Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 299(5): 104659, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36997087

RESUMO

Decarboxylation of phosphatidylserine (PS) to form phosphatidylethanolamine by PS decarboxylases (PSDs) is an essential process in most eukaryotes. Processing of a malarial PSD proenzyme into its active alpha and beta subunits is by an autoendoproteolytic mechanism regulated by anionic phospholipids, with PS serving as an activator and phosphatidylglycerol (PG), phosphatidylinositol, and phosphatidic acid acting as inhibitors. The biophysical mechanism underlying this regulation remains unknown. We used solid phase lipid binding, liposome-binding assays, and surface plasmon resonance to examine the binding specificity of a processing-deficient Plasmodium PSD (PkPSDS308A) mutant enzyme and demonstrated that the PSD proenzyme binds strongly to PS and PG but not to phosphatidylethanolamine and phosphatidylcholine. The equilibrium dissociation constants (Kd) of PkPSD with PS and PG were 80.4 nM and 66.4 nM, respectively. The interaction of PSD with PS is inhibited by calcium, suggesting that the binding mechanism involves ionic interactions. In vitro processing of WT PkPSD proenzyme was also inhibited by calcium, consistent with the conclusion that PS binding to PkPSD through ionic interactions is required for the proenzyme processing. Peptide mapping identified polybasic amino acid motifs in the proenzyme responsible for binding to PS. Altogether, the data demonstrate that malarial PSD maturation is regulated through a strong physical association between PkPSD proenzyme and anionic lipids. Inhibition of the specific interaction between the proenzyme and the lipids can provide a novel mechanism to disrupt PSD enzyme activity, which has been suggested as a target for antimicrobials, and anticancer therapies.


Assuntos
Carboxiliases , Malária , Fosfolipídeos , Plasmodium , Motivos de Aminoácidos , Cálcio/metabolismo , Cálcio/farmacologia , Carboxiliases/antagonistas & inibidores , Carboxiliases/química , Carboxiliases/metabolismo , Precursores Enzimáticos/metabolismo , Lipossomos , Ácidos Fosfatídicos/metabolismo , Ácidos Fosfatídicos/farmacologia , Fosfatidilcolinas/metabolismo , Fosfatidilcolinas/farmacologia , Fosfatidiletanolaminas/metabolismo , Fosfatidiletanolaminas/farmacologia , Fosfatidilgliceróis/metabolismo , Fosfatidilgliceróis/farmacologia , Fosfatidilinositóis/metabolismo , Fosfatidilinositóis/farmacologia , Fosfatidilserinas/metabolismo , Fosfatidilserinas/farmacologia , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Fosfolipídeos/farmacologia , Ligação Proteica , Malária/parasitologia , Proteólise/efeitos dos fármacos , Ressonância de Plasmônio de Superfície , Plasmodium/enzimologia
2.
Semin Immunol ; 39: 22-29, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30366662

RESUMO

Lipopolysaccharide (LPS) is a well-defined agonist of Toll-like receptor (TLR) 4 that activates innate immune responses and influences the development of the adaptive response during infection with Gram-negative bacteria. Many years ago, Dr. Edgar Ribi separated the adjuvant activity of LPS from its toxic effects, an effort that led to the development of monophosphoryl lipid A (MPL). MPL, derived from Salmonella minnesota R595, has progressed through clinical development and is now used in various product-enabling formulations to support the generation of antigen-specific responses in several commercial and preclinical vaccines. We have generated several synthetic lipid A molecules, foremost glucopyranosyl lipid adjuvant (GLA) and second-generation lipid adjuvant (SLA), and have advanced these to clinical trial for various indications. In this review we summarize the potential and current positioning of TLR4-based adjuvant formulations in approved and emerging vaccines.


Assuntos
Adjuvantes Imunológicos/farmacologia , Compostos de Alúmen/farmacologia , Glucosídeos/farmacologia , Imunogenicidade da Vacina , Lipídeo A/análogos & derivados , Tuberculose/prevenção & controle , Adjuvantes Imunológicos/química , Compostos de Alúmen/química , Animais , Glucosídeos/química , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia , Humanos , Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Leishmaniose/imunologia , Leishmaniose/parasitologia , Leishmaniose/prevenção & controle , Hanseníase/imunologia , Hanseníase/parasitologia , Hanseníase/prevenção & controle , Lipídeo A/química , Lipídeo A/farmacologia , Lipossomos/administração & dosagem , Lipossomos/química , Lipossomos/imunologia , Malária/imunologia , Malária/parasitologia , Malária/prevenção & controle , Camundongos , Esquistossomose/imunologia , Esquistossomose/parasitologia , Esquistossomose/prevenção & controle , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/microbiologia , Receptor 4 Toll-Like/agonistas , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia , Tuberculose/imunologia , Tuberculose/microbiologia , Vacinas/administração & dosagem , Vacinas/química , Vacinas/imunologia
3.
Can J Physiol Pharmacol ; 96(11): 1145-1152, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30075085

RESUMO

The rate at which Plasmodium falciparum is developing resistance to clinically used antimalarial drugs is alarming. Therefore, there is a compelling need to develop an efficient drug delivery system to improve the efficacy of existing antimalarial agents and circumvent drug resistance. Here, we report the antibacterial drug doxycycline (DOXY) in liposomal formulations exhibits enhanced antiplasmodial activity against blood stage forms of P. falciparum (3D7) in culture and established Plasmodium berghei NK-65 infection in murine model. Parasite killing on blood stage forms in culture was determined by a radiolabeled [3H] hypoxanthine incorporation assay and infected erythrocytes stained with Giemsa were counted using microscopy in vivo. The 50% inhibitory concentration (IC50) of DOXY-stearylamine liposome (IC50 0.36 µM) and DOXY-SPC:Chol-liposome (IC50 0.85 µM) exhibited marked growth inhibition of parasites compared with free DOXY (IC50 14 µM), with minimal toxicity to normal erythrocytes. Administration of polyethylene glycol distearoyl phosphatidylethanolamine-methoxy-polyethylene glycol2000 (DSPE-mPEG-2000) coated liposomes loaded with DOXY at 2.5 mg/kg per day resulted in efficacious killing of blood parasites with improved survival in mice relative to the free drug in both chloroquine sensitive and resistant strains of P. berghei infection. This is the first report to demonstrate that DOXY in liposomal system has immense chemotherapeutic potential against plasmodial infections at lower dosages.


Assuntos
Antimaláricos/administração & dosagem , Doxiciclina/administração & dosagem , Portadores de Fármacos/química , Malária/tratamento farmacológico , Plasmodium berghei/patogenicidade , Plasmodium falciparum/efeitos dos fármacos , Animais , Antimaláricos/uso terapêutico , Cloroquina/administração & dosagem , Cloroquina/uso terapêutico , Modelos Animais de Doenças , Doxiciclina/uso terapêutico , Resistência a Medicamentos , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Feminino , Humanos , Concentração Inibidora 50 , Lipossomos , Malária/parasitologia , Malária/patologia , Camundongos , Fosfatidiletanolaminas/química , Plasmodium berghei/efeitos dos fármacos , Polietilenoglicóis/química , Resultado do Tratamento
4.
Int J Mol Sci ; 19(5)2018 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-29734652

RESUMO

Curcumin is an antimalarial compound easy to obtain and inexpensive, having shown little toxicity across a diverse population. However, the clinical use of this interesting polyphenol has been hampered by its poor oral absorption, extremely low aqueous solubility and rapid metabolism. In this study, we have used the anionic copolymer Eudragit® S100 to assemble liposomes incorporating curcumin and containing either hyaluronan (Eudragit-hyaluronan liposomes) or the water-soluble dextrin Nutriose® FM06 (Eudragit-nutriosomes). Upon oral administration of the rehydrated freeze-dried nanosystems administered at 25/75 mg curcumin·kg−1·day−1, only Eudragit-nutriosomes improved the in vivo antimalarial activity of curcumin in a dose-dependent manner, by enhancing the survival of all Plasmodium yoelii-infected mice up to 11/11 days, as compared to 6/7 days upon administration of an equal dose of the free compound. On the other hand, animals treated with curcumin incorporated in Eudragit-hyaluronan liposomes did not live longer than the controls, a result consistent with the lower stability of this formulation after reconstitution. Polymer-lipid nanovesicles hold promise for their development into systems for the oral delivery of curcumin-based antimalarial therapies.


Assuntos
Curcumina/administração & dosagem , Sistemas de Liberação de Medicamentos , Lipossomos/administração & dosagem , Malária/tratamento farmacológico , Administração Oral , Animais , Antimaláricos/administração & dosagem , Antimaláricos/química , Curcumina/química , Humanos , Lipossomos/química , Malária/parasitologia , Camundongos , Nanopartículas/administração & dosagem , Nanopartículas/química , Plasmodium yoelii/efeitos dos fármacos , Plasmodium yoelii/patogenicidade
5.
Anal Chem ; 88(15): 7627-32, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27366819

RESUMO

A portable, microfluidic blood plasma separation device is presented featuring a constriction-expansion design, which produces 100.0% purity for undiluted blood at 9% yield. This level of purity represents an improvement of at least 1 order of magnitude with increased yield compared to that achieved previously using passive separation. The system features high flow rates, 5-30 µL/min plasma collection, with minimal clogging and biofouling. The simple, portable blood plasma separation design is hand-driven and can easily be incorporated with microfluidic or laboratory scale diagnostic assays. The separation system was applied to a paper-based diagnostic test for malaria that produced an amplified color change in the presence of Plasmodium falciparum histidine-rich protein 2 at a concentration well below clinical relevancy for undiluted whole blood.


Assuntos
Antígenos de Protozoários/sangue , Malária/diagnóstico , Microfluídica/métodos , Proteínas de Protozoários/sangue , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Colorimetria , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Limite de Detecção , Malária/parasitologia , Plasmodium falciparum/isolamento & purificação , Plasmodium falciparum/metabolismo , Sistemas Automatizados de Assistência Junto ao Leito , Proteínas de Protozoários/imunologia
6.
Antimicrob Agents Chemother ; 60(3): 1304-18, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26666937

RESUMO

The global emergence of drug resistance in malaria is impeding the therapeutic efficacy of existing antimalarial drugs. Therefore, there is a critical need to develop an efficient drug delivery system to circumvent drug resistance. The anticoccidial drug monensin, a carboxylic ionophore, has been shown to have antimalarial properties. Here, we developed a liposome-based drug delivery of monensin and evaluated its antimalarial activity in lipid formulations of soya phosphatidylcholine (SPC) cholesterol (Chol) containing either stearylamine (SA) or phosphatidic acid (PA) and different densities of distearoyl phosphatidylethanolamine-methoxy-polyethylene glycol 2000 (DSPE-mPEG-2000). These formulations were found to be more effective than a comparable dose of free monensin in Plasmodium falciparum (3D7) cultures and established mice models of Plasmodium berghei strains NK65 and ANKA. Parasite killing was determined by a radiolabeled [(3)H]hypoxanthine incorporation assay (in vitro) and microscopic counting of Giemsa-stained infected erythrocytes (in vivo). The enhancement of antimalarial activity was dependent on the liposomal lipid composition and preferential uptake by infected red blood cells (RBCs). The antiplasmodial activity of monensin in SA liposome (50% inhibitory concentration [IC50], 0.74 nM) and SPC:Chol-liposome with 5 mol% DSPE-mPEG 2000 (IC50, 0.39 nM) was superior to that of free monensin (IC50, 3.17 nM), without causing hemolysis of erythrocytes. Liposomes exhibited a spherical shape, with sizes ranging from 90 to 120 nm, as measured by dynamic light scattering and high-resolution electron microscopy. Monensin in long-circulating liposomes of stearylamine with 5 mol% DSPE-mPEG 2000 in combination with free artemisinin resulted in enhanced killing of parasites, prevented parasite recrudescence, and improved survival. This is the first report to demonstrate that monensin in PEGylated stearylamine (SA) liposome has therapeutic potential against malaria infections.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Lipossomos/administração & dosagem , Malária/tratamento farmacológico , Monensin/farmacologia , Aminas/administração & dosagem , Aminas/química , Animais , Antimaláricos/administração & dosagem , Sangue/efeitos dos fármacos , Sangue/parasitologia , Sistemas de Liberação de Medicamentos/métodos , Quimioterapia Combinada , Feminino , Lipossomos/química , Lipossomos/farmacologia , Malária/parasitologia , Camundongos , Monensin/farmacocinética , Plasmodium berghei/patogenicidade , Plasmodium falciparum/efeitos dos fármacos , Distribuição Tecidual
7.
Malar J ; 14: 256, 2015 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-26104785

RESUMO

BACKGROUND: Anopheles calderoni was first recognized in Colombia in 2010 as this species had been misidentified as Anopheles punctimacula due to morphological similarities. An. calderoni is considered a malaria vector in Peru and has been found naturally infected with Plasmodium falciparum in Colombia. However, its biting behaviour, population dynamics and epidemiological importance have not been well described for Colombia. METHODS: To assess the contribution of An. calderoni to malaria transmission and its human biting behaviour and spatial/temporal distribution in the southwest of Colombia, human landing catches (HLC) and larval collections were carried out in a cross-sectional, entomological study in 22 localities between 2011 and 2012, and a longitudinal study was performed in the Boca de Prieta locality in Olaya Herrera municipality between July 2012 and June 2013. All mosquitoes determined as An. calderoni were tested by ELISA to establish infection with Plasmodium spp. RESULTS: Larvae of An. calderoni were found in four localities in 12 out of 244 breeding sites inspected. An. calderoni adults were collected in 14 out of 22 localities during the cross-sectional study and represented 41.3% (459 of 1,111) of the collected adult specimens. Other species found were Anopheles albimanus (54.7%), Anopheles apicimacula (2.1%), Anopheles neivai (1.7%), and Anopheles argyritarsis (0.2%). In the localities that reported the highest malaria Annual Parasite Index (>10/1,000 inhabitants) during the year of sampling, An. calderoni was the predominant species (>90% of the specimens collected). In the longitudinal study, 1,528 An. calderoni were collected by HLC with highest biting rates in February, May and June 2013, periods of high precipitation. In general, the species showed a preference to bite outdoors (p < 0.001). In Boca de Prieta, two specimens of An. calderoni were ELISA positive for Plasmodium circumsporozoite protein: one for P. falciparum and one for Plasmodium vivax VK-210. This represents an overall sporozoite rate of 0.1% and an annual entomological inoculation rate of 2.84 infective bites/human/year. CONCLUSIONS: This study shows that An. calderoni is a primary malaria vector in the southwest of Colombia. Its observed preference for outdoor biting is a major challenge for malaria control.


Assuntos
Anopheles/fisiologia , Anopheles/parasitologia , Insetos Vetores/fisiologia , Insetos Vetores/parasitologia , Malária/epidemiologia , Distribuição Animal , Animais , Colômbia/epidemiologia , Estudos Transversais , Comportamento Alimentar , Humanos , Mordeduras e Picadas de Insetos/epidemiologia , Mordeduras e Picadas de Insetos/etiologia , Estudos Longitudinais , Malária/parasitologia , Plasmodium , Estações do Ano , Especificidade da Espécie
8.
Pharm Res ; 32(8): 2736-52, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25777611

RESUMO

PURPOSE: The synthesis and evaluation of novel biodegradable poly(organophosphazenes) (3-6) namely poly[bis-(2-propoxy)]phosphazene (3) poly[bis(4-acetamidophenoxy)]phosphazene (4)poly[bis(4-formylphenoxy)]phosphazene (5) poly[bis(4-ethoxycarbonylanilino)]phosphazene (6) bearing various hydrophilic and hydrophobic side groups for their application as nonocarrier system for antimalarial drug delivery is described. METHODS: The characterization of polymers was carried out by IR, (1)H-NMR and (31)P-NMR. The molecular weights of these novel polyphosphazenes were determined using size exclusion chromatography with a Waters 515 HPLC Pump and a Waters 2414 refractive index detector. The degradation behavior was studied by 200 mg pellets of polymers in phosphate buffers pH 5.5, 6.8 and 7.4 at 37°C. The degradation process was monitored by changes of mass as function of time and surface morphology of polymer pellets. The developed combined drugs nanoparticles formulations were evaluated for antimalarial potential in P. berghei infected mice. RESULTS: These polymers exhibited hydrolytic degradability, which can afford applications to a variety of drug delivery systems. On the basis of these results, the synthesized polymers were employed as nanocarriers for targeted drug delivery of primaquine and dihydroartemisinin. The promising in vitro release of both the drugs from nanoparticles formulations provided an alternative therapeutic combination therapy regimen for the treatment of drug resistant malaria. The nanoparticles formulations tested in resistant strain of P. berghei infected mice showed 100% antimalarial activity. CONCLUSIONS: The developed nanocarrier system provides an alternative combination regimen for the treatment of resistant malaria.


Assuntos
Antimaláricos/administração & dosagem , Artemisininas/administração & dosagem , Portadores de Fármacos/síntese química , Portadores de Fármacos/farmacologia , Compostos Organofosforados/síntese química , Compostos Organofosforados/farmacologia , Polímeros/síntese química , Polímeros/farmacologia , Primaquina/administração & dosagem , Animais , Antimaláricos/química , Artemisininas/química , Sistemas de Liberação de Medicamentos , Eletroquímica , Eritrócitos/efeitos dos fármacos , Humanos , Técnicas In Vitro , Malária/tratamento farmacológico , Malária/parasitologia , Camundongos , Nanopartículas , Tamanho da Partícula , Plasmodium berghei , Primaquina/química , Espectrofotometria Infravermelho , Taxa de Sobrevida
9.
Assay Drug Dev Technol ; 22(2): 63-72, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38193797

RESUMO

Antimalarial drugs are being encapsulated in nanotechnology-based carriers because there are not enough new treatment options and people are becoming more resistant to the ones that are already available. This approach uses two or more biochemical targets of malarial parasites. The codelivery of artemether and lumefantrine (AL) combines the synergistic effect of artemether for an early onset of action followed by the prolonged effect of lumefantrine. The bioavailability of artemether and lumefantrine is low due to their low solubility. Thus, an alternative lipidic formulation, namely nanocochleate, was developed for the selected drugs by adding calcium ions into preformed nanoliposomes (AL-loaded liposomes). Using phospholipon 90H and cholesterol, a thin-film hydration method produced drug-loaded liposomes. The synthesized AL-loaded liposomes were further incorporated into nanocochleates. The formulations were evaluated for in vitro and in vivo parameters. Nanocochleates had a particle size of 200.7 nm, a zeta potential of -9.4 mV, and an entrapment efficiency of 73.12% ± 1.82% and 61.46% ± 0.78%, respectively, for artemether and lumefantrine. Whereas liposomes had a particle size of 210 nm and an entrapment efficiency of 67.34% ± 1.52% and 53.24% ± 0.78%, respectively, for artemether and lumefantrine. An X-ray diffraction study confirmed the amorphous state of artemether and lumefantrine in liposomes and nanocochleate. Nanocochleate showed a controlled release profile for loaded drugs. When compared with free drugs, nanocochleate showed low tissue distribution and a 20-fold increase in bioavailability in rats. Thus, nanocochleate offers an interesting alternative to an existing dosage form for the treatment of malaria.


Assuntos
Antimaláricos , Malária , Humanos , Ratos , Animais , Lumefantrina/uso terapêutico , Artemeter/uso terapêutico , Lipossomos , Antimaláricos/uso terapêutico , Malária/tratamento farmacológico , Malária/parasitologia , Combinação Arteméter e Lumefantrina/uso terapêutico
10.
PLoS One ; 19(7): e0306289, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38950022

RESUMO

Although the overall burden of malaria is decreasing in Ethiopia, a recent report of an unpredictable increased incidence may be related to the presence of community-wide gametocyte-carrier individuals and a high proportion of infected vectors. This study aimed to reveal the current prevalence of gametocyte-carriage and the sporozoite infectivity rate of Anopheles vectors for Plasmodium parasites. A community-based cross-sectional study was conducted from May 01 to June 30/2019. A total of 53 households were selected using systematic random sampling and a 242 study participants were recruited. Additionally,515 adult female Anopheles mosquitoes were collected using Center for Diseases Control and Prevention (CDC) light traps and mouth aspirators. Parasite gametocytemia was determined using giemsa stain microscopy, while sporozoite infection was determined by giemsa staining microscopy and enzyme linked immunosorbent assay (ELISA). Among the total 242 study participants, 5.4% (95%, CI = 2.9-8.3) of them were positive for any of the Plasmodium species gametocyte. Furthermore, being female [AOR = 15.5(95%, CI = 1.71-140.39)], age group between 15-29 years old [AOR = 16.914 (95%, CI = 1.781-160.63)], no ITNs utilization [AOR = 16.7(95%, CI = 1.902 -146.727)], and high asexual parasite density [(95%, CI = 0.057-0.176, P = 0.001, F = 18.402)] were identified as statistically significant factors for gametocyte carriage. Whereas sporozoite infection rate was 11.6% (95%, CI = 8.2-15.5) and 12.7% (95%, CI = 9.6-16.3) by microscopy and ELISA, respectively. Overall, this study indicated that malaria remains to be an important public health problem in Gondar Zuria district where high gametocyte carriage rate and sporozoite infection rate could sustain its transmission and burden. Therefore, in Ethiopia, where malaria elimination program is underway, frequent, and active community-based surveillance of gametocytemia and sporozoite infection rate is important.


Assuntos
Anopheles , Mosquitos Vetores , Esporozoítos , Animais , Etiópia/epidemiologia , Humanos , Anopheles/parasitologia , Feminino , Adulto , Esporozoítos/fisiologia , Adolescente , Adulto Jovem , Masculino , Estudos Transversais , Mosquitos Vetores/parasitologia , Criança , Pré-Escolar , Malária/epidemiologia , Malária/parasitologia , Malária/transmissão , Pessoa de Meia-Idade , Plasmodium/isolamento & purificação , Lactente , Plasmodium falciparum/isolamento & purificação , Plasmodium falciparum/fisiologia , Prevalência
11.
ACS Infect Dis ; 9(1): 56-64, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36516858

RESUMO

Malaria is an infectious disease transmitted by mosquitos, whose control is hampered by drug resistance evolution in the causing agent, protist parasites of the genus Plasmodium, as well as by the resistance of the mosquito to insecticides. New approaches to fight this disease are, therefore, needed. Research into targeted drug delivery is expanding as this strategy increases treatment efficacies. Alternatively, targeting the parasite in humans, here we use single-chain polymer nanoparticles (SCNPs) to target the parasite at the ookinete stage, which is one of the stages in the mosquito. This nanocarrier system provides uniquely sized and monodispersed particles of 5-20 nm, via thiol-Michael addition. The conjugation of succinic anhydride to the SCNP surface provides negative surface charges that have been shown to increase the targeting ability of SCNPs to Plasmodium berghei ookinetes. The biodistribution of SCNPs in mosquitos was studied, showing the presence of SCNPs in mosquito midguts. The presented results demonstrate the potential of anionic SCNPs for the targeting of malaria parasites in mosquitos and may lead to progress in the fight against malaria.


Assuntos
Culicidae , Malária , Nanopartículas , Parasitos , Humanos , Animais , Polímeros , Distribuição Tecidual , Plasmodium berghei , Malária/tratamento farmacológico , Malária/parasitologia
12.
BMC Pharmacol Toxicol ; 24(1): 30, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37170269

RESUMO

BACKGROUND: The plants Aloe weloensis, Lepidium sativum, and Lobelia gibberoa have been used in Ethiopian folklore medicine to treat various diseases including malaria. METHOD: The in vitro anti-plasmodial activity of the three crude extracts was evaluated using parasite lactate dehydrogenase assay against the chloroquine (CQ)-sensitive D10 and the chloroquine (CQ)-resistant W2 strains. RESULT: The methanolic extract of L. gibberoa roots showed the highest in vitro anti-plasmodial effect against both D10 and W2 Plasmodium falciparum strains with IC50 value of 103.83 ± 26.17 µg/mL and 47.11 ± 12.46 µg/mL, respectively. However, the methanolic extract of L. sativum seeds and the leaf latex of A. weloensis were not active with an IC50 value > 200 µg/mL against both D10 and W2 strains. CONCLUSION: The methanolic extract of L. gibberoa roots showed a promising in vitro anti-plasmodial activity against the CQ-sensitive (D10) and CQ-resistant (W2) strains of P. falciparum. Thus, the anti-plasmodial activity of this plant partly justifies and may also support the traditional use against malaria. However, the methanolic extract of L. sativum seeds and the leaf latex of A. weloensis did not exert suppressive activity on the growth of P. falciparum strains.


Assuntos
Antimaláricos , Malária , Plantas Medicinais , Etiópia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Antimaláricos/farmacologia , Látex/uso terapêutico , Malária/tratamento farmacológico , Malária/parasitologia , Medicina Tradicional , Cloroquina/uso terapêutico
13.
Parasitol Res ; 110(4): 1337-45, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21915626

RESUMO

Of all the parasitic diseases, malaria is the number one killer. Despite tremendous efforts in disease control and research, nearly a million people, primarily children, still die from the disease each year, partly due to drug resistance and the lack of an effective vaccine. Many parasite antigens have been identified and evaluated for vaccine development; however, none has been approved for human use. Antigenic variation, complex life cycle, and inadequate understanding of the mechanisms of parasite-host interaction and of host immune response all contribute to the lack of an effective vaccine for malaria control. In a recent search of genome-wide polymorphism in Plasmodium falciparum, several molecules were found to be recognized by sera from patients infected with the P. falciparum parasite. Here, we have expressed a 350-amino acid N terminus from one of the homologous candidate antigen genes from the rodent malaria parasite Plasmodium yoelii (Py01157, a putative dentin phosphorin) in bacteria and evaluated the immune response and protection generated after immunization with the recombinant protein. We showed that the recombinant protein was recognized by sera from both mice and humans infected with malaria parasites. Partial protection was observed after challenge with non-lethal P. yoelii 17XNL but not with the lethal P. yoelii 17XL parasite. Further tests using a full-length protein or the conserved C terminus may provide additional information on whether this protein has the potential for being a malaria vaccine.


Assuntos
Antígenos de Protozoários/imunologia , Vacinas Antimaláricas/imunologia , Malária/prevenção & controle , Plasmodium yoelii/imunologia , Proteínas de Protozoários/imunologia , Sequência de Aminoácidos , Animais , Antígenos de Protozoários/genética , Western Blotting , Clonagem Molecular , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Imunização , Malária/imunologia , Malária/parasitologia , Vacinas Antimaláricas/genética , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Plasmodium yoelii/genética , Plasmodium yoelii/patogenicidade , Proteínas de Protozoários/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Análise de Sequência de DNA
14.
Perspect Biol Med ; 54(3): 381-98, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21857128

RESUMO

Prior to Patrick Manson's discovery in 1877 that the mosquito Culex fatigans was the intermediate host of filariasis, the association of insects with disease and the nature of disease transmission was almost entirely speculation. Manson's work was incomplete, however, because it showed the manner in which the mosquito acquired the infection from humans, but failed to show the way in which the mosquito passed the infection to humans. That pathogens were transmitted by the bite of an infected female mosquito was later proven experimentally with bird malaria by Manson's protégé, Ronald Ross. In 1898 Ross demonstrated that the infective stage of the malarial parasite was injected into the host when the mosquito released saliva into the wound prior to injesting blood. Insects were suspected as carriers of disease for centuries, yet it was not until the late 1870s that the uncritical acceptance of folk beliefs was supplanted by research-based scientific medicine. Why did it take so long? The answer lies in the fact that early medicine itself was imprecise and could not have pursued the subject with any hope of useful results until the last quarter of the 19th century. A better understanding of the nature of the disease process (germ theory of disease) and improved technology (microscopes and oil-immersion lenses with greater resolving power, and synthetic tissue stains) were indispensable for revealing the nexus between those partners in crime: insects and parasites.


Assuntos
Vetores Aracnídeos/parasitologia , Culicidae/parasitologia , Entomologia/história , Animais , Mordeduras e Picadas/parasitologia , Sangue/parasitologia , Brugia/patogenicidade , Feminino , Filariose/parasitologia , Filariose/transmissão , Teoria do Germe da Doença , História do Século XIX , História do Século XX , Humanos , Malária/parasitologia , Malária/transmissão , Plasmodium/isolamento & purificação , Plasmodium/patogenicidade , Saliva/parasitologia , Coloração e Rotulagem/métodos
15.
J Ethnopharmacol ; 277: 114237, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34051335

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Malaria is a global health problem with the greatest burden in sub-Saharan Africa (sSA). The resistance to available antimalarial agents necessitate for the development of new and safe drugs for which medicinal plants provides credible alternative sources for discovering new and cheap therapeutic agents. Calotropis procera is used in several folk or traditional medicines for the treatment of various diseases across different regions of the world. In Nigeria traditional medicine, C. procera latex is used either alone or in combination with other herbs to cure common diseases including malaria. In Malaka district (Indonesia), Calotropis gigantea (a member of Apocyanceae), is one of the most used herbs to treat malaria patient via the massage method. AIM OF THE STUDY: This study aimed to evaluate the anti-plasmodial activity of phosphate buffer extract of Calotropis procera latex in mice infected with Plasmodium berghei. MATERIALS AND METHODS: The plant's anti-plasmodial agent was extracted using 0.2 M-phosphate buffer (pH 7.0), followed by precipitation using acetone. 90 (ninety) mice were divided into three main groups of 30 (thirty) mice each, used for the curative, suppressive and prophylactic tests, respectively. The 30 (thirty) mice in each of the main groups were sub-divided into five groups of 6 (six) mice. The mice in the group 1, 2 and 3 (test groups) were made to receive graded doses of 25 mg/kg, 50 mg/kg and 75 mg/kg of the extract of C. procera latex intraperitoneally; group 4 (negative control group) received 0.2 ml of normal saline; while group 5 (positive control group) were administered with 5 mg/kg chloroquine. The phytochemical constituents of the plant and its intraperitoneal median lethal dose (LD50) were also undertaken. RESULTS: The freeze-dried acetone extract exhibited acute toxicity with median lethal dose (LD50) of 745 mg/kg body weight in mice. The highest percentage parasite suppression (61.85%), percentage parasite cure (50.26%), and percentage parasite prophylaxis (65.47%), were obtained for the groups treated with 75 mg/kg bodyweight/day of the extract. The least percentage parasite suppression (44.74%), percentage parasite cure (35.21%), and percentage parasite prophylaxis (45.21%), were obtained for the groups treated with 25 mg/kg body weight of the extract. Also, a dose-dependent percentage parasite suppression (53.03%), percentage parasite cure (39.70%), and percentage parasite prophylaxis (49.82%) were obtained for the groups treated with 50 mg/kg body weight. This is comparable to the groups treated with standard chloroquine. The extract also produced a significant elevation in body weight of the animals for suppressive and curative tests. However, there were observable significant decreases in body weight of the animals in the case of prophylactic test. CONCLUSION: This study showed that the phosphate buffer extract of C. procera latex possess anti-plasmodial activity. The results of this study can be used as a basis for further phytochemical investigations in the search for new and locally affordable antimalarial agents.


Assuntos
Calotropis/química , Malária/tratamento farmacológico , Plasmodium berghei/efeitos dos fármacos , Animais , Antimaláricos/administração & dosagem , Antimaláricos/isolamento & purificação , Antimaláricos/farmacologia , Cloroquina/farmacologia , Relação Dose-Resposta a Droga , Feminino , Látex/isolamento & purificação , Látex/farmacologia , Dose Letal Mediana , Malária/parasitologia , Masculino , Camundongos , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacologia
16.
Artigo em Inglês | MEDLINE | ID: mdl-34788723

RESUMO

Immobilized metal affinity chromatography (IMAC) is a well-established technique for protein separation and purification. IMAC has been previously utilized to capture the malaria biomarker histidine-rich protein 2 (HRP2) from blood, enhancing the sensitivity of field-appropriate diagnostic tools such as lateral flow assays. However, little work has been done to translate this technique to a truly field-usable design. In this study, IMAC-functionalized cellulose membranes are created and characterized fully for future use in applied malaria diagnostics. IMAC-functionalized cellulose membranes were investigated across a range of cellulose substrates, IMAC ligands, and divalent transition metals before use in a capture and elution flowthrough workflow. Following characterization and optimization, it was found that iminodiacetic acid bound to Zn(II) was the most promising ligand-metal pair, with three available coordination sites and a molar loading capacity of 57.7 µmol of metal/cm3 of cellulose. Using these parameters, more than 99% of HRP2 was captured from a large-volume lysed blood sample in a simple flow-through assay and 89% of the captured protein was eluted from the membrane using the chelating compound ethylenediaminetetraacetic acid. Use of this enhancement protocol on an in-house HRP2 lateral flow assay (LFA) yielded a limit of detection of 7 parasites/µL, a 15.8x enhancement factor compared to traditional LFA methods.


Assuntos
Antígenos de Protozoários/sangue , Celulose/química , Cromatografia de Afinidade/métodos , Malária/diagnóstico , Testes Imediatos , Proteínas de Protozoários/sangue , Zinco/química , Antígenos de Protozoários/metabolismo , Cromatografia de Afinidade/instrumentação , Humanos , Ligantes , Malária/sangue , Malária/parasitologia , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo
17.
Infect Immun ; 78(1): 545-51, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19884338

RESUMO

Malaria infection is initiated when a female Anopheles mosquito probing for blood injects saliva, together with sporozoites, into the skin of its mammalian host. Prior studies had suggested that saliva may enhance sporozoite infectivity. Using rodent malaria models (Plasmodium berghei and P. yoelii), we were unable to show that saliva had any detectable effect on sporozoite infectivity. This is encouraging for plans to immunize humans with washed, attenuated P. falciparum sporozoites because many individuals develop cutaneous, hypersensitivity reactions to mosquito saliva after repeated exposure. If washed sporozoites have no appreciable loss of infectivity, they likely do not have decreased immunogenicity; thus, vaccinees are unlikely to develop cutaneous reactions against mosquito saliva during attempted immunization with such sporozoites. Earlier studies also suggested that repeated prior exposure to mosquito saliva reduces infectivity of sporozoites injected by mosquitoes into sensitized hosts. However, our own studies show that prior exposure of mice to saliva had no detectable effect on numbers of sporozoites delivered by infected mosquitoes, the rate of disappearance of these sporozoites from the skin or infectivity of the sporozoites. Under natural conditions, sporozoites are delivered both to individuals who may exhibit cutaneous hypersensitivity to mosquito bite and to others who may have not yet developed such reactivity. It was tempting to hypothesize that differences in responsiveness to mosquito bite by different individuals might modulate the infectivity of sporozoites delivered into a milieu of changes induced by cutaneous hypersensitivity. Our results with rodent malaria models, however, were unable to support such a hypothesis.


Assuntos
Anopheles/fisiologia , Malária/parasitologia , Plasmodium berghei/fisiologia , Plasmodium yoelii/fisiologia , Saliva/imunologia , Animais , Hipersensibilidade/microbiologia , Hipersensibilidade/patologia , Camundongos , Saliva/fisiologia
18.
Malar J ; 9: 72, 2010 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-20214828

RESUMO

BACKGROUND: Definite diagnosis of malaria relies on microscopy detection of blood stages of parasites in peripheral blood and requires blood sample collection. The nested PCR method has shown to be more sensitive and superior to microscopy in detecting co-infections of Plasmodium species in circulation while Plasmodium falciparum DNA can be identified in urine and saliva specimens of patients, albeit at a lower sensitivity. METHODS: Matched blood, saliva and urine samples were collected from 100 microscopy-positive and 20 microscopy-negative febrile patients who attended a malaria clinic in Tak Province, northwestern Thailand for nested PCR analysis targeting the small subunit ribosomal RNA gene of human malaria. Both P. falciparum and Plasmodium vivax have been known to circulate at a comparable rate in the study area. RESULTS: Comparing with microscopy results, nested PCR of saliva samples had a sensitivity of 74.1% for P. falciparum detection and 84% for P. vivax detection while 44.4% and 34.0% of the corresponding values were observed for urine samples. Both nested PCR results of saliva and urine samples had a specificity of 100% for identification of P. falciparum and P. vivax when compared with nested PCR results from blood. Co-infections of both species were found in four, 26 and 8 patients by microscopy and nested PCR of blood and saliva samples, respectively. Although the positive rates of nested PCR of saliva samples for P. falciparum increased with parasite density, no tendency occurred in results from nested PCR of saliva samples for P. vivax as well as those of urine samples. CONCLUSIONS: Saliva and urine samples could be alternative noninvasive sources of DNA for molecular detection of both P. falciparum and P. vivax. Further improvement of the detection method will offer an opportunity to use these samples for diagnosis of malaria.


Assuntos
DNA de Protozoário/sangue , DNA de Protozoário/urina , Genes de RNAr/genética , Malária/diagnóstico , Plasmodium falciparum/isolamento & purificação , Plasmodium vivax/isolamento & purificação , Saliva/parasitologia , Adulto , Animais , Criança , Pré-Escolar , Estudos Transversais , DNA de Protozoário/genética , Feminino , Humanos , Malária/sangue , Malária/parasitologia , Malária/urina , Masculino , Microscopia/normas , Pessoa de Meia-Idade , Plasmodium falciparum/genética , Plasmodium vivax/genética , Reação em Cadeia da Polimerase/métodos , Sensibilidade e Especificidade , Análise de Sequência de DNA , Tailândia , Adulto Jovem
19.
J Ethnopharmacol ; 255: 112763, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32169423

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: In spite of worldwide efforts, malaria remains one of the most devastating illnesses in the world. The huge number of lives it takes and the resistance of malaria parasites to current drugs necessitate the search for new effective antimalarial drugs. Medicinal plants have been the major source of such drugs and A. pirottae is one of these plants used traditionally for the treatment of malaria in Ethiopia. AIM: This study was aimed at evaluating the antimalarial activity of the aqueous extract of A. pirottae against chloroquine sensitive P. berghei in mice. MATERIALS AND METHODS: The extract was obtained by macerating the latex of A. pirottae with distilled water. To determine its antiplasmodial activity, a 4-day suppressive model was used by dividing 40 mice into five groups of 8 mice each and given 200, 400 & 600mg/kg of the extract, the standard drug (chloroquine 25mg/kg) and the vehicle (distilled water). Then parasite suppression by the extract, survival time and prevention of loss of body weight, rectal temperature and packed cell volume were assessed. All data were presented as the Mean ±â€¯SEM (Standard Error of the Mean) and analyzed using IBM SPSS version 20. RESULTS: The extract showed moderate antimalarial activity by significantly (p < 0.001) suppressing parasitemia at all dose levels with maximum parasitemia suppression of 47.0% and significantly (p < 0.01) increasing survival time. Furthermore, 400 mg/kg and 600 mg/kg doses showed significant (p < 0.01) prevention of loss in body weight, rectal temperature and packed cell volume. CONCLUSION: Based to the results of this study, A. pirottae is endowed with a moderate antimalarial activity that is in agreement with the traditional claim of A. pirottae, hence may be used as a basis for further studies to be conducted on antimalarial activity of the plant.


Assuntos
Aloe , Antimaláricos/farmacologia , Eritrócitos/parasitologia , Látex/farmacologia , Malária/tratamento farmacológico , Extratos Vegetais/farmacologia , Plasmodium berghei/efeitos dos fármacos , Aloe/química , Aloe/toxicidade , Animais , Antimaláricos/isolamento & purificação , Antimaláricos/toxicidade , Regulação da Temperatura Corporal/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Látex/isolamento & purificação , Látex/toxicidade , Malária/sangue , Malária/parasitologia , Masculino , Camundongos , Carga Parasitária , Parasitemia/sangue , Parasitemia/tratamento farmacológico , Parasitemia/parasitologia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/toxicidade , Folhas de Planta , Plasmodium berghei/patogenicidade , Redução de Peso/efeitos dos fármacos
20.
Science ; 205(4411): 1142-4, 1979 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-382358

RESUMO

Liposomes containing neutral glycolipids with a terminal glucose or galactose, when injected intravenously, prevented the appearance of erythrocytic forms of malaria (Plasmodium berghei) in mice previously injected with sporozoites. Inhibitory glycolipids included glucosyl, galactosyl, or lactosyl ceramide. Inhibition was not observed with liposomes containing ceramide, phosphocholine ceramide, sulfogalactosyl ceramide (sulfatide), or ganglioside GM1. Liposomes containing glycolipids did not inhibit infection transmitted by injecting blood containing erythrocytic stages of malaria. These results may have therapeutic implications in the treatment of malaria. Analysis of the mechanism of interference with the life cycle of malaria by liposomal glycolipids may yield information about the interactions of parasites with cellular membranes.


Assuntos
Glicolipídeos/uso terapêutico , Malária/terapia , Animais , Ceramidas/uso terapêutico , Eritrócitos/parasitologia , Lipossomos/uso terapêutico , Fígado/parasitologia , Malária/parasitologia , Camundongos , Plasmodium berghei , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA