Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Rep ; 48(2): 1423-1431, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33507476

RESUMO

Periodontal ligament fibroblasts (PDLFs) are integral to the homeostasis of periodontal tissue. The transcription factor Dec1 functions to modulate Porphyromonas gingivalis-induced periodontal inflammation. Here, we aimed to characterize the Dec1-mediated autophagy in PDLFs under inflammatory conditions. Human PDLFs were subjected to an inflammatory environment using P. gingivalis Lipopolysaccaride (LPS) along with Dec1 siRNA in vitro. Quantitative real-time polymerase chain reaction and Western blot analyses were used to evaluate the expression levels of autophagy-related genes and their upstream AKT/mTOR signaling pathways. An experimental P. gingivalis-treated Dec1 knockout (Dec1KO) mouse model was used to confirm the expression of autophagy in PDLFs in vivo. Treatment with P. gingivalis LPS induced the expression of ATG5, Beclin1 and microtubule-associated protein 1 light chain 3 (LC3) and elevated the expression of pro-inflammatory cytokine IL-1ß and Dec1 in human PDLFs. Knockdown of Dec1 partly reversed the detrimental influences of LPS on these autophagy markers in human PDLFs. The inhibition of autophagy with Dec1 siRNA suppressed the inflammatory effect of AKT/mTOR signaling pathways following treatment with P. gingivalis LPS. P. gingivalis-treated Dec1KO mice partly reduced autophagy expression. These findings suggest that a Dec1 deficiency can modulate the interaction between autophagy and inflammation in PDLFs.


Assuntos
Autofagia/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Homeodomínio/genética , Inflamação/genética , Ligamento Periodontal/metabolismo , Proteínas Supressoras de Tumor/genética , Animais , Proteína 5 Relacionada à Autofagia/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Proteína Beclina-1/genética , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica/genética , Proteínas de Homeodomínio/antagonistas & inibidores , Humanos , Inflamação/induzido quimicamente , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Ligamento Periodontal/microbiologia , Ligamento Periodontal/patologia , Porphyromonas gingivalis/patogenicidade , Proteínas Proto-Oncogênicas c-akt/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética
2.
Int J Mol Sci ; 22(2)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33435582

RESUMO

The aim of the study was to clarify whether orthodontic forces and periodontitis interact with respect to the anti-apoptotic molecules superoxide dismutase 2 (SOD2) and baculoviral IAP repeat-containing protein 3 (BIRC3). SOD2, BIRC3, and the apoptotic markers caspases 3 (CASP3) and 9 (CASP9) were analyzed in gingiva from periodontally healthy and periodontitis subjects by real-time PCR and immunohistochemistry. SOD2 and BIRC3 were also studied in gingiva from rats with experimental periodontitis and/or orthodontic tooth movement. Additionally, SOD2 and BIRC3 levels were examined in human periodontal fibroblasts incubated with Fusobacterium nucleatum and/or subjected to mechanical forces. Gingiva from periodontitis patients showed significantly higher SOD2, BIRC3, CASP3, and CASP9 levels than periodontally healthy gingiva. SOD2 and BIRC3 expressions were also significantly increased in the gingiva from rats with experimental periodontitis, but the upregulation of both molecules was significantly diminished in the concomitant presence of orthodontic tooth movement. In vitro, SOD2 and BIRC3 levels were significantly increased by F. nucleatum, but this stimulatory effect was also significantly inhibited by mechanical forces. Our study suggests that SOD2 and BIRC3 are produced in periodontal infection as a protective mechanism against exaggerated apoptosis. In the concomitant presence of orthodontic forces, this protective anti-apoptotic mechanism may get lost.


Assuntos
Proteína 3 com Repetições IAP de Baculovírus/genética , Regulação da Expressão Gênica , Ligamento Periodontal/metabolismo , Periodonto/metabolismo , Superóxido Dismutase/genética , Animais , Apoptose/genética , Proteína 3 com Repetições IAP de Baculovírus/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Caspase 9/genética , Caspase 9/metabolismo , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/metabolismo , Fusobacterium nucleatum/fisiologia , Gengiva/citologia , Gengiva/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Ligamento Periodontal/citologia , Ligamento Periodontal/microbiologia , Periodonto/citologia , Periodonto/microbiologia , Ratos , Superóxido Dismutase/metabolismo
3.
Biochem Biophys Res Commun ; 522(1): 184-190, 2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31757417

RESUMO

Metabolic reprogramming from oxidative phosphorylation to glycolysis have been implicated in the pathogenesis of inflammatory diseases, such as pulmonary hypertension, rheumatoid arthritis and sepsis. Whether metabolic reprogramming participates in the progression of bacteriogenic periodontitis has never been reported. In the present study, we explored metabolic changes in periodontal ligament cells (PDLSCs) in response to Porphyromonas gingivalis. (P. gingivalis)-infected PDLSCs showed distinct metabolomics with metabolic reprogramming from oxidative phosphorylation to glycolysis. In addition, bacteria invasion triggered fundamental changes in glycolysis and tricarboxylate acid (TCA) cycle-related genes, such as the hexokinase (HK), isocitrate dehydrogenase (IDH) and succinate dehydrogenase (SDH). Moreover, P. gingivalis-infected PDLSCs showed accumulation of succinate, elevation in succinate dehydrogenase activity, pileup of reactive oxygen species and activation of hypoxia inducible factor-1α (HIF-1α) pathway. HIF-1α and succinate inhibitors, as well as SDH knockdown alleviated proinflammatory cytokine expression in P. gingivalis-infected PDLSCs. Therefore, targeting metabolic reprogramming by regulating the succinate-SDH-HIF-1α axis may facilitate host modulation therapy of chronic periodontitis.


Assuntos
Infecções por Bacteroidaceae/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Ligamento Periodontal/metabolismo , Periodontite/metabolismo , Porphyromonas gingivalis/fisiologia , Succinato Desidrogenase/metabolismo , Infecções por Bacteroidaceae/microbiologia , Células Cultivadas , Glicólise , Interações Hospedeiro-Patógeno , Humanos , Inflamação/metabolismo , Inflamação/microbiologia , Fosforilação Oxidativa , Ligamento Periodontal/citologia , Ligamento Periodontal/microbiologia , Periodontite/microbiologia , Transdução de Sinais , Ácido Succínico/metabolismo
4.
Int J Mol Sci ; 22(1)2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33396525

RESUMO

Streptococcus mutans is the main early colonizing cariogenic bacteria because it recognizes salivary pellicle receptors. The Antigen I/II (Ag I/II) of S. mutans is among the most important adhesins in this process, and is involved in the adhesion to the tooth surface and the bacterial co-aggregation in the early stage of biofilm formation. However, this protein has not been used as a target in a virtual strategy search for inhibitors. Based on the predicted binding affinities, drug-like properties and toxicity, molecules were selected and evaluated for their ability to reduce S. mutans adhesion. A virtual screening of 883,551 molecules was conducted; cytotoxicity analysis on fibroblast cells, S. mutans adhesion studies, scanning electron microscopy analysis for bacterial integrity and molecular dynamics simulation were also performed. We found three molecules ZINC19835187 (ZI-187), ZINC19924939 (ZI-939) and ZINC19924906 (ZI-906) without cytotoxic activity, which inhibited about 90% the adhesion of S. mutans to polystyrene microplates. Molecular dynamic simulation by 300 nanoseconds showed stability of the interaction between ZI-187 and Ag I/II (PDB: 3IPK). This work provides new molecules that targets Ag I/II and have the capacity to inhibit in vitro the S. mutans adhesion on polystyrene microplates.


Assuntos
Antígenos de Bactérias/imunologia , Aderência Bacteriana/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Fibroblastos/efeitos dos fármacos , Ligamento Periodontal/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Streptococcus mutans/efeitos dos fármacos , Proteínas de Bactérias/imunologia , Biofilmes/efeitos dos fármacos , Células Cultivadas , Simulação por Computador , Fibroblastos/imunologia , Fibroblastos/microbiologia , Humanos , Técnicas In Vitro , Ligamento Periodontal/imunologia , Ligamento Periodontal/microbiologia , Streptococcus mutans/crescimento & desenvolvimento , Streptococcus mutans/imunologia
5.
Cell Microbiol ; 20(4)2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29205773

RESUMO

Host-derived matrix metalloproteinases (MMPs) and bacterial proteases mediate destruction of extracellular matrices and supporting alveolar bone in periodontitis. The Treponema denticola dentilisin protease induces MMP-2 expression and activation in periodontal ligament (PDL) cells, and dentilisin-mediated activation of pro-MMP-2 is required for cellular fibronectin degradation. Here, we report that T. denticola regulates MMP-2 expression through epigenetic modifications in the periodontium. PDL cells were treated with epigenetic enzyme inhibitors before or after T. denticola challenge. Fibronectin fragmentation, MMP-2 expression, and activation were assessed by immunoblot, zymography, and qRT-PCR, respectively. Chromatin modification enzyme expression in T. denticola-challenged PDL cells and periodontal tissues were evaluated using gene arrays. Several classes of epigenetic enzymes showed significant alterations in transcription in diseased tissue and T. denticola-challenged PDL cells. T. denticola-mediated MMP-2 expression and activation were significantly reduced in PDL cells treated with inhibitors of aurora kinases and histone deacetylases. In contrast, DNA methyltransferase inhibitors had little effect, and inhibitors of histone acetyltransferases, methyltransferases, and demethylases exacerbated T. denticola-mediated MMP-2 expression and activation. Chronic epigenetic changes in periodontal tissues mediated by T. denticola or other oral microbes may contribute to the limited success of conventional treatment of chronic periodontitis and may be amenable to therapeutic reversal.


Assuntos
Metaloproteinase 2 da Matriz/metabolismo , Ligamento Periodontal/enzimologia , Ligamento Periodontal/microbiologia , Treponema denticola , Células Cultivadas , Epigênese Genética , Código das Histonas , Humanos , Metaloproteinase 2 da Matriz/genética , Inibidores de Metaloproteinases de Matriz/farmacologia , Treponema denticola/fisiologia
6.
Biochem Biophys Res Commun ; 506(4): 950-955, 2018 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-30401563

RESUMO

To explore Girdin/Akt pathway protein expression and morphology change by cyclic tension in the periodontal ligament cells. Human periodontal ligament cells were exposed to cyclic tension force at 4000 µstrain and 0.5 Hz for 6 h though a four-point bending system. Cyclic tension force upregulated F-actin, Girdin and Akt expression in hPDL. In transmission electron microscope assay showed that there are more and bigger mitochondria, more and longer cynapses, more cellular organisms after tension force stimulation than control. The actin filament was changed to be regular lines and pointed to poles of cells. However, we found that the Girdin-depleted cells are small and there are more micro-organisms including more lysosomes and matrix vesicles than control. These finding suggest that the STAT3/Girdin/Akt pathway in PDL to response to mechanical stimulation as well, and Girdin may play a significant role in triggering cell proliferation and migration during orthodontic treatment. It provided an insight into the molecular basis for development of a vitro cell model in studying orthodontic treatment.


Assuntos
Citoesqueleto de Actina/metabolismo , Ligamento Periodontal/patologia , Estresse Mecânico , Resistência à Tração , Actinas/metabolismo , Fenômenos Biomecânicos , Células Cultivadas , Humanos , Proteínas dos Microfilamentos/metabolismo , Ligamento Periodontal/microbiologia , Ligamento Periodontal/ultraestrutura , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regulação para Cima , Proteínas de Transporte Vesicular/metabolismo
7.
BMC Microbiol ; 17(1): 38, 2017 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-28212613

RESUMO

BACKGROUND: Porphyromonas gingivalis is strongly associated with the development, progression, severity and recurrence of periodontitis. Periodontal ligament stem cells (PDLSCs) play an important role in the maintenance of periodontal tissue self-renewal and repair. The purpose of this study was to investigate the ability of P. gingivalis to infect PDLSCs using an in vitro monolayer model. METHODS: We separated and cultured primary PDLSCs using the tissue block with limiting dilution method. The efficiency of P. gingivalis (ATCC 33277) infection of PDLSCs was measured using agar plate culture and quantitative polymerase chain reaction (q-PCR) methods. PDLSCs infected with P. gingivalis were also observed by transmission electron microscopy. RESULTS: We assessed stem cell properties including cell morphology, clone formation, growth activity, cell surface antigens and multiple differentiation capacity. The infection rates of P. gingivalis in PDLSC at MOIs of 50, 100, 200, and 500 were 5.83%, 8.12%, 7.77% and 7.53% according to the agar plate culture method. By q-PCR, the efficiencies of P. gingivalis infection of PDLSCs at MOIs of 50, 100, 200, and 500 were 6.74%, 10.56%, 10.36% and 9.78%, respectively. Overall, the infection efficiency based on q-PCR was higher than that according to agar plate culture. Using transmission electron microscopy, we verified that P. gingivalis (ATCC 33277) could infect and invade PDLSCs after 2 h of incubation, and endocytic vacuoles were not found surrounding the internalized bacteria. CONCLUSIONS: In conclusion, our data demonstrate that P. gingivalis can invade PDLSCs.


Assuntos
Ligamento Periodontal/microbiologia , Periodontite/microbiologia , Porphyromonas gingivalis/patogenicidade , Células-Tronco , Adolescente , Adulto , Antígenos de Superfície , Infecções por Bacteroidaceae/microbiologia , Ciclo Celular , Diferenciação Celular , Células Cultivadas , Feminino , Interações Hospedeiro-Patógeno , Humanos , Imuno-Histoquímica , Masculino , Microscopia Eletrônica de Transmissão , Ligamento Periodontal/crescimento & desenvolvimento , Ligamento Periodontal/patologia , Periodontite/patologia , Porphyromonas gingivalis/genética , Células-Tronco/patologia , Adulto Jovem
8.
Mediators Inflamm ; 2017: 4916971, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29317796

RESUMO

Ghrelin plays a major role in obesity-related diseases which have been shown to be associated with periodontitis. This study sought to analyze the expression of the functional receptor for ghrelin (GHS-R1a) in periodontal cells and tissues under microbial conditions in vitro and in vivo. The GHS-R1a expression in human periodontal cells challenged with the periodontopathogen Fusobacterium nucleatum, in gingival biopsies from periodontally healthy and diseased individuals, and from rats with and without ligature-induced periodontitis was analyzed by real-time PCR, immunocytochemistry, and immunofluorescence. F. nucleatum induced an initial upregulation and subsequent downregulation of GHS-R1a in periodontal cells. In rat experimental periodontitis, the GHS-R1a expression at periodontitis sites was increased during the early stage of periodontitis, but significantly reduced afterwards, when compared with healthy sites. In human gingival biopsies, periodontally diseased sites showed a significantly lower GHS-R1a expression than the healthy sites. The expression of the functional ghrelin receptor in periodontal cells and tissues is modulated by periodontal bacteria. Due to the downregulation of the functional ghrelin receptor by long-term exposure to periodontal bacteria, the anti-inflammatory actions of ghrelin may be diminished in chronic periodontal infections, which could lead to an enhanced periodontal inflammation and tissue destruction.


Assuntos
Periodontite/metabolismo , Periodontite/microbiologia , Periodonto/metabolismo , Periodonto/microbiologia , Receptores de Grelina/metabolismo , Animais , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Fusobacterium nucleatum/patogenicidade , Regulação da Expressão Gênica , Gengiva/metabolismo , Gengiva/microbiologia , Gengiva/patologia , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Mediadores da Inflamação/metabolismo , Masculino , Ligamento Periodontal/metabolismo , Ligamento Periodontal/microbiologia , Ligamento Periodontal/patologia , Periodontite/patologia , Periodonto/patologia , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Grelina/genética
9.
Int J Mol Sci ; 17(3): 385, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-27011164

RESUMO

Periodontitis is an oral inflammatory disease that not only affects the integrity of local tooth-supporting tissues but also impacts systemic health. A compositional shift in oral microbiota has been considered as the main cause of periodontitis; however, the potential mechanism has not been fully defined. Herein, we investigated the role of CCAAT/enhancer-binding protein ß (C/EBP ß), a member of the C/EBP family of transcription factors, in human periodontal ligament cells (hPDLCs) exposed to Porphyromonas gingivalis (P. gingivalis) lipopolysaccharide (LPS). RT-PCR and Western blotting analysis showed that the expression of C/EBP ß was significantly increased in hPDLCs stimulated with LPS stimuli. Overexpression of C/EBP ß by the recombinant adenoviral vector pAd/C/EBP ß markedly increased the expression of the pro-inflammatory cytokines IL-6 and IL-8, and matrix metalloproteinases (MMP)-8 and -9 in hPDLCs in response to LPS. Furthermore, the activation of endoplasmic reticulum (ER) stress was confirmed in LPS-stimulated hPDLCs by measuring the expression of the ER stress marker molecules protein kinase-like ER kinase (PERK), eIF2α, GRP78/Bip, and C/EBP homologous protein (CHOP). The ER stress inhibitor salubrinal repressed, but inducer tunicamycin enhanced, the production of IL-6, IL-8, MMP-8, and MMP-9 in hPDLCs. Additionally, ER stress inducer tunicamycin significantly increased the expression level of C/EBP ß in hPDLCs. Blocking of C/EBP ß by siRNA resulted in a significant decrease in the secretion of IL-6 and IL-8 and expression of MMP-8 and MMP-9 induced by tunicamycin treatment in hPDLCs. Taken together, ER stress appears to play a regulatory role in the inflammatory response and extracellular matrix (ECM) degradation in hPDLCs in response to LPS stimuli by activating C/EBP ß expression. This enhances our understanding of human periodontitis pathology.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Matriz Extracelular/metabolismo , Lipopolissacarídeos/farmacologia , Ligamento Periodontal/citologia , Proteína beta Intensificadora de Ligação a CCAAT/genética , Citocinas/genética , Chaperona BiP do Retículo Endoplasmático , Matriz Extracelular/microbiologia , Matriz Extracelular/patologia , Humanos , Inflamação/induzido quimicamente , Inflamação/microbiologia , Lipopolissacarídeos/efeitos adversos , Metaloproteinases da Matriz/genética , Ligamento Periodontal/metabolismo , Ligamento Periodontal/microbiologia , Ligamento Periodontal/patologia , Porphyromonas gingivalis , Transdução de Sinais , Regulação para Cima
10.
J Clin Periodontol ; 41(2): 95-103, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24164598

RESUMO

AIM: Porphyromonas gingivalis (Pg) may cause an immune-inflammatory response in host cells leading to bone degradation by osteoclasts. We investigated the osteoclast-inducing capacity of periodontal ligament fibroblasts from periodontitis patients and non-periodontitis donors after a challenge with viable Pg. MATERIALS AND METHODS: PDLFs from periodontitis patients (n = 8) and non-periodontitis donors (n = 7) were incubated for 6 h with or without viable Pg and subsequently co-cultured with osteoclast precursors from peripheral blood mononuclear cells (PBMCs). The number of multinucleated tartrate-resistant acid phosphatase-positive cells was determined at 21 days. Expression of osteoclastogenesis-associated genes was assessed after infection of PDLFs mono-cultures and in PDLFs-PBMCs co-cultures. Resorption activity was analysed on bone slices. RESULTS: Pg induced the expression of osteoclastogenesis-associated genes by PDLFs. After bacterial challenge the formation of osteoclast-like cell was decreased in co-cultures of PBMCs with non-periodontitis PDLFs, but not with PDLFs from periodontitis patients. CONCLUSION: PDLFs from sites free of periodontitis respond to an infection with Pg by tempering formation of osteoclast-like cells, probably promoting clearance of the infection. PDLFs from periodontitis sites are desensitized to a Pg challenge in terms of their osteoclast-inducing capacity.


Assuntos
Fibroblastos/fisiologia , Osteoclastos/fisiologia , Ligamento Periodontal/citologia , Periodontite/patologia , Porphyromonas gingivalis/fisiologia , Fosfatase Ácida/análise , Actinas/análise , Reabsorção Óssea/patologia , Anidrase Carbônica II/análise , Técnicas de Cultura de Células , Diferenciação Celular/fisiologia , Técnicas de Cocultura , Feminino , Fibroblastos/microbiologia , Células Gigantes/patologia , Humanos , Isoenzimas/análise , Leucócitos Mononucleares/fisiologia , Masculino , Pessoa de Meia-Idade , Osteoprotegerina/análise , Ligamento Periodontal/microbiologia , Ligante RANK/análise , Fosfatase Ácida Resistente a Tartarato , Fatores de Tempo
11.
Mediators Inflamm ; 2014: 425421, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24976684

RESUMO

The present study aimed to evaluate in vitro whether biomechanical loading modulates proinflammatory and bone remodeling mediators production by periodontal ligament (PDL) cells in the presence of bacterial challenge. Cells were seeded on BioFlex culture plates and exposed to Fusobacterium nucleatum ATCC 25586 and/or cyclic tensile strain (CTS) of low (CTSL) and high (CTSH) magnitudes for 1 and 3 days. Synthesis of cyclooxygenase-2 (COX2) and prostaglandin E2 (PGE2) was evaluated by ELISA. Gene expression and protein secretion of osteoprotegerin (OPG) and receptor activator of nuclear factor kappa-B ligand (RANKL) were evaluated by quantitative RT-PCR and ELISA, respectively. F. nucleatum increased the production of COX2 and PGE2, which was further increased by CTS. F. nucleatum-induced increase of PGE2 synthesis was significantly (P < 0.05) increased when CTSH was applied at 1 and 3 days. In addition, CTSH inhibited the F. nucleatum-induced upregulation of OPG at 1 and 3 days, thereby increasing the RANKL/OPG ratio. OPG and RANKL mRNA results correlated with the protein results. In summary, our findings provide original evidence that CTS can enhance bacterial-induced syntheses of molecules associated with inflammation and bone resorption by PDL cells. Therefore, biomechanical, such as orthodontic or occlusal, loading may enhance the bacterial-induced inflammation and destruction in periodontitis.


Assuntos
Fusobacterium nucleatum/patogenicidade , Ligamento Periodontal/metabolismo , Ligamento Periodontal/microbiologia , Células Cultivadas , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Ensaio de Imunoadsorção Enzimática , Humanos , Osteoprotegerina/metabolismo , Ligamento Periodontal/citologia , Ligante RANK/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
BMC Oral Health ; 14: 89, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25027664

RESUMO

BACKGROUND: Porphyromonas gingivalis has been shown to invade osteoblasts and inhibit their differentiation and mineralization in vitro. However, it is unclear if P. gingivalis can invade osteoblasts in vivo and how this would affect alveolar osteoblast/osteoclast dynamics. This study aims to answer these questions using a periodontitis mouse model under repetitive P. gingivalis inoculations. METHODS: For 3-month-old BALB/cByJ female mice, 10(9) CFU of P. gingivalis were inoculated onto the gingival margin of maxillary molars 4 times at 2-day intervals. After 2 weeks, another 4 inoculations at 2-day intervals were applied. Calcein was injected 7 and 2 days before sacrificing animals to label the newly formed bone. Four weeks after final inoculation, mice were sacrificed and maxilla collected. Immunohistochemistry, micro-CT, and bone histomorphometry were performed on the specimens. Sham infection with only vehicle was the control. RESULTS: P. gingivalis was found to invade gingival epithelia, periodontal ligament fibroblasts, and alveolar osteoblasts. Micro-CT showed alveolar bone resorption and significant reduction of bone mineral density and content in the infected mice compared to the controls. Bone histomorphometry showed a decrease in osteoblasts, an increase in osteoclasts and bone resorption, and a surprisingly increased osteoblastic bone formation in the infected mice compared to the controls. CONCLUSIONS: P. gingivalis invades alveolar osteoblasts in the periodontitis mouse model and cause alveolar bone loss. Although P. gingivalis appears to suppress osteoblast pool and enhance osteoclastic bone resorption, the bone formation capacity is temporarily elevated in the infected mice, possibly via some anti-microbial compensational mechanisms.


Assuntos
Perda do Osso Alveolar/microbiologia , Infecções por Bacteroidaceae/fisiopatologia , Osteoblastos/microbiologia , Osteoclastos/microbiologia , Osteogênese/fisiologia , Periodontite/microbiologia , Porphyromonas gingivalis/fisiologia , Perda do Osso Alveolar/patologia , Processo Alveolar/microbiologia , Processo Alveolar/patologia , Animais , Densidade Óssea/fisiologia , Contagem de Células , Modelos Animais de Doenças , Epitélio/microbiologia , Feminino , Fibroblastos/microbiologia , Fluoresceínas , Corantes Fluorescentes , Gengiva/microbiologia , Maxila/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos , Ligamento Periodontal/microbiologia , Ligamento Periodontal/patologia , Microtomografia por Raio-X/métodos
13.
Arch Oral Biol ; 164: 106004, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38776586

RESUMO

OBJECTIVE: The red-complex bacteria Porphyromonas gingivalis and Tannerella forsythia together with Fusobacterium nucleatum are essential players in periodontitis. This study investigated the bacterial interplay with human periodontal ligament mesenchymal stromal cells (hPDL-MSCs) which act in the acute phase of periodontal infection. DESIGN: The capability of the bacteria to induce an inflammatory response as well as their viability, cellular adhesion and invasion were analyzed upon mono- and co-infections of hPDL-MSCs to delineate potential synergistic or antagonistic effects. The expression level and concentration of interleukin (IL)-6, IL-8 and monocyte chemoattractant protein (MCP)-1 were measured using qRT-PCR and ELISA. Viability, invasion, and adhesion were determined quantitatively using agar plate culture and qualitatively by confocal microscopy. RESULTS: Viability of P. gingivalis and T. forsythia but not F. nucleatum was preserved in the presence of hPDL-MSCs, even in an oxygenated environment. F. nucleatum significantly increased the expression and concentration of IL-6, IL-8 and MCP-1 in hPDL-MSCs, while T. forsythia and P. gingivalis caused only a minimal inflammatory response. Co-infections in different combinations had no effect on the inflammatory response. Moreover, P. gingivalis mitigated the increase in cytokine levels elicited by F. nucleatum. Both red-complex bacteria adhered to and invaded hPDL-MSCs in greater numbers than F. nucleatum, with only a minor effect of co-infections. CONCLUSIONS: Oral bacteria of different pathogenicity status interact differently with hPDL-MSCs. The data support P. gingivalis' capability to manipulate the inflammatory host response. Further research is necessary to obtain a comprehensive picture of the role of hPDL-MSCs in more complex oral biofilms.


Assuntos
Quimiocina CCL2 , Fusobacterium nucleatum , Interleucina-6 , Interleucina-8 , Ligamento Periodontal , Porphyromonas gingivalis , Tannerella forsythia , Humanos , Ligamento Periodontal/citologia , Ligamento Periodontal/microbiologia , Quimiocina CCL2/metabolismo , Interleucina-8/metabolismo , Interleucina-6/metabolismo , Células-Tronco Mesenquimais/microbiologia , Células-Tronco Mesenquimais/metabolismo , Ensaio de Imunoadsorção Enzimática , Periodontite/microbiologia , Aderência Bacteriana , Microscopia Confocal , Células Cultivadas , Reação em Cadeia da Polimerase em Tempo Real , Adesão Celular , Coinfecção/microbiologia
14.
Bioengineered ; 13(2): 2336-2345, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35034548

RESUMO

Long non-coding RNA nuclear paraspeckle assembly transcript 1 (NEAT1) is a novel pro-inflammatory factor in severe human diseases. Since inflammatory plays important roles in periodontitis progression, we aimed to explore the role of NEAT1 in chronic periodontitis (CP) in vitro. We established a periodontitis cell model was established by Porphyromonas gingivalis lipopolysaccharide (Pg-LPS)-induced periodontal ligament cells (PDLCs). Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed to detect the expression of NEAT1, microRNA (miR)-200c-3p, and tumor necrosis factor receptor-associated factor 6 (TRAF6). Cell viability, inflammatory factors, and protein expression of Bcl-2, Bax, and TRAF6 were analyzed by MTT, enzyme-linked immunosorbent assay, and Western blot. The target relationships among NEAT1, miR-200c-3p, and TRAF6 were predicted by the StarBase/TargetScan software, and further validated by dual-luciferase reporter assay. In this research, NEAT1 is up-regulated in CP tissues and periodontitis model group. Silencing of NEAT1 and over-expression of miR-200c-3p enhanced cell viability and repressed apoptosis in the periodontitis model group. NEAT1 targets miR-200c-3p, and miR-200c-3p further targets TRAF6. MiR-200c-3p inhibitor or over-expression of TRAF6 reversed the promoting effect of NEAT1 knockdown on cell viability, and the inhibiting effects on inflammatory cytokines and cell apoptosis. Consequently, the silencing of NEAT1 inhibits inflammation and apoptosis via targeting miR-200c-3p/TRAF6 axis, thereby contributing to alleviate the progression of CP. This finding could provide an underlying target for the treatment of CP.


Assuntos
Infecções por Bacteroidaceae/metabolismo , Periodontite Crônica/metabolismo , Modelos Biológicos , Ligamento Periodontal/metabolismo , Porphyromonas gingivalis/metabolismo , RNA Longo não Codificante/metabolismo , Infecções por Bacteroidaceae/microbiologia , Periodontite Crônica/microbiologia , Feminino , Humanos , Masculino , Ligamento Periodontal/microbiologia , RNA Longo não Codificante/genética
15.
Infect Immun ; 79(2): 806-11, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21115719

RESUMO

Periodontal disease is a bacterially mediated chronic inflammatory disease that results in destruction of the periodontal ligament (PDL) and alveolar bone that surround and support the dentition. While their precise roles are not well understood, periodontal pathogens, including Treponema denticola, are believed to initiate the destructive inflammatory responses and dysregulation of tissue homeostasis that characterize the disease. These responses are believed to result from both proinflammatory effects of acylated bacterial membrane components (lipopolysaccharides and lipoproteins) and degradative effects of secreted bacterial proteases. Host-derived matrix metalloproteinases (MMPs) are key enzymes both in tissue homeostasis and tissue destruction. MMP expression is modulated in part by specific proteolytic fragments of fibronectin (FN), which are associated with periodontal disease. FN is a predominant extracellular matrix component in the periodontium. We examined the ability of Treponema denticola and its acylated outer membrane PrtP protease complex to induce both activation of MMP-2 and generation of FN fragments in human PDL cell culture supernatants. T. denticola parent and isogenic mutant strains, as well as MMP-2 small interfering RNA and specific inhibitors of MMP-2 and PrtP activity, were used to examine protein expression, gelatinolytic activity, and FN fragmentation in culture supernatants. T. denticola and its purified protease induced both MMP-2 activation and FN fragmentation. Here, we demonstrate that PrtP proteolytic activity induces the activation of MMP-2 and that active MMP-2 is required for FN fragmentation. These results suggest a specific mechanism by which the T. denticola protease may disrupt homeostatic processes required for the maintenance of periodontal health.


Assuntos
Quimotripsina/metabolismo , Fibronectinas/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Ligamento Periodontal/citologia , Treponema denticola/enzimologia , Proteínas de Bactérias , Células Cultivadas , Quimotripsina/genética , Regulação da Expressão Gênica/imunologia , Inativação Gênica , Humanos , Peptídeo Hidrolases , Ligamento Periodontal/metabolismo , Ligamento Periodontal/microbiologia , RNA Interferente Pequeno
16.
Microb Pathog ; 50(1): 6-11, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21075196

RESUMO

Inflammatory bone destruction triggered by oral bacteria is a hallmark of chronic and apical periodontitis. Receptor activator of NF-κB ligand (RANKL) activates bone resorption, whereas osteoprotegerin (OPG) blocks its action. These are members of the tumor necrosis factor ligand and receptor families, respectively. Although individual oral pathogens are known to regulate RANKL and OPG expression in cells of relevance to the respective diseases, such as periodontal ligament (PDL) and dental pulp (DP) cells, the effect of polymicrobial oral biofilms is not known. This study aimed to investigate the effect of the Zürich in vitro supragingival biofilm model on RANKL and OPG gene expression, in human PDL and DP cell cultures, by quantitative real-time polymerase chain reaction. RANKL expression was more pronouncedly up-regulated in DP than PDL cells (4-fold greater), whereas OPG was up-regulated to a similar extent. The RANKL/OPG ratio was increased only in DP cells, indicating an enhanced capacity for inducing bone resorption. The expression of pro-inflammatory cytokine interleukin-1ß was also increased in DP, but not PDL cells. Collectively, the high responsiveness of DP, but not PDL cells to the supragingival biofilm challenge could constitute a putative pathogenic mechanism for apical periodontitis, which may not crucial for chronic periodontitis.


Assuntos
Biofilmes , Polpa Dentária/metabolismo , Regulação da Expressão Gênica , Osteoprotegerina/metabolismo , Ligamento Periodontal/metabolismo , Ligante RANK/metabolismo , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Proteína ADAM17 , Células Cultivadas , Polpa Dentária/citologia , Polpa Dentária/microbiologia , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Boca/microbiologia , Osteoprotegerina/genética , Ligamento Periodontal/citologia , Ligamento Periodontal/microbiologia , Ligante RANK/genética
17.
J Immunol Res ; 2021: 9577695, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34734092

RESUMO

Periodontitis involves chronic inflammation of the tissues around the teeth caused by plaque and the corresponding immune response. Growth arrest-specific protein 6 (GAS6) and AXL receptor tyrosine kinase (AXL) are known to be involved in inflammatory diseases, while signal transducer and activator of transcription-1 (STAT1) and suppressor of cytokine signaling (SOCS) are related to inflammatory processes. Moreover, miRNA34a directly targets AXL to regulate the AXL expression. However, the specific roles of GAS6 and AXL in periodontitis remain unclear. This study was designed to explore the effect and mechanism of AXL on the expression of inflammatory cytokines induced by Porphyromonas gingivalis lipopolysaccharide (P. gingivalis LPS) in human periodontal ligament cells (hPDLCs). The effects of different concentrations of P. gingivalis LPS on the expression of GAS6/AXL in hPDLCs were observed. Additionally, the effect of LPS on AXL was investigated by transfection of the miRNA34a inhibitor. AXL was knocked down or overexpressed to observe the release of inflammatory cytokines interleukin- (IL-) 8 and IL-6. The results showed that the expression levels of GAS6 and AXL decreased after P. gingivalis LPS infection. Transfection of a miR-34a inhibitor to hPDLCs demonstrated a role of miR-34a in the downregulation of AXL expression induced by LPS. Moreover, AXL knockdown or overexpression influencing the expression of IL-8 and IL-6 was investigated under LPS stimulation. AXL knockdown decreased the expression of STAT1 and SOCS1/3. Overall, these results demonstrate that AXL inhibits the expression of LPS-induced inflammatory cytokines in hPDLCs and that STAT1 and SOCS1/3 are involved in the regulation of inflammation by GAS6/AXL.


Assuntos
Periodontite/imunologia , Porphyromonas gingivalis/imunologia , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Linhagem Celular , Técnicas de Silenciamento de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Lipopolissacarídeos/imunologia , Ligamento Periodontal/citologia , Ligamento Periodontal/imunologia , Ligamento Periodontal/microbiologia , Ligamento Periodontal/patologia , Periodontite/microbiologia , Periodontite/patologia , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Receptor Tirosina Quinase Axl
18.
J Tissue Eng Regen Med ; 15(3): 232-243, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33434402

RESUMO

Infectious bone defects remain a significant challenge in orthopedics and dentistry. Calcium phosphate cement (CPC) have attracted significant interest in use as local drug delivery system, which with great potential to control release of antibiotics for the treatment of infectious bone defects. Within the current study, a novel antibacterial scaffold of chitosan-reinforced calcium phosphate cement delivering doxycycline hyclate (CPCC + DOX) was developed. Furthermore, the capacity of CPCC + DOX scaffolds for bone regeneration was enhanced by the human periodontal ligament stem cells (hPDLSCs) encapsulated in alginate beads. CPCC + DOX scaffolds were fabricated to contain different concentrations of DOX. Flexural strength of CPCC + DOX ranged from 5.56 ± 0.70 to 6.2 ± 0.72 MPa, which exceeded the reported strength of cancellous bone. Scaffolds exhibited continual DOX release, reaching 80% at 21 days. Scaffold with 5 mg/ml DOX (CPCC + DOX5mg) had a strong antibacterial effect, with a 4-log colony forming unit reduction against S. aureus and P. gingivalis. The proliferation and osteogenic differentiation of hPDLSCs encapsulated in alginate hydrogel microbeads were investigated in culture with CPCC + DOX scaffolds. CPCC + DOX5mg had no negative effect on proliferation of hPDLSCs. Alkaline phosphatase activity, mineral synthesis, and osteogenic gene expressions for CPCC + DOX5mg group were much higher than control group. DOX did not compromise the osteogenic induction. In summary, the novel CPCC + DOX scaffold exhibited excellent mechanical properties and strong antibacterial activity, while supporting the proliferation and osteogenic differentiation of hPDLSCs. The CPCC + DOX + hPDLSCs construct is promising to enhance bone regeneration and combat bone infections in dental, craniofacial, and orthopedic applications.


Assuntos
Antibacterianos , Infecções por Bacteroidaceae , Cimentos Ósseos , Regeneração Óssea/efeitos dos fármacos , Microesferas , Osteogênese , Ligamento Periodontal , Porphyromonas gingivalis/crescimento & desenvolvimento , Infecções Estafilocócicas , Staphylococcus aureus/crescimento & desenvolvimento , Células-Tronco , Antibacterianos/química , Antibacterianos/farmacologia , Infecções por Bacteroidaceae/tratamento farmacológico , Infecções por Bacteroidaceae/microbiologia , Cimentos Ósseos/química , Cimentos Ósseos/farmacologia , Fosfatos de Cálcio , Humanos , Ligamento Periodontal/metabolismo , Ligamento Periodontal/microbiologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/metabolismo , Células-Tronco/metabolismo , Células-Tronco/microbiologia
19.
In Vitro Cell Dev Biol Anim ; 57(4): 404-414, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33905062

RESUMO

Bacterial infection caused cell pyroptosis and gingival inflammation contributes to periodontitis progression, and lipopolysaccharide (LPS) is the main infectious agent of gram-negative bacteria, which is reported to be closely associated with gingival inflammation and periodontitis. In this study, the primary human periodontal ligament cells (PDLCs) were isolated, cultured, and exposed to LPS treatment, and the results suggested that LPS suppressed cell viability and promoted pro-inflammatory cytokines' (IL-1ß, IL-18, IL-6, and TNF-α) generation and secretion in the PDLCs and its supernatants in a time- and concentration-dependent manner. Also, we noticed that LPS upregulated NLRP3, Gasdermin D, and cleaved caspase-1 to trigger pyroptotic cell death in the PDLCs. Further experiments identified that glycogen synthase kinase-3ß (GSK-3ß) was upregulated by LPS treatment, and inhibition of GSK-3ß by its inhibitor (GSKI) or GSK-3ß downregulation vectors was effective to restore normal cellular functions in LPS-treated PDLCs. Mechanistically, blockage of GSK-3ß restrained NLRP3-meidated cell pyroptosis and inflammation, resulting in the recovery of cell viability and inhibition of cell death in PDLCs treated with LPS, which further ameliorated periodontitis progression. Finally, we collected the serum from periodontitis patients and healthy volunteers, and the clinical data supported that those pro-inflammatory cytokines were also upregulated in patients' serum but not in the healthy participants. Taken together, we concluded that targeting the GSK-3ß/NLRP3 pathway mediated cell pyroptosis was effective to attenuate LPS-induced cell death and inflammation in PDLCs, and this study firstly investigated this issue, which broadened our knowledge in this field.


Assuntos
Infecções Bacterianas/genética , Glicogênio Sintase Quinase 3 beta/genética , Interleucina-1beta/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Periodontite/genética , Infecções Bacterianas/induzido quimicamente , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Sobrevivência Celular/genética , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Gengiva/microbiologia , Gengiva/patologia , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Humanos , Inflamassomos/efeitos dos fármacos , Inflamassomos/genética , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/patologia , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/toxicidade , Ligamento Periodontal/citologia , Ligamento Periodontal/microbiologia , Periodontite/induzido quimicamente , Periodontite/tratamento farmacológico , Periodontite/patologia , Cultura Primária de Células , Piroptose/efeitos dos fármacos , Piroptose/genética , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética
20.
J Periodontal Res ; 45(2): 262-70, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19778323

RESUMO

BACKGROUND AND OBJECTIVE: Porphyromonas gingivalis is an oral pathogen strongly associated with destruction of the tooth-supporting tissues in human periodontitis. Gingival fibroblasts (GF) and periodontal ligament fibroblasts (PDLF) are functionally different cell types in the periodontium that can participate in the host immune response in periodontitis. This study aimed to investigate the effects of viable P. gingivalis on the expression of genes associated with inflammation and bone degradation by these fibroblast subsets. MATERIAL AND METHODS: Primary human GF and PDLF from six healthy donors were challenged in vitro with viable P. gingivalis W83 for 6 h. Gene expression of inflammatory cytokines in GF and PDLF was analyzed using real-time PCR, and protein expression was analyzed using ELISA. RESULTS: Viable P. gingivalis induced a strong in vitro inflammatory response in both GF and PDLF. We found increased gene expression of interleukin (IL)-1beta, IL-6, IL-8, tumor necrosis factor-alpha, monocyte chemotactic protein-1 and regulated upon activation, normal T-cell expressed and secreted (RANTES). Macrophage colony-stimulating factor was induced and the expression of osteoprotegerin was decreased in GF, but not in PDLF. In nonchallenged cells, a higher level of expression of IL-6 was observed in GF than in PDLF. Between individual donors there was large heterogeneity in responsiveness to P. gingivalis. Also, in each individual, either GF or PDLF was more responsive to P. gingivalis. CONCLUSION: Considerable heterogeneity in responsiveness to P. gingivalis exists both between GF and PDLF and between individuals, which may be crucial determinants for the susceptibility to develop periodontitis.


Assuntos
Fibroblastos/microbiologia , Gengiva/citologia , Ligamento Periodontal/citologia , Porphyromonas gingivalis/imunologia , Adolescente , Adulto , Fosfatase Alcalina/análise , Células Cultivadas , Quimiocina CCL2/análise , Quimiocina CCL5/análise , Citocinas/análise , Feminino , Fibroblastos/imunologia , Gengiva/imunologia , Gengiva/microbiologia , Humanos , Mediadores da Inflamação/análise , Interleucina-1beta/análise , Interleucina-6/análise , Interleucina-8/análise , Ativação Linfocitária/imunologia , Fator Estimulador de Colônias de Macrófagos/análise , Masculino , Osteoprotegerina/análise , Ligamento Periodontal/imunologia , Ligamento Periodontal/microbiologia , Linfócitos T/imunologia , Fator de Necrose Tumoral alfa/análise , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA