Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 96(15): e0075122, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35867566

RESUMO

Lumpy skin disease virus (LSDV) is a poxvirus that causes severe systemic disease in cattle and is spread by mechanical arthropod-borne transmission. This study quantified the acquisition and retention of LSDV by four species of Diptera (Stomoxys calcitrans, Aedes aegypti, Culex quinquefasciatus, and Culicoides nubeculosus) from cutaneous lesions, normal skin, and blood from a clinically affected animal. The acquisition and retention of LSDV by Ae. aegypti from an artificial membrane feeding system was also examined. Mathematical models of the data were generated to identify the parameters which influence insect acquisition and retention of LSDV. For all four insect species, the probability of acquiring LSDV was substantially greater when feeding on a lesion compared with feeding on normal skin or blood from a clinically affected animal. After feeding on a skin lesion LSDV was retained on the proboscis for a similar length of time (around 9 days) for all four species and for a shorter time in the rest of the body, ranging from 2.2 to 6.4 days. Acquisition and retention of LSDV by Ae. aegypti after feeding on an artificial membrane feeding system that contained a high titer of LSDV was comparable to feeding on a skin lesion on a clinically affected animal, supporting the use of this laboratory model as a replacement for some animal studies. This work reveals that the cutaneous lesions of LSD provide the high-titer source required for acquisition of the virus by insects, thereby enabling the mechanical vector-borne transmission. IMPORTANCE Lumpy skin disease virus (LSDV) is a high consequence pathogen of cattle that is rapidly expanding its geographical boundaries into new regions such as Europe and Asia. This expansion is promoted by the mechanical transmission of the virus via hematogenous arthropods. This study quantifies the acquisition and retention of LSDV by four species of blood-feeding insects and reveals that the cutaneous lesions of LSD provide the high titer virus source necessary for virus acquisition by the insects. An artificial membrane feeding system containing a high titer of LSDV was shown to be comparable to a skin lesion on a clinically affected animal when used as a virus source. This promotes the use of these laboratory-based systems as replacements for some animal studies. Overall, this work advances our understanding of the mechanical vector-borne transmission of LSDV and provides evidence to support the design of more effective disease control programmes.


Assuntos
Sangue , Dípteros , Comportamento Alimentar , Insetos Vetores , Doença Nodular Cutânea , Vírus da Doença Nodular Cutânea , Aedes/anatomia & histologia , Aedes/virologia , Animais , Bovinos/virologia , Ceratopogonidae/anatomia & histologia , Ceratopogonidae/virologia , Culex/anatomia & histologia , Culex/virologia , Dípteros/anatomia & histologia , Dípteros/fisiologia , Dípteros/virologia , Insetos Vetores/anatomia & histologia , Insetos Vetores/fisiologia , Insetos Vetores/virologia , Doença Nodular Cutânea/virologia , Vírus da Doença Nodular Cutânea/isolamento & purificação , Vírus da Doença Nodular Cutânea/fisiologia , Membranas Artificiais , Muscidae/anatomia & histologia , Muscidae/virologia , Fatores de Tempo
2.
Vet Microbiol ; 222: 25-29, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30080669

RESUMO

Since 2014, African swine fever virus (ASFV) has been spreading within Eastern Europe. Within affected regions, the virus has infected some farms with high biosecurity and a marked seasonality of outbreaks in domestic pigs has been observed. ASFV transmission from stable flies, Stomoxys calcitrans, has previously been shown both mechanically and via ingestion of whole flies. Hence, blood-feeding flies may offer one explanation for the introductions into high biosecurity farms and for the observed seasonality. The aim of this study was to further elucidate the potential role of stable flies in ASFV transmission. Different parts of flies were analyzed for the presence of viral DNA and infectious virus at different time points following in vitro feeding of the flies on blood from an ASFV-infected pig. Using qPCR, ASFV DNA was detectable in mouth parts of flies for at least 12 h and remained in head and body samples from the flies for up to three days following feeding. Infectious virus was detected in fly body samples prepared at 3 h and 12 h after feeding. The presence of infectious ASFV in stable flies following feeding on viremic blood means that such flies are capable of transporting infectious virus. The detection of ASFV DNA in the flies for up to three days following feeding suggests that qPCR analysis of blood-feeding flies during ASFV outbreaks could be a useful method to elucidate the role of these flies in ASFV transmission under field conditions.


Assuntos
Vírus da Febre Suína Africana/fisiologia , Febre Suína Africana/sangue , Febre Suína Africana/transmissão , Muscidae/virologia , Viremia/transmissão , Febre Suína Africana/epidemiologia , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/isolamento & purificação , Animais , DNA Viral/sangue , Surtos de Doenças/prevenção & controle , Europa Oriental/epidemiologia , Comportamento Alimentar , Reação em Cadeia da Polimerase em Tempo Real , Sus scrofa/virologia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA