the oral administration of a ginseng capsule to study the pharmacokinetics of ginsenoside Re in human saliva.


Assuntos
Ensaio de Imunoadsorção Enzimática/métodos , Ginsenosídeos/análise , Panax/química , Saliva/química , Animais , Anticorpos Monoclonais , Ginsenosídeos/química , Ginsenosídeos/farmacocinética , Ginsenosídeos/normas , Humanos , Hibridomas , Medicina Tradicional Chinesa/normas , Camundongos Endogâmicos BALB C , Controle de Qualidade
15.
Biochim Biophys Acta Biomembr ; 1866(7): 184366, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38960300

RESUMO

Ginsenoside Rh2 (Rh2) is a ginseng saponin comprising a triterpene core and one unit of glucose and has attracted much attention due to its diverse biological activities. In the present study, we used small-angle X-ray diffraction, solid-state NMR, fluorescence microscopy, and MD simulations to investigate the molecular interaction of Rh2 with membrane lipids in the liquid-disordered (Ld) phase mainly composed of palmitoyloleoylphosphatidylcholine compared with those in liquid-ordered (Lo) phase mainly composed of sphingomyelin and cholesterol. The electron density profiles determined by X-ray diffraction patterns indicated that Rh2 tends to be present in the shallow interior of the bilayer in the Ld phase, while Rh2 accumulation was significantly smaller in the Lo phase. Order parameters at intermediate depths in the bilayer leaflet obtained from 2H NMR spectra and MD simulations indicated that Rh2 reduces the order of the acyl chains of lipids in the Ld phase. The dihydroxy group and glucose moiety at both ends of the hydrophobic triterpene core of Rh2 cause tilting of the molecular axis relative to the membrane normal, which may enhance membrane permeability by loosening the packing of lipid acyl chains. These features of Rh2 are distinct from steroidal saponins such as digitonin and dioscin, which exert strong membrane-disrupting activity.


Assuntos
Lipídeos de Membrana , Ginsenosídeos/química , Lipídeos de Membrana/química , Elétrons , Espectroscopia de Ressonância Magnética , Difração de Raios X , Microscopia de Fluorescência , Bicamadas Lipídicas/química , Lipossomos/química
16.
Phytomedicine ; 134: 156007, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39276537

RESUMO

BACKGROUND AND AIMS: Ginsenosides, the main component of Panax ginseng, have long been recognized for their therapeutic benefits and are thought to have neuroprotective, antidiabetic, anti-depressant, antioxidant, anti-cancer, and anti-stress properties. However, due to their low water solubility, low biomembrane permeability, gastrointestinal dysfunction, and total metabolism in the body, ginsenosides have a poor absorption profile that has hindered the therapeutic potential of these organic molecules. METHODS: Initially, we broadly illuminated the several techniques of extraction of Ginsenosides using Panax quinquefolius and Panax ginseng. Subsequently, we focused on different delivery methods to improve the stability, permeability, and solubility of natural chemicals, which raises the bioavailability of ginsenoside. Lastly, we explained significance of a variety of nano and microscale delivery systems, including liposomes, ethosomes, transfersomes, metal/metal oxide systems, micro/nanoemulsions, polymeric micro/nanoparticles (NPs), liposomes, transfersomes, and micelles to increase the bioavailability of ginsenosides. RESULTS: The utilization of micro/nanoscale delivery methods, such as liposome-based delivery, polymer micro/nanoparticle distribution, and micro/nanoemulsion, to increase the bioavailability of ginsenosides has recently advanced, and we have emphasized these advances in this study. Furthermore, the disadvantages of ginsenosides were also discussed, including the challenges associated with putting these delivery systems into practice in clinical settings and suggestions for further research. CONCLUSION: In summary, ginsenosides-based administration has several benefits that make it a potentially useful substance for a range of therapeutic purposes.


Assuntos
Disponibilidade Biológica , Sistemas de Liberação de Medicamentos , Ginsenosídeos , Panax , Ginsenosídeos/química , Ginsenosídeos/administração & dosagem , Ginsenosídeos/farmacocinética , Panax/química , Sistemas de Liberação de Medicamentos/métodos , Humanos , Nanopartículas/química , Lipossomos , Solubilidade , Animais , Composição de Medicamentos
17.
J Mater Chem B ; 12(19): 4673-4685, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38647236

RESUMO

During the process of wound healing, the stimulation of inflammatory factors often leads to abnormal proliferation of blood vessels and collagen, ultimately resulting in scar formation. To address this challenge, we fabricate a novel dermal extracellular matrix (DECM) hydrogel scaffold loaded with ginsenoside Rg3 (Rg3) using 3D printing technology. Mesoporous silica nanoparticles (MSNs) are introduced into the system to encase the Rg3 to control its release rate and enhance its bioavailability. We systematically evaluate the biological, physicochemical, and wound healing properties of this scaffold. In vitro studies demonstrate that the hydrogel exhibits excellent biocompatibility and solid-like rheological properties, ensuring its successful printing. In vivo studies reveal that the composite hydrogel scaffolds effectively accelerate wound healing and achieve scar-free wound healing within three weeks. Histological and immunohistochemical (IHC) analyses show that the composite hydrogel scaffolds reduce the inflammatory response and inhibit excessive collagen accumulation. These combined effects underscore the potential of our approach in effectively inhibiting scar formation.


Assuntos
Colágeno , Ginsenosídeos , Hidrogéis , Impressão Tridimensional , Alicerces Teciduais , Cicatrização , Cicatrização/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Colágeno/química , Animais , Ginsenosídeos/química , Ginsenosídeos/farmacologia , Alicerces Teciduais/química , Cicatriz/tratamento farmacológico , Dióxido de Silício/química , Camundongos , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Humanos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia
18.
Int J Nanomedicine ; 19: 6177-6199, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911498

RESUMO

Purpose: Ginsenoside Rg3 (Rg3) and Panax notoginseng saponins (PNS) can be used for ischemic stroke treatment, however, the lack of targeting to the ischemic region limits the therapeutic effect. To address this, we leveraged the affinity of macrophage membrane proteins for inflamed brain microvascular endothelial cells to develop a macrophage membrane-cloaked liposome loaded with Rg3 and PNS (MM-Lip-Rg3/PNS), which can precisely target brain lesion region through intranasal administration. Methods: MM-Lip-Rg3/PNS was prepared by co-extrusion method and was performed by characterization, stability, surface protein, and morphology. The cellular uptake, immune escape ability, and blood-brain barrier crossing ability of MM-Lip-Rg3/PNS were studied in vitro. The in vivo brain targeting, biodistribution and anti-ischemic efficacy of MM-Lip-Rg3/PNS were evaluated in MACO rats, and we determined the diversity of the nasal brain pathway through the olfactory nerve blockade model in rats. Finally, the pharmacokinetics and brain targeting index of MM-Lip-Rg3/PNS were investigated. Results: Our results indicated that MM-Lip-Rg3/PNS was spherical with a shell-core structure. MM-Lip-Rg3/PNS can avoid mononuclear phagocytosis, actively bind to inflammatory endothelial cells, and have the ability to cross the blood-brain barrier. Moreover, MM-Lip-Rg3/PNS could specifically target ischemic sites, even microglia, increase the cumulative number of drugs in the brain, improve the inflammatory environment of the brain, and reduce the infarct size. By comparing olfactory nerve-blocking rats with normal rats, it was found that there are direct and indirect pathways for nasal entry into the brain. Pharmacokinetics demonstrated that MM-Lip-Rg3/PNS exhibited stronger brain targeting and prolonged drug half-life. Conclusion: MM-Lip-Rg3/PNS might contribute to the accumulation of Rg3 and PNS in the ischemic brain area to improve treatment efficacy. This biomimetic nano-drug delivery system provides a new and promising strategy for the treatment of ischemic stroke.


Assuntos
Administração Intranasal , Barreira Hematoencefálica , Ginsenosídeos , AVC Isquêmico , Lipossomos , Macrófagos , Animais , Lipossomos/química , AVC Isquêmico/tratamento farmacológico , Ratos , Masculino , Ginsenosídeos/farmacocinética , Ginsenosídeos/química , Ginsenosídeos/administração & dosagem , Ginsenosídeos/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Ratos Sprague-Dawley , Distribuição Tecidual , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacocinética , Materiais Biomiméticos/administração & dosagem , Saponinas/farmacocinética , Saponinas/química , Saponinas/administração & dosagem , Saponinas/farmacologia , Camundongos
19.
Eur J Pharm Biopharm ; 201: 114350, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38848783

RESUMO

Ginsenoside (GS), one of the main active components in ginseng, can enhance insulin sensitivity, improve the function of islet ß cells, and reduce cell apoptosis in the treatment of diabetes. However, the drawbacks of high lipid solubility, poor water solubility, and low oral availability in Ginsenoside Rg3 (G-Rg3) seriously limit further application of GS. In this work, a G-Rg3 PEGylated long-circulating liposome (PEG-L-Rg3) is designed and developed to improve symptoms in type 2 diabetic mice. The as-prepared PEG-L-Rg3 with a spherical structure shows a particle size of âˆ¼ 140.5 ± 1.4 nm, the zeta potential of -0.10 ± 0.05 mV, and a high encapsulation rate of 99.8 %. Notably, in vivo experimental results demonstrate that PEG-L-Rg3 exhibits efficient ability to improve body weight and food intake in streptozotocin-induced type 2 diabetic mice. Moreover, PEG-L-Rg3 also enhances fasting insulin (FINS) and insulin sensitivity index (ISI). In addition, the glucose tolerance of mice is significantly improved after the treatment of PEG-L-Rg3, indicating that PEG-L-Rg3 can be a potential drug for the treatment of type 2 diabetes, which provides a new way for the treatment of type 2 diabetes using ginsenosides.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ginsenosídeos , Hiperglicemia , Resistência à Insulina , Lipossomos , Polietilenoglicóis , Animais , Ginsenosídeos/administração & dosagem , Ginsenosídeos/farmacologia , Ginsenosídeos/química , Camundongos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Experimental/tratamento farmacológico , Polietilenoglicóis/química , Masculino , Hiperglicemia/tratamento farmacológico , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Estreptozocina , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Insulina , Tamanho da Partícula
20.
Biomater Sci ; 12(10): 2672-2688, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38596867

RESUMO

Breast cancer, a pervasive malignancy affecting women, demands a diverse treatment approach including chemotherapy, radiotherapy, and surgical interventions. However, the effectiveness of doxorubicin (DOX), a cornerstone in breast cancer therapy, is limited when used as a monotherapy, and concerns about cardiotoxicity persist. Ginsenoside Rg3, a classic compound of traditional Chinese medicine found in Panax ginseng C. A. Mey., possesses diverse pharmacological properties, including cardiovascular protection, immune modulation, and anticancer effects. Ginsenoside Rg3 is considered a promising candidate for enhancing cancer treatment when combined with chemotherapy agents. Nevertheless, the intrinsic challenges of Rg3, such as its poor water solubility and low oral bioavailability, necessitate innovative solutions. Herein, we developed Rg3-PLGA@TMVs by encapsulating Rg3 within PLGA nanoparticles (Rg3-PLGA) and coating them with membranes derived from tumor cell-derived microvesicles (TMVs). Rg3-PLGA@TMVs displayed an array of favorable advantages, including controlled release, prolonged storage stability, high drug loading efficiency and a remarkable ability to activate dendritic cells in vitro. This activation is evident through the augmentation of CD86+CD80+ dendritic cells, along with a reduction in phagocytic activity and acid phosphatase levels. When combined with DOX, the synergistic effect of Rg3-PLGA@TMVs significantly inhibits 4T1 tumor growth and fosters the development of antitumor immunity in tumor-bearing mice. Most notably, this delivery system effectively mitigates the toxic side effects of DOX, particularly those affecting the heart. Overall, Rg3-PLGA@TMVs provide a novel strategy to enhance the efficacy of DOX while simultaneously mitigating its associated toxicities and demonstrate promising potential for the combined chemo-immunotherapy of breast cancer.


Assuntos
Doxorrubicina , Ginsenosídeos , Nanopartículas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ginsenosídeos/química , Ginsenosídeos/farmacologia , Ginsenosídeos/administração & dosagem , Animais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/administração & dosagem , Feminino , Nanopartículas/química , Camundongos , Doxorrubicina/farmacologia , Doxorrubicina/química , Doxorrubicina/administração & dosagem , Humanos , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Micropartículas Derivadas de Células/química , Micropartículas Derivadas de Células/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Liberação Controlada de Fármacos , Portadores de Fármacos/química , Células Dendríticas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA