Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
New Phytol ; 236(4): 1310-1325, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35975703

RESUMO

Plant cells continuously experience mechanical stress resulting from the cell wall that bears internal turgor pressure. Cortical microtubules align with the predicted maximal tensile stress direction to guide cellulose biosynthesis and therefore results in cell wall reinforcement. We have previously identified Increased Petal Growth Anisotropy (IPGA1) as a putative microtubule-associated protein in Arabidopsis, but the function of IPGA1 remains unclear. Here, using the Arabidopsis cotyledon pavement cell as a model, we demonstrated that IPGA1 forms protein granules and interacts with ANGUSTIFOLIA (AN) to cooperatively regulate microtubule organisation in response to stress. Application of mechanical perturbations, such as cell ablation, led to microtubule reorganisation into aligned arrays in wild-type cells. This microtubule response to stress was enhanced in the IPGA1 loss-of-function mutant. Mechanical perturbations promoted the formation of IPGA1 granules on microtubules. We further showed that IPGA1 physically interacted with AN both in vitro and on microtubules. The ipga1 mutant alleles exhibited reduced interdigitated growth of pavement cells, with smooth shape. IPGA1 and AN had a genetic interaction in regulating pavement cell shape. Furthermore, IPGA1 genetically and physically interacted with the microtubule-severing enzyme KATANIN. We propose that the IPGA1-AN module regulates microtubule organisation and pavement cell shape.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Katanina/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Forma Celular , Anisotropia , Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Celulose/metabolismo , Proteínas Repressoras/metabolismo
2.
Plant Signal Behav ; 16(8): 1921992, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-33960266

RESUMO

Following pollen deposition on the receptive surface of the stigma, pollen germinates a tube that carries male gametes toward the ovule where fertilization occurs. As soon as it emerges from the pollen grain, the pollen tube has to be properly guided through the pistil tissues so as to reach the ovule and ensure double fertilization. Chemical attractants, nutrients as well as receptor kinase-dependent signaling pathways have been implicated in this guidance. Recently, we showed in Arabidopsis that the microtubule severing enzyme KATANIN, by acting both on cortical microtubule (CMT) dynamics and cellulose microfibril (CMF) deposition, conferred particular mechanical properties to the papilla cell wall that act as active guidance factors. Here we confirm the importance of KATANIN and CMT orientation in pollen tube directionality by examining another katanin mutant.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Parede Celular , Katanina/metabolismo , Microtúbulos , Tubo Polínico , Polinização , Arabidopsis/fisiologia , Celulose , Fertilização , Flores , Óvulo Vegetal , Pólen , Tubo Polínico/crescimento & desenvolvimento , Tubo Polínico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA