Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 294
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 628(8008): 576-581, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570677

RESUMO

The dual jaw joint of Morganucodon1,2 consists of the dentary-squamosal joint laterally and the articular-quadrate one medially. The articular-quadrate joint and its associated post-dentary bones constitute the precursor of the mammalian middle ear. Fossils documenting the transition from such a precursor to the mammalian middle ear are poor, resulting in inconsistent interpretations of this hallmark apparatus in the earliest stage of mammaliaform evolution1-5. Here we report mandibular middle ears from two Jurassic mammaliaforms: a new morganucodontan-like species and a pseudotribosphenic shuotheriid species6. The morganucodontan-like species shows many previously unknown post-dentary bone morphologies1,2 and exhibits features that suggest a loss of load-bearing function in its articular-quadrate joint. The middle ear of the shuotheriid approaches the mammalian condition in that it has features that are suitable for an exclusively auditory function, although the post-dentary bones are still attached to the dentary. With size reduction of the jaw-joint bones, the quadrate shifts medially at different degrees in relation to the articular in the two mammaliaforms. These changes provide evidence of a gradual loss of load-bearing function in the articular-quadrate jaw joint-a prerequisite for the detachment of the post-dentary bones from the dentary7-12 and the eventual breakdown of the Meckel's cartilage13-15 during the evolution of mammaliaforms.


Assuntos
Evolução Biológica , Orelha Média , Fósseis , Arcada Osseodentária , Mamíferos , Articulação Temporomandibular , Animais , Orelha Média/anatomia & histologia , Arcada Osseodentária/anatomia & histologia , Mamíferos/anatomia & histologia , Mamíferos/classificação , Mandíbula/anatomia & histologia , Articulação Temporomandibular/anatomia & histologia
2.
Nature ; 632(8026): 815-822, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39048827

RESUMO

Living mammal groups exhibit rapid juvenile growth with a cessation of growth in adulthood1. Understanding the emergence of this pattern in the earliest mammaliaforms (mammals and their closest extinct relatives) is hindered by a paucity of fossils representing juvenile individuals. We report exceptionally complete juvenile and adult specimens of the Middle Jurassic docodontan Krusatodon, providing anatomical data and insights into the life history of early diverging mammaliaforms. We used synchrotron X-ray micro-computed tomography imaging of cementum growth increments in the teeth2-4 to provide evidence of pace of life in a Mesozoic mammaliaform. The adult was about 7 years and the juvenile 7 to 24 months of age at death and in the process of replacing its deciduous dentition with its final, adult generation. When analysed against a dataset of life history parameters for extant mammals5, the relative sequence of adult tooth eruption was already established in Krusatodon and in the range observed in extant mammals but this development was prolonged, taking place during a longer period as part of a significantly longer maximum lifespan than extant mammals of comparable adult body mass (156 g or less). Our findings suggest that early diverging mammaliaforms did not experience the same life histories as extant small-bodied mammals and the fundamental shift to faster growth over a shorter lifespan may not have taken place in mammaliaforms until during or after the Middle Jurassic.


Assuntos
Fósseis , Mamíferos , Animais , Mamíferos/anatomia & histologia , Microtomografia por Raio-X , Dente/anatomia & histologia , Dente/diagnóstico por imagem , Erupção Dentária/fisiologia , Cemento Dentário/anatomia & histologia , Síncrotrons , Características de História de Vida , História Antiga , Longevidade , Feminino
3.
Nature ; 628(8008): 569-575, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570681

RESUMO

Shuotheriids are Jurassic mammaliaforms that possess pseudotribosphenic teeth in which a pseudotalonid is anterior to the trigonid in the lower molar, contrasting with the tribosphenic pattern of therian mammals (placentals, marsupials and kin) in which the talonid is posterior to the trigonid1-4. The origin of the pseudotribosphenic teeth remains unclear, obscuring our perception of shuotheriid affinities and the early evolution of mammaliaforms1,5-9. Here we report a new Jurassic shuotheriid represented by two skeletal specimens. Their complete pseudotribosphenic dentitions allow reidentification of dental structures using serial homology and the tooth occlusal relationship. Contrary to the conventional view1,2,6,10,11, our findings show that dental structures of shuotheriids can be homologized to those of docodontans and partly support homologous statements for some dental structures between docodontans and other mammaliaforms6,12. The phylogenetic analysis based on new evidence removes shuotheriids from the tribosphenic ausktribosphenids (including monotremes) and clusters them with docodontans to form a new clade, Docodontiformes, that is characterized by pseudotribosphenic features. In the phylogeny, docodontiforms and 'holotherians' (Kuehneotherium, monotremes and therians)13 evolve independently from a Morganucodon-like ancestor with triconodont molars by labio-lingual widening their posterior teeth for more efficient food processing. The pseudotribosphenic pattern passed a cusp semitriangulation stage9, whereas the tribosphenic pattern and its precursor went through a stage of cusp triangulation. The two different processes resulted in complex tooth structures and occlusal patterns that elucidate the earliest diversification of mammaliaforms.


Assuntos
Evolução Biológica , Fósseis , Mamíferos , Dente , Animais , Eutérios/anatomia & histologia , Mamíferos/anatomia & histologia , Mamíferos/classificação , Mamíferos/fisiologia , Marsupiais/anatomia & histologia , Dente Molar/anatomia & histologia , Dente Molar/fisiologia , Filogenia , Dente/anatomia & histologia , Dente/fisiologia , Mastigação
4.
Nature ; 610(7930): 107-111, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36045293

RESUMO

After the end-Cretaceous extinction, placental mammals quickly diversified1, occupied key ecological niches2,3 and increased in size4,5, but this last was not true of other therians6. The uniquely extended gestation of placental young7 may have factored into their success and size increase8, but reproduction style in early placentals remains unknown. Here we present the earliest record of a placental life history using palaeohistology and geochemistry, in a 62 million-year-old pantodont, the clade including the first mammals to achieve truly large body sizes. We extend the application of dental trace element mapping9,10 by 60 million years, identifying chemical markers of birth and weaning, and calibrate these to a daily record of growth in the dentition. A long gestation (approximately 7 months), rapid dental development and short suckling interval (approximately 30-75 days) show that Pantolambda bathmodon was highly precocial, unlike non-placental mammals and known Mesozoic precursors. These results demonstrate that P. bathmodon reproduced like a placental and lived at a fast pace for its body size. Assuming that P. bathmodon reflects close placental relatives, our findings suggest that the ability to produce well-developed, precocial young was established early in placental evolution, and that larger neonate sizes were a possible mechanism for rapid size increase in early placentals.


Assuntos
Fósseis , Características de História de Vida , Mamíferos , Filogenia , Animais , Tamanho Corporal , Dentição , História Antiga , Mamíferos/anatomia & histologia , Mamíferos/fisiologia , Oligoelementos/análise , Desmame
5.
Nature ; 590(7845): 279-283, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33505017

RESUMO

Among extant vertebrates, mammals are distinguished by having a chain of three auditory ossicles (the malleus, incus and stapes) that transduce sound waves and promote an increased range of audible-especially high-frequencies1. By contrast, the homologous bones in early fossil mammals and relatives also functioned in chewing through their bony attachments to the lower jaw2. Recent discoveries of well-preserved Mesozoic mammals have provided glimpses into the transition from the dual (masticatory and auditory) to the single auditory function for the ossicles, which is now widely accepted to have occurred at least three times in mammal evolution3-6. Here we report a skull and postcranium that we refer to the haramiyidan Vilevolodon diplomylos (dating to the Middle Jurassic epoch (160 million years ago)) and that shows excellent preservation of the malleus, incus and ectotympanic (which supports the tympanic membrane). After comparing this fossil with other Mesozoic and extant mammals, we propose that the overlapping incudomallear articulation found in this and other Mesozoic fossils, in extant monotremes and in early ontogeny in extant marsupials and placentals is a morphology that evolved in several groups of mammals in the transition from the dual to the single function for the ossicles.


Assuntos
Ossículos da Orelha/anatomia & histologia , Fósseis , Mamíferos/anatomia & histologia , Animais , Filogenia
6.
Nature ; 581(7809): 421-427, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32461642

RESUMO

The fossil record of mammaliaforms (mammals and their closest relatives) of the Mesozoic era from the southern supercontinent Gondwana is far less extensive than that from its northern counterpart, Laurasia1,2. Among Mesozoic mammaliaforms, Gondwanatheria is one of the most poorly known clades, previously represented by only a single cranium and isolated jaws and teeth1-5. As a result, the anatomy, palaeobiology and phylogenetic relationships of gondwanatherians remain unclear. Here we report the discovery of an articulated and very well-preserved skeleton of a gondwanatherian of the latest age (72.1-66 million years ago) of the Cretaceous period from Madagascar that we assign to a new genus and species, Adalatherium hui. To our knowledge, the specimen is the most complete skeleton of a Gondwanan Mesozoic mammaliaform that has been found, and includes the only postcranial material and ascending ramus of the dentary known for any gondwanatherian. A phylogenetic analysis including the new taxon recovers Gondwanatheria as the sister group to Multituberculata. The skeleton, which represents one of the largest of the Gondwanan Mesozoic mammaliaforms, is particularly notable for exhibiting many unique features in combination with features that are convergent on those of therian mammals. This uniqueness is consistent with a lineage history for A. hui of isolation on Madagascar for more than 20 million years.


Assuntos
Fósseis , Ilhas , Mamíferos/anatomia & histologia , Mamíferos/classificação , Filogenia , Esqueleto/anatomia & histologia , Animais , Dentição , Madagáscar , Crânio/anatomia & histologia
7.
Nature ; 558(7708): 108-112, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29795343

RESUMO

Haramiyida was a successful clade of mammaliaforms, spanning the Late Triassic period to at least the Late Jurassic period, but their fossils are scant outside Eurasia and Cretaceous records are controversial1-4. Here we report, to our knowledge, the first cranium of a large haramiyidan from the basal Cretaceous of North America. This cranium possesses an amalgam of stem mammaliaform plesiomorphies and crown mammalian apomorphies. Moreover, it shows dental traits that are diagnostic of isolated teeth of supposed multituberculate affinities from the Cretaceous of Morocco, which have been assigned to the enigmatic 'Hahnodontidae'. Exceptional preservation of this specimen also provides insights into the evolution of the ancestral mammalian brain. We demonstrate the haramiyidan affinities of Gondwanan hahnodontid teeth, removing them from multituberculates, and suggest that hahnodontid mammaliaforms had a much wider, possibly Pangaean distribution during the Jurassic-Cretaceous transition.


Assuntos
Fósseis , Mapeamento Geográfico , Mamíferos/anatomia & histologia , Mamíferos/classificação , Filogenia , Animais , Encéfalo/anatomia & histologia , Dentição , América do Norte , Crânio/anatomia & histologia
8.
Nature ; 561(7724): 533-537, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30224748

RESUMO

The evolution of the mammalian jaw is one of the most important innovations in vertebrate history, and underpins the exceptional radiation and diversification of mammals over the last 220 million years1,2. In particular, the transformation of the mandible into a single tooth-bearing bone and the emergence of a novel jaw joint-while incorporating some of the ancestral jaw bones into the mammalian middle ear-is often cited as a classic example of the repurposing of morphological structures3,4. Although it is remarkably well-documented in the fossil record, the evolution of the mammalian jaw still poses the paradox of how the bones of the ancestral jaw joint could function both as a joint hinge for powerful load-bearing mastication and as a mandibular middle ear that was delicate enough for hearing. Here we use digital reconstructions, computational modelling and biomechanical analyses to demonstrate that the miniaturization of the early mammalian jaw was the primary driver for the transformation of the jaw joint. We show that there is no evidence for a concurrent reduction in jaw-joint stress and increase in bite force in key non-mammaliaform taxa in the cynodont-mammaliaform transition, as previously thought5-8. Although a shift in the recruitment of the jaw musculature occurred during the evolution of modern mammals, the optimization of mandibular function to increase bite force while reducing joint loads did not occur until after the emergence of the neomorphic mammalian jaw joint. This suggests that miniaturization provided a selective regime for the evolution of the mammalian jaw joint, followed by the integration of the postdentary bones into the mammalian middle ear.


Assuntos
Evolução Biológica , Orelha Média/anatomia & histologia , Mamíferos/anatomia & histologia , Mandíbula/anatomia & histologia , Animais , Orelha Média/fisiologia , Fósseis , Mamíferos/fisiologia , Mandíbula/fisiologia , Modelos Biológicos , Filogenia , Articulação Temporomandibular/anatomia & histologia , Articulação Temporomandibular/fisiologia , Dente/anatomia & histologia , Dente/fisiologia
9.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34083433

RESUMO

Development has often been viewed as a constraining force on morphological adaptation, but its precise influence, especially on evolutionary rates, is poorly understood. Placental mammals provide a classic example of adaptive radiation, but the debate around rate and drivers of early placental evolution remains contentious. A hallmark of early dental evolution in many placental lineages was a transition from a triangular upper molar to a more complex upper molar with a rectangular cusp pattern better specialized for crushing. To examine how development influenced this transition, we simulated dental evolution on "landscapes" built from different parameters of a computational model of tooth morphogenesis. Among the parameters examined, we find that increases in the number of enamel knots, the developmental precursors of the tooth cusps, were primarily influenced by increased self-regulation of the molecular activator (activation), whereas the pattern of knots resulted from changes in both activation and biases in tooth bud growth. In simulations, increased activation facilitated accelerated evolutionary increases in knot number, creating a lateral knot arrangement that evolved at least ten times on placental upper molars. Relatively small increases in activation, superimposed on an ancestral tritubercular molar growth pattern, could recreate key changes leading to a rectangular upper molar cusp pattern. Tinkering with tooth bud geometry varied the way cusps initiated along the posterolingual molar margin, suggesting that small spatial variations in ancestral molar growth may have influenced how placental lineages acquired a hypocone cusp. We suggest that development could have enabled relatively fast higher-level divergence of the placental molar dentition.


Assuntos
Evolução Biológica , Mamíferos , Dente Molar , Odontogênese/fisiologia , Animais , Mamíferos/anatomia & histologia , Mamíferos/fisiologia , Dente Molar/anatomia & histologia , Dente Molar/fisiologia
10.
Cladistics ; 39(6): 571-593, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37490279

RESUMO

Mesotheriidae (Panperissodactyla, Notoungulata) are an extinct clade (early Oligocene-Pleistocene) of small to medium-sized herbivorous mammals that were widely distributed in South America. Although two subfamilies traditionally have been recognized (Trachytheriinae and Mesotheriinae), recent cladistic analyses based on discrete characters have indicated that "Trachytheriinae" is a paraphyletic assemblage. Given the availability of a large number of specimens and the fact that dental characters are the most common characters used in mesotheriid phylogenies, we performed specimen-level cladistic analyses combining discrete, continuous and geometric morphometrics-based dental characters. The aim was to: (1) include new scored morphological characters to solve the phylogenetic relationships of Mesotheriidae; (2) compare the results of the upper and lower dentition analyses as different character partitions and in combination, to establish phylogenetic hypotheses; and (3) trace the evolution of dental traits. Phylogenetic analyses employing characters of associated upper and lower dentitions recovered one most parsimonious tree with Archaeohyracidae (outgroup) as the sister group of Pan-Mesotheriidae (= Mesotheriidae; converted clade name), this latter composed of trachytheriines (stem-mesotheriine) + Mesotheriinae (converted clade name). Within Mesotheriinae, we recovered two main lineages phylogenetically defined here as Bolivarini and Pampaini (new clade names). Analyses of isolated upper and lower dentition sub-datasets each resulted in one most parsimonious tree congruent with the associated dentition. Our study emphasizes the use of geometric morphometrics characters to resolve additional clades in phylogenetic analyses, provides information on the evolution of size and morphology of teeth, and exposes specimen assignment issues at a taxonomic level. The integration of osteological characters might be crucial to further understanding the evolution of Mesotheriidae.


Assuntos
Dentição , Dente , Animais , Filogenia , Mamíferos/genética , Mamíferos/anatomia & histologia , Eutérios
11.
Nature ; 551(7681): 451-456, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-29132143

RESUMO

Gliding is a distinctive locomotion type that has been identified in only three mammal species from the Mesozoic era. Here we describe another Jurassic glider that belongs to the euharamiyidan mammals and shows hair details on its gliding membrane that are highly similar to those of extant gliding mammals. This species possesses a five-boned auditory apparatus consisting of the stapes, incus, malleus, ectotympanic and surangular, representing, to our knowledge, the earliest known definitive mammalian middle ear. The surangular has not been previously identified in any mammalian middle ear, and the morphology of each auditory bone differs from those of known mammals and their kin. We conclude that gliding locomotion was probably common in euharamiyidans, which lends support to idea that there was a major adaptive radiation of mammals in the mid-Jurassic period. The acquisition of the auditory bones in euharamiyidans was related to the formation of the dentary-squamosal jaw joint, which allows a posterior chewing movement, and must have evolved independently from the middle ear structures of monotremes and therian mammals.


Assuntos
Ossículos da Orelha/anatomia & histologia , Fósseis , Mamíferos/anatomia & histologia , Mamíferos/classificação , Pelo Animal/anatomia & histologia , Animais , China , Arcada Osseodentária/anatomia & histologia , Filogenia
12.
Nature ; 548(7667): 326-329, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28792934

RESUMO

Stem mammaliaforms are forerunners to modern mammals, and they achieved considerable ecomorphological diversity in their own right. Recent discoveries suggest that eleutherodontids, a subclade of Haramiyida, were more species-rich during the Jurassic period in Asia than previously recognized. Here we report a new Jurassic eleutherodontid mammaliaform with an unusual mosaic of highly specialized characteristics, and the results of phylogenetic analyses that support the hypothesis that haramiyidans are stem mammaliaforms. The new fossil shows fossilized skin membranes that are interpreted to be for gliding and a mandibular middle ear with a unique character combination previously unknown in mammaliaforms. Incisor replacement is prolonged until well after molars are fully erupted, a timing pattern unique to most other mammaliaforms. In situ molar occlusion and a functional analysis reveal a new mode of dental occlusion: dual mortar-pestle occlusion of opposing upper and lower molars, probably for dual crushing and grinding. This suggests that eleutherodontids are herbivorous, and probably specialized for granivory or feeding on soft plant tissues. The inferred dietary adaptation of eleutherodontid gliders represents a remarkable evolutionary convergence with herbivorous gliders in Theria. These Jurassic fossils represent volant, herbivorous stem mammaliaforms associated with pre-angiosperm plants that appear long before the later, iterative associations between angiosperm plants and volant herbivores in various therian clades.


Assuntos
Aclimatação , Evolução Biológica , Orelha Média/anatomia & histologia , Ingestão de Alimentos , Ecossistema , Fósseis , Mamíferos/anatomia & histologia , Mamíferos/fisiologia , Animais , Dieta , Herbivoria , Incisivo , Locomoção , Mamíferos/classificação , Dente Molar , Filogenia
13.
Nature ; 548(7667): 291-296, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28792929

RESUMO

Stem mammaliaforms are Mesozoic forerunners to mammals, and they offer critical evidence for the anatomical evolution and ecological diversification during the earliest mammalian history. Two new eleutherodonts from the Late Jurassic period have skin membranes and skeletal features that are adapted for gliding. Characteristics of their digits provide evidence of roosting behaviour, as in dermopterans and bats, and their feet have a calcaneal calcar to support the uropagatium as in bats. The new volant taxa are phylogenetically nested with arboreal eleutherodonts. Together, they show an evolutionary experimentation similar to the iterative evolutions of gliders within arboreal groups of marsupial and placental mammals. However, gliding eleutherodonts possess rigid interclavicle-clavicle structures, convergent to the avian furculum, and they retain shoulder girdle plesiomorphies of mammaliaforms and monotremes. Forelimb mobility required by gliding occurs at the acromion-clavicle and glenohumeral joints, is different from and convergent to the shoulder mobility at the pivotal clavicle-sternal joint in marsupial and placental gliders.


Assuntos
Fósseis , Locomoção , Mamíferos/anatomia & histologia , Mamíferos/fisiologia , Filogenia , Animais , Aves/anatomia & histologia , China , Quirópteros/anatomia & histologia , Quirópteros/fisiologia , Dieta , Membro Anterior/anatomia & histologia , Membro Anterior/fisiologia , Mamíferos/classificação , Marsupiais/fisiologia , Dente Molar/anatomia & histologia , Dente Molar/fisiologia , Ombro/anatomia & histologia , Pele/anatomia & histologia , Crânio/anatomia & histologia
14.
BMC Biol ; 20(1): 37, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35130893

RESUMO

BACKGROUND: Body mass estimation is of paramount importance for paleobiological studies, as body size influences numerous other biological parameters. In mammals, body mass has been traditionally estimated using regression equations based on measurements of the dentition or limb bones, but for many species teeth are unreliable estimators of body mass and postcranial elements are unknown. This issue is exemplified in several groups of extinct mammals that have disproportionately large heads relative to their body size and for which postcranial remains are rare. In these taxa, previous authors have noted that the occiput is unusually small relative to the skull, suggesting that occiput dimensions may be a more accurate predictor of body mass. RESULTS: The relationship between occipital condyle width (OCW) and body mass was tested using a large dataset (2127 specimens and 404 species) of mammals with associated in vivo body mass. OCW was found to be a strong predictor of body mass across therian mammals, with regression models of Mammalia as a whole producing error values (~ 31.1% error) comparable to within-order regression equations of other skeletal variables in previous studies. Some clades (e.g., monotremes, lagomorphs) exhibited specialized occiput morphology but followed the same allometric relationship as the majority of mammals. Compared to two traditional metrics of body mass estimation, skull length, and head-body length, OCW outperformed both in terms of model accuracy. CONCLUSIONS: OCW-based regression models provide an alternative method of estimating body mass to traditional craniodental and postcranial metrics and are highly accurate despite the broad taxonomic scope of the dataset. Because OCW accurately predicts body mass in most therian mammals, it can be used to estimate body mass in taxa with no close living analogues without concerns of insufficient phylogenetic bracketing or extrapolating beyond the bounds of the data. This, in turn, provides a robust method for estimating body mass in groups for which body mass estimation has previously been problematic (e.g., "creodonts" and other extinct Paleogene mammals).


Assuntos
Mamíferos , Crânio , Animais , Tamanho Corporal , Extremidades , Mamíferos/anatomia & histologia , Filogenia , Crânio/anatomia & histologia
15.
J Anat ; 241(6): 1424-1440, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36065514

RESUMO

Two sets of teeth (diphyodonty) characterise extant mammals but not reptiles, as they generate many replacement sets (polyphyodonty). The transition in long-extinct species from many sets to only two has to date only been reported in Jurassic eucynodonts. Specimens of the Late Triassic brasilodontid eucynodont Brasilodon have provided anatomical and histological data from three lower jaws of different growth stages. These reveal ordered and timed replacement of deciduous by adult teeth. Therefore, this diphyodont dentition, as contemporary of the oldest known dinosaurs, shows that Brasilodon falls within a range of wide variations of typically mammalian, diphyodont dental patterns. Importantly, these three lower jaws represent distinct ontogenetic stages that reveal classic features for timed control of replacement, by the generation of only one replacement set of teeth. This data shows that the primary premolars reveal a temporal replacement pattern, importantly from directly below each tooth, by controlled regulation of tooth resorption and regeneration. The complexity of the adult prismatic enamel structure with a conspicuous intra-structural Schmelzmuster array suggests that, as in the case of extant mammals, this extinct species would have probably sustained higher metabolic rates than reptiles. Furthermore, in modern mammals, diphyodonty and prismatic enamel are inextricably linked, anatomically and physiologically, to a set of other traits including placentation, endothermy, fur, lactation and even parental care. Our analysis of the osteodental anatomy of Brasilodon pushes back the origin of diphyodonty and consequently, its related biological traits to the Norian (225.42 ± 0.37 myr), and around 25 myr after the End-Permian mass extinction event.


Assuntos
Dinossauros , Dente , Gravidez , Animais , Feminino , Odontogênese/fisiologia , Mamíferos/anatomia & histologia , Répteis/anatomia & histologia , Dinossauros/anatomia & histologia , Morfogênese , Dente/anatomia & histologia , Fósseis , Evolução Biológica
16.
J Evol Biol ; 35(1): 164-179, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34624153

RESUMO

Marsupial neonates are born at an earlier developmental stage than placental mammals, but the rapid development of their forelimbs and cranial skeleton allows them to climb to the pouch, begin suckling and complete their development ex utero. The mechanical environment in which marsupial neonates develop is vastly different from that of placental neonates, which exhibit a more protracted development of oral muscles and bones. This difference in reproductive strategy has been theorized to constrain morphological evolution in the oral region of marsupials. Here, we use 3D morphometrics to characterize one of these oral bones, the lower jaw (dentary), and assess modularity (pattern of covariation among traits), morphological disparity and rates of morphological evolution in two clades of carnivorous mammals: the marsupial Dasyuromorphia and placental fissiped Carnivora. We find that dasyuromorph dentaries have fewer modules than carnivorans and exhibit tight covariation between the angular and coronoid processes, the primary attachment sites for jaw-closing muscles. This pattern of modularity may result from the uniform action of muscles on the developing mandible during suckling. Carnivorans are free from this constraint and exhibit a pattern of modularity that more strongly reflects genetic and developmental signals of trait covariation. Alongside differences in modularity, carnivorans exhibit greater disparity and faster rates of morphological evolution compared with dasyuromorphs. Taken together, this suggests dasyuromorphs have retained a signal of trait covariation that reflects the outsized influence of muscular force during early development, a feature that may have impacted the ability of marsupial carnivores to explore specialized regions of morphospace.


Assuntos
Evolução Biológica , Placenta , Animais , Feminino , Arcada Osseodentária , Mamíferos/anatomia & histologia , Mamíferos/genética , Mandíbula , Gravidez
17.
Naturwissenschaften ; 108(3): 23, 2021 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-33993371

RESUMO

The Langenberg Quarry near Bad Harzburg has yielded the first Jurassic stem therian mammal of Germany, recovered from Kimmeridgian (Late Jurassic) near shore deposits of a palaeo-island within the Lower Saxony Basin of the European archipelago. The new stem therian is represented by one lower and three upper molars. Hercynodon germanicus gen. et sp. nov. is attributed to the Dryolestidae, a group of pretribosphenic crown mammals that was common in western Laurasia from the Middle Jurassic to the Early Cretaceous. The new taxon is characterised by small size, a reduced cusp pattern in the upper molars lacking a metacone, and enhancement of the shearing crests paracrista and metacrista. Phylogenetic analysis identified Hercynodon gen. nov. as sister taxon of Crusafontia from the Lower Cretaceous (Barremian) of Spain. Both taxa belong to an endemic European clade of dryolestids, including also Achyrodon and Phascolestes from the earliest Cretaceous (Berriasian) of England. Despite its greater geological age, Hercynodon gen. nov. is the most derived representative of that clade, indicated by the complete reduction of the metacone. The discrepancy between derived morphology and geological age may be explained by an increased rate of character evolution in insular isolation. Other insular phenomena have earlier been observed in vertebrates from the Langenberg Quarry, such as dwarfism in the small sauropod Europasaurus, and possible gigantism in the morganucodontan mammaliaform Storchodon and the pinheirodontid multituberculate mammal Teutonodon which grew unusually large.


Assuntos
Fósseis/anatomia & histologia , Mamíferos/anatomia & histologia , Mamíferos/classificação , Filogenia , Animais , Alemanha , Dente Molar/anatomia & histologia
18.
Nature ; 526(7573): 380-4, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26469049

RESUMO

The Mesozoic era (252-66 million years ago), known as the domain of dinosaurs, witnessed a remarkable ecomorphological diversity of early mammals. The key mammalian characteristics originated during this period and were prerequisite for their evolutionary success after extinction of the non-avian dinosaurs 66 million years ago. Many ecomorphotypes familiar to modern mammal fauna evolved independently early in mammalian evolutionary history. Here we report a 125-million-year-old eutriconodontan mammal from Spain with extraordinary preservation of skin and pelage that extends the record of key mammalian integumentary features into the Mesozoic era. The new mammalian specimen exhibits such typical mammalian features as pelage, mane, pinna, and a variety of skin structures: keratinous dermal scutes, protospines composed of hair-like tubules, and compound follicles with primary and secondary hairs. The skin structures of this new Mesozoic mammal encompass the same combination of integumentary features as those evolved independently in other crown Mammalia, with similarly broad structural variations as in extant mammals. Soft tissues in the thorax and abdomen (alveolar lungs and liver) suggest the presence of a muscular diaphragm. The eutriconodont has molariform tooth replacement, ossified Meckel's cartilage of the middle ear, and specialized xenarthrous articulations of posterior dorsal vertebrae, convergent with extant xenarthran mammals, which strengthened the vertebral column for locomotion.


Assuntos
Evolução Biológica , Fósseis , Tegumento Comum/anatomia & histologia , Mamíferos/anatomia & histologia , Mamíferos/classificação , Abdome , Adaptação Fisiológica , Animais , Diafragma , Orelha Média , Cabelo/anatomia & histologia , História Antiga , Locomoção , Mamíferos/fisiologia , Filogenia , Esqueleto , Pele/anatomia & histologia , Espanha , Coluna Vertebral , Tórax , Dente
19.
J Anat ; 236(1): 50-71, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31498899

RESUMO

The holotypes of euharamiyidan Arboroharamiya allinhopsoni and Arboroharamiya jenkinsi preserve the auditory and hyoid bones, respectively. With additional structures revealed by micro-computerized tomography (CT) and X-ray micro-computed laminography (CL), we provide a detailed description of these minuscule bones. The stapes in the two species of Arboroharamiya are similar in having a strong process for insertion of the stapedius muscle. The incus is similar in having an almond-shaped body and a slim short process, in addition to a robust stapedial process with a short lenticular process preserved in A. allinhopsoni. The plate-like ectotympanic in the two species of Arboroharamiya is similar and comparable to that of Qishou jizantang. The surangular in the two species has a fan-shaped body and a needle-shaped anterior process. The malleus, ectotympanic, and surangular are fully detached from the dentary and should have functioned exclusively for hearing. All the auditory bones of Arboroharamiya display unique features unknown in other mammaliaforms. Moreover, hyoid elements are found in the two species of Arboroharamiya and co-exist with the five auditory bones in the holotype of A. allinhopsoni. The element interpreted as the stylohyal is similar to the bone identified as the ectotympanic in Vilevolodon. We reconstruct the auditory apparatus of Arboroharamiya and compare it with that of Vilevolodon as well as those in extant mammals and basal mammaliaforms. The comparison shows diverse morphological patterns of the auditory region in mammaliaforms. In particular, those of Vilevolodon and Arboroharamiya differ significantly: the former has a mandibular middle ear, whereas the latter possesses a definitive mammalian middle ear. It is puzzling that the two sympatric and dentally similar taxa have such different auditory apparatuses. In light of the available evidence, we argue that the mandibular middle ear reconstructed in Vilevolodon encounters many problems, and the so-called ectotympanic in Vilevolodon may be interpreted as a stylohyal; thus, the dilemma can be resolved.


Assuntos
Evolução Biológica , Orelha Média/anatomia & histologia , Fósseis , Osso Hioide/anatomia & histologia , Mamíferos/anatomia & histologia , Animais , Orelha Média/diagnóstico por imagem , Osso Hioide/diagnóstico por imagem , Filogenia , Microtomografia por Raio-X
20.
Nature ; 514(7524): 579-84, 2014 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25209669

RESUMO

The phylogeny of Allotheria, including Multituberculata and Haramiyida, remains unsolved and has generated contentious views on the origin and earliest evolution of mammals. Here we report three new species of a new clade, Euharamiyida, based on six well-preserved fossils from the Jurassic period of China. These fossils reveal many craniodental and postcranial features of euharamiyidans and clarify several ambiguous structures that are currently the topic of debate. Our phylogenetic analyses recognize Euharamiyida as the sister group of Multituberculata, and place Allotheria within the Mammalia. The phylogeny suggests that allotherian mammals evolved from a Late Triassic (approximately 208 million years ago) Haramiyavia-like ancestor and diversified into euharamiyidans and multituberculates with a cosmopolitan distribution, implying homologous acquisition of many craniodental and postcranial features in the two groups. Our findings also favour a Late Triassic origin of mammals in Laurasia and two independent detachment events of the middle ear bones during mammalian evolution.


Assuntos
Fósseis , Mamíferos/anatomia & histologia , Mamíferos/classificação , Filogenia , Animais , China , Mandíbula/anatomia & histologia , Esqueleto , Crânio/anatomia & histologia , Dente/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA