Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 252(Pt 2): 118975, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38649018

RESUMO

Understanding the impact of various agricultural chemical components on the fate and transport of microplastics (MPs) in the subsurface is essential. In this study, column experiments on saturated porous media were conducted to explore the influence of the coexistence environment of pesticide adjuvants (surfactants) and active ingredients (neonicotinoids) on the transport of polyethylene (PE) and polypropylene (PP) MPs. An anionic surfactant (sodium dodecyl sulfate (SDS)), a nonionic surfactant (nonylphenol ethoxylate (NP-40)), and three neonicotinoid insecticides (acetamiprid, dinotefuran, and nitenpyram) could independently increase MP migration by 9.31%-61.01% by improving the hydrophilicity. Acetamiprid or dinotefuran reduced the adhesion work of the binary system by competing with SDS for adsorption sites, thereby inhibiting PE mobility. However, nitenpyram in the mixture was not easily adsorbed on the surface of PE MPs together with SDS because of nitenpyram's high hydrophilicity. Neonicotinoid molecules could not reduce the hydrophilic modification of SDS on PP MPs by competing for adsorption sites. Owing to their weak charge and adhesion work of nonionic surfactants (-4.80 mV and 28.45 kT for PE and -8.21 mV and 17.64 kT for PP), neonicotinoids tended to occupy the adsorption sites originally belonging to NP-40. The long molecular chain of NP-40 made it difficult for high-concentration neonicotinoids to affect the adhesion on MPs. In addition, NP-40 was harder to peel off from the MP surface than SDS, leading to a larger MP transport ability in the sand column.


Assuntos
Microplásticos , Polietileno , Polipropilenos , Tensoativos , Polipropilenos/química , Polietileno/química , Microplásticos/química , Tensoativos/química , Adsorção , Praguicidas/química , Neonicotinoides/química , Agroquímicos/química , Inseticidas/química , Poluentes Químicos da Água/química
2.
Mol Pharm ; 20(4): 2080-2093, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36897219

RESUMO

Amorphous-Amorphous phase separation (AAPS) is an important phenomenon that can impede the performance of amorphous solid dispersions (ASDs). The purpose of this study was to develop a sensitive approach relying on dielectric spectroscopy (DS) to characterize AAPS in ASDs. This includes detecting AAPS, determining the size of the active ingredient (AI) discrete domains in the phase-separated systems, and accessing the molecular mobility in each phase. Using a model system consisting of the insecticide imidacloprid (IMI) and the polymer polystyrene (PS), the dielectric results were further confirmed by confocal fluorescence microscopy (CFM). The detection of AAPS by DS was accomplished by identifying the decoupled structural (α-)dynamics of the AI and the polymer phase. The α-relaxation times corresponding to each phase correlated reasonably well with those of the pure components, implying nearly complete macroscopic phase separation. Congruent with the DS results, the occurrence of the AAPS was detected by means of CFM, making use of the autofluorescent property of IMI. Oscillatory shear rheology and differential scanning calorimetry (DSC) detected the glass transition of the polymer phase but not that of the AI phase. Furthermore, the otherwise undesired effects of interfacial and electrode polarization, which can appear in DS, were exploited to determine the effective domain size of the discrete AI phase in this work. Here, stereological analysis of CFM images probing the mean diameter of the phase-separated IMI domains directly stayed in reasonably good agreement with the DS-based estimates. The size of phase-separated microclusters showed little variation with AI loading, implying that the ASDs have presumably undergone AAPS upon manufacturing. DSC provided further support to the immiscibility of IMI and PS, as no discernible melting point depression of the corresponding physical mixtures was detected. Moreover, no signatures of strong attractive AI-polymer interactions could be detected by mid-infrared spectroscopy within this ASD system. Finally, dielectric cold crystallization experiments of the pure AI and the 60 wt % dispersion revealed comparable crystallization onset times, hinting at a poor inhibition of the AI crystallization within the ASD. These observations are in harmony with the occurrence of AAPS. In conclusion, our multifaceted experimental approach opens new venues for rationalizing the mechanisms and kinetics of phase separation in amorphous solid dispersions.


Assuntos
Nitrocompostos , Polímeros , Cristalização/métodos , Polímeros/química , Neonicotinoides , Solubilidade , Varredura Diferencial de Calorimetria
3.
Mol Pharm ; 20(4): 2067-2079, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36930788

RESUMO

The main goal of this study is to develop an experimental toolbox to estimate the self-diffusion coefficient of active ingredients (AI) in single-phase amorphous solid dispersions (ASD) close to the glass transition of the mixture using dielectric spectroscopy (DS) and oscillatory rheology. The proposed methodology is tested for a model system containing the insecticide imidacloprid (IMI) and the copolymer copovidone (PVP/VA) prepared via hot-melt extrusion. For this purpose, reorientational and the viscoelastic structural (α-)relaxation time constants of hot-melt-extruded ASDs were obtained via DS and shear rheology, respectively. These were then utilized to extract the viscosity as well as the fragility index of the dispersions as input parameters to the fractional Stokes-Einstein (F-SE) relation. Furthermore, a modified version of Almond-West (AW) formalism, originally developed to describe charge diffusion in ionic conductors, was exercised on the present model system for the estimation of the AI diffusion coefficients based on shear modulus relaxation times. Our results revealed that, at the calorimetric glass-transition temperature (Tg), the self-diffusion coefficients of the AI in the compositional range from infinite dilution up to 60 wt % IMI content lied in the narrow range of 10-18-10-20 m2 s-1, while the viscosity values of the dispersions at Tg varied between 108 Pa s and 1010 Pa s. In addition, the phase diagram of the IMI-PVP/VA system was determined using the melting point depression method via differential scanning calorimetry (DSC), while mid-infrared (IR) spectroscopy was employed to investigate the intermolecular interactions within the solid dispersions. In this respect, the findings of a modest variation in melting point at different compositions stayed in agreement with the observations of weak hydrogen bonding interactions between the AI and the polymer. Moreover, IR spectroscopy showed the intermolecular IMI-IMI hydrogen bonding to have been considerably suppressed, as a result of the spatial separation of the AI molecules within the ASDs. In summary, this study provides experimental approaches to study diffusivity in ASDs using DS and oscillatory rheology, in addition to contributing to an enhanced understanding of the interactions and phase behavior in these systems.


Assuntos
Simulação de Dinâmica Molecular , Polímeros , Polímeros/química , Temperatura , Neonicotinoides , Varredura Diferencial de Calorimetria , Solubilidade , Composição de Medicamentos/métodos
4.
J Sep Sci ; 46(13): e2200889, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37058712

RESUMO

An in-situ formed polymer-based dispersive solid phase extraction in combination with solidification of floating organic droplet-based dispersive liquid-liquid microextraction was developed for the extraction of neonicotinoid pesticides from milk samples. The extracted analytes were determined using high-performance liquid chromatography-diode array detector. In this approach, after precipitating the proteins of milk using a zinc sulfate solution, the supernatant phase (containing sodium chloride) was transferred into another glass test tube, and a homogenous solution of polyvinylpyrrolidone and a suitable water-miscible organic solvent was rapidly injected into it. By this step, the polymer particles were re-produced and the analytes were extracted onto the sorbent surface. In the following step, the analytes were eluted with an appropriate organic solvent to use in the following solidification of floating organic droplet-based dispersive liquid-liquid microextraction step that was done to acquire the low limits of detection. Under the optimized conditions, satisfactory results consisting of low limits of detection (0.13-0.21 ng/ml) and quantification (0.43-0.70 ng/ml), high extraction recoveries (73%-85%), and enrichment factors (365-425), and good repeatability (relative standard deviations equal or less than 5.1% and 5.9% for intra- and inter-day precisions, respectively) were obtained.


Assuntos
Microextração em Fase Líquida , Praguicidas , Animais , Praguicidas/análise , Neonicotinoides , Polímeros , Microextração em Fase Líquida/métodos , Leite/química , Extração em Fase Sólida/métodos , Solventes
5.
Mikrochim Acta ; 189(10): 395, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36169733

RESUMO

Dual-mode electrochemical aptasensor based on nitrogen-doped graphene (NG) doped with the conducting polymer polypyrrole (PPy) nanocomposite is proposed for the determination of acetamiprid. NG/PPy was electrodeposited onto the glassy carbon electrode (GCE) using cyclic voltammetry technique. NG/PPy/GCE showed outstanding electrocatalytic activity for the oxidation of nitrite due to "active region" induced by the charge redistribution of carbon atoms. The ultrasensitive dual-mode biosensor for acetamiprid could be easily developed by coupling acetamiprid aptamers with the NG/PPy hybrid. The specific binding between acetamiprid and the aptamers resulted in the increase of differential pulse voltammetry (DPV) signal change and the decrease of chronoamperometry (CA) signal, and the concentration of acetamiprid could be measured. The working potentials of DPV and CA were - 0.2 ~ 0.4 V and - 0.4 ~ 0.4 V (vs. SCE), respectively. The dual-mode acetamiprid biosensor showed a wide linear range from 10-12 to 10-7 g mL-1, with low detection limits of 1.15 × 10-13 g mL-1 and 7.32 × 10-13 g mL-1 through DPV and CA modes, respectively. Moreover, owing to high active area and superior conductivity, as well as good electrocatalytic ability, the dual-sensing platform based on NG/PPy nanocomposite supported the quantification of acetamiprid in complex samples. A dual-mode electrochemical aptasensor based on NG/PPy nanocomposite for acetamiprid detection was proposed through both the increase of differential pulse voltammetry (DPV) signal change and the decrease of chronoamperometry (CA) signal of the nitrite oxidation electrocatalyzed by NG/PPyn in sensors and biosensors.


Assuntos
Grafite , Nanocompostos , Carbono , Técnicas Eletroquímicas/métodos , Limite de Detecção , Neonicotinoides , Nitritos , Nitrogênio , Polímeros , Pirróis , Verduras
6.
Mikrochim Acta ; 189(9): 341, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35997821

RESUMO

A dual-mode electrochemical biosensor for acetamiprid detection was proposed for the first time based on carbon quantum dots/Prussian blue (CQDs/PB)-functionalized poly(3,4-ethylenedioxythiphene) (PEDOT) nanocomposite. The nanocomposite with spherical stacking nanostructure showed high surface area, excellent catalytic ability, and cycling stability. The biosensor can be effortlessly constructed after the immobilization of acetamiprid aptamer. The concentration of acetamiprid can be determined by differential pulse voltammetry (DPV) based on its signal change deduced from the pristine PB. With the capture of acetamiprid, the response current (I-T) signal generated by hydrogen peroxide catalysis from the biosensor can also been used to establish the method for monitoring acetamiprid. The dual-mode biosensor showed a wide linear range from 10-12 g mL-1 to 10-6 g mL-1, low detection limits of 6.84 × 10-13 g mL-1 and 4.99 × 10-13 g mL-1, and ultrafast detection time of 25 s and 5 s through DPV and I-T mode, respectively. The biosensor possessed excellent selectivity and stability. More importantly, the biosensor was successfully applied to detect acetamiprid residues in vegetables, proving a promising approach for routine detection of pesticide in real samples. The biosensor based on PEDOT/CQDs/PB for acetamiprid can be effortlessly constructed through both the increase of differential pulse voltammetry (DPV) signal change deduced by the pristine PB and the decrease of the response current (I-T) signal of the reduction of hydrogen peroxide catalyzed by PEDOT/CQDs/PB.


Assuntos
Nanopartículas , Pontos Quânticos , Compostos Bicíclicos Heterocíclicos com Pontes , Carbono , Técnicas Eletroquímicas/métodos , Ferrocianetos , Peróxido de Hidrogênio , Neonicotinoides , Polímeros , Pontos Quânticos/química
7.
J Nanobiotechnology ; 19(1): 49, 2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33593391

RESUMO

BACKGROUND: Nanomaterials in plant protection promise many benefits over conventional pesticide products. Nano-enabled pesticides may alter the functionality or risk profile of active ingredients. Cationic nanochitin whiskers (NC) possess strong biological activity against wheat aphids. However, toxicity and synergistic effects of NC with chemical pesticides against pest insects has not been systemically reported. This study investigated the insecticidal enhancement by NC with Omethoate (40% EC), Imidacloprid (10% WP), and Acetamiprid (40% WG) for pest control using wheat aphid as piercing-sucking mouthparts insect. Fluorescein isothiocyanate labelled NC was used to monitor the uptake and transportation pathway of NC inside the target insects. Toxicity of NC was tested with Sprague-Dawley (SD) rat. Our findings provide a theoretical basis for future application of NC in plant protection against pest insects. RESULTS: NCs synthesized by acidic hydrolysis were rod-like nanoparticles in a range of 50-150 nm in length and 30-50 nm in width, which examined by electron microscopy and dynamic light scattering methods. The charge density and zeta potential were about 63 mmol/kg and + 36.4 mV, respectively. By absorption and/or contact action of 30-50 mg/L of NC suspension, the corrected mortality of wheat aphids reached up to 80% or above after 12 h treatment, NC could be distributed through digestive system and relocated from mouth to other tissues inside the insect body. When associated with dilutions of conventional pesticides, the corrected mortality were significantly increased up to 95% or above. The dosage of the chemical pesticide and nanochitin in the mixtures (1:1 by volume) were all reduced to half. The acute oral toxicity Lethal Dose 50% (LD50) to SD rat is greater than 5000 mg/kg BW (body weight) in male and female, acute dermal toxicity LD50 is greater than 2000 mg/kg BW of NC. CONCLUSIONS: NC has a strong promotive effect on insecticidal effectiveness of chemical insecticides. It was easily absorbed by plant, transported and distributed from mouth to other tissues of the insects while sucking plant fluid. Low acute oral and dermal toxicity to SD rat indicated that it is safe to apply in agriculture and food industry. NCs has a great potential for water-based nanopesticide formulation to reduce chemical pesticide use for future agro-environmental sustainability.


Assuntos
Quitina/química , Inseticidas/farmacologia , Vibrissas/química , Animais , Afídeos , Feminino , Controle de Insetos , Masculino , Camundongos , Mortalidade , Neonicotinoides , Nitrocompostos , Praguicidas , Ratos , Ratos Sprague-Dawley , Triticum
8.
Vet Pathol ; 58(6): 1107-1118, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34269115

RESUMO

The productivity and survival of honey bee (Apis mellifera) colonies depend on queen bee health. Colony-level neonicotinoid exposure has negative effects on reproductive fitness of honey bee queens. However, it is unclear if the observed effects are a direct outcome of neonicotinoid toxicity or result from suboptimal care of developing queens by exposed workers. The aim of this study was to evaluate larval survival, reproductive fitness, and histopathology of honey bee queens exposed to incremental doses (0, 5, 50 ng) of the neonicotinoid thiamethoxam (THI) applied directly to individual late larvae (7 days post-oviposition) of queens. The 5 ng dose represents a calculated high environmental level of exposure for honey bee queen larvae. Morphometric evaluation revealed that the total area of mandibular gland epithelium in queens exposed to 5 and 50 ng THI was reduced by 14% (P = .12) and 25% (P = .001), respectively. Decreased mandibular gland size may alter pheromone production, which could in part explain previously observed negative effects of THI on the reproductive fitness of queens. We also found that late larval exposure to THI reduced larval and pupal survival and decreased sperm viability in mated queens. These changes may interfere with queen development and reproductive longevity.


Assuntos
Aptidão Genética , Animais , Abelhas , Feminino , Larva , Neonicotinoides/toxicidade , Tiametoxam
9.
Ecotoxicol Environ Saf ; 212: 112001, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33545407

RESUMO

Neonicotinoid insecticides (NEOs) are widely used around the world. The distribution of NEOs in paired saliva and periodontal blood samples was not previously documented in China. In this study, the concentrations of six NEOs and three corresponding metabolites were measured in 188 paired saliva and periodontal blood samples collected from South China. NEOs and their metabolites were frequently detected (68-94%) in paired saliva and periodontal blood, with median levels of 0.01-0.99 ng/mL. 1-Methyl-3-(tetrahydro-3-furylmethyl) urea was the most predominant NEO in paired saliva (39%) and periodontal blood (42%). Gender-related differences in NEOs and their metabolite concentrations were found: males showed lower levels than females. We calculated the concentration ratios between saliva and periodontal blood (S/PB ratios), and found that the median S/PB ratios of NEO and their metabolites were higher than 1, indicating that NEOs and their metabolites were easily excreted via saliva. 8-Hydroxy-2'-deoxyguanosine (8-OHdG) was measured in paired saliva and periodontal blood as a marker of oxidative stress. 8-OHdG concentrations in saliva and periodontal blood were significantly and positively correlated (p < 0.05) with the concentrations of most NEOs and their metabolites in saliva and periodontal blood samples. These findings indicated that exposure to NEOs and their metabolites is associated with oxidative stress. This study is the first to report NEOs and their metabolites in paired saliva and periodontal blood samples collected from South China.


Assuntos
Inseticidas/sangue , Neonicotinoides/sangue , Estresse Oxidativo/efeitos dos fármacos , Periodonto/irrigação sanguínea , Saliva/química , 8-Hidroxi-2'-Desoxiguanosina/análise , Adolescente , Adulto , Biomarcadores/análise , Criança , China , Feminino , Humanos , Inseticidas/análise , Inseticidas/metabolismo , Masculino , Pessoa de Meia-Idade , Neonicotinoides/análise , Neonicotinoides/metabolismo , Adulto Jovem
10.
Korean J Parasitol ; 59(5): 481-487, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34724767

RESUMO

The objective of this study was to evaluate the efficacy of an imidacloprid 10% and flumethrin 4.5% polymer matrix collar against the developmental stages of Haemaphysalis longicornis infesting dogs using the hair from treated dogs in a semi-in-vitro assay set. When incubated with 0.5 g of the hair collected from the dogs installed with the drug-embedded collar after 10 days, average death rate of the larval, nymphal, and adult H. longicornis was 21.5%, 77.9%, and 100% at 30 min, 1 hr, and 2 hr, respectively. This study showed the larval stages as well as the nymphal and adult stages of H. longicornis ticks are killed upon contact with the hair from dogs treated with the collar within 2 hr.


Assuntos
Ixodidae , Infestações por Carrapato , Animais , Cães , Imidazóis , Larva , Neonicotinoides , Nitrocompostos , Polímeros , Piretrinas , Infestações por Carrapato/veterinária
11.
Environ Res ; 189: 109892, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32678737

RESUMO

Microplastics (MPs) as a type of emerging contaminant in the environment have attracted extensive attentions in recent years, and understanding the impacts of MPs on soil biodiversity and functioning are thus increasingly urgent. Nevertheless, few studies were performed to investigate potential effects of MPs on decay of soil organic pollutants in particular pesticides and enzyme activities. Herein, three types of MPs including polystyrene fragments (PS-50) and polyvinyl chloride beads (PVC-42000 and PVC-10) were added to soil at environmentally relevant concentrations (0.2 and 1.0%) to study their impacts on dissipation of thiacloprid and activities of urease, acid phosphatase, invertase and catalase. MPs exhibited negligible impacts on thiacloprid dissipation regardless of MPs type and content, being probably attributed to the unaltered bioavailability of thiacloprid in soil even after an addition of MPs, which was documented by using the hydroxypropyl-ß- cyclodextrin (HPCD) extraction method. Batch sorption experiments also exhibited the comparable adsorption capacity of thiacloprid to soil with and without MPs, along with Kf valuses of 3.44-3.77. Besides, MPs exerted negligible effects on enzyme activities of soil. Taken together, this study showed negligible impacts of MPs at environmentally relevant concentrations on thiacloprid dissipation and enzyme activity, expanding our knowledge on impacts of MPs at the environmentally relevant concentrations on pesticide dissipation in soil.


Assuntos
Poluentes do Solo , Solo , Microplásticos , Neonicotinoides , Plásticos , Poluentes do Solo/análise , Tiazinas
12.
J Sep Sci ; 43(12): 2467-2476, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32212382

RESUMO

Dummy template surface molecularly imprinted polymers based on silica gel were prepared through the surface molecular imprinting technique. Nonpoisonous nicotinamide, which is a structural analogue of imidacloprid and acetamidine, was chosen as the dummy template molecule. The obtained polymers were characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. The results showed that the polymers exhibited high adsorption capacity and selectivity for imidacloprid and acetamiprid. The maximum adsorption capacities of the polymers toward imidacloprid and acetamiprid were 42.05 and 22.99 mg/g, and the adsorption could reach binding equilibrium within 150 min. The polymers were successfully applied as column-filling materials to extract imidacloprid and acetamiprid from tea polyphenols with a relatively high removal rate (92.36 and 95.20%). The polymers also showed great stability and reusability during the application. The obtained polymers possessed good application prospects for removing imidacloprid and acetamiprid in tea polyphenol production processes.


Assuntos
Polímeros Molecularmente Impressos/química , Neonicotinoides/isolamento & purificação , Nitrocompostos/isolamento & purificação , Polifenóis/química , Dióxido de Silício/química , Chá/química , Géis/química , Estrutura Molecular , Neonicotinoides/química , Nitrocompostos/química , Tamanho da Partícula , Propriedades de Superfície
13.
Ecotoxicol Environ Saf ; 202: 110935, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32800218

RESUMO

This study investigated the ability of dual crosslinked interpenetrating polymer network (IPN) blend beads (DIN:SA/PVA-beads), composed of sodium alginate (SA) and poly (vinyl alcohol) (PVA), as a base-triggered carrier for the controlled release of dinotefuran (DIN) in Spodoptera litera midgut. The blend beads were characterized for morphology, encapsulation efficiency, swelling degree, and in vitro release of the blend beads were characterized. The results revealed that the double-crosslinked gel beads had a tightly interpenetrating network structure and exhibited a satisfactory embedding effect for DIN. The maximum of the DIN loading capacity was approximately 1.01%, with a high encapsulation efficiency of 83.19%. The triggered release of DIN from the blend beads was studied in deionized water (pH 3.0-11.0) via high-performance liquid chromatography (HPLC); it was found that the release rate was higher in alkaline pH conditions than in acidic and neutral conditions. An in vivo dynamics and degradation study also demonstrated that the excellent release characteristics of DIN:SA/PVA-beads in the midgut of S. litera. This study provides a promising controlled-release form of dinotefuran that is more effective and can be used for the targeted control of pests with alkaline midgut.


Assuntos
Guanidinas/metabolismo , Neonicotinoides/metabolismo , Nitrocompostos/metabolismo , Spodoptera/metabolismo , Alginatos/química , Animais , Preparações de Ação Retardada/química , Etanol , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Hidrogéis/química , Concentração de Íons de Hidrogênio , Polímeros , Álcool de Polivinil/química
14.
Molecules ; 25(10)2020 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-32429511

RESUMO

A facile eco-friendly approach for acetampirid pesticide removal is presented. The method is based on the use of micro- and mesoporous activated carbon (TPAC) as a natural adsorbent. TPAC was synthesized via chemical treatment of tangerine peels with phosphoric acid. The prepared activated carbon was characterized before and after the adsorption process using Fourier- transform infrared (FTIR), X-ray diffraction (XRD), particle size and surface area. The effects of various parameters on the adsorption of acetampirid including adsorbent dose (0.02-0.2 g), pH 2-8, initial adsorbate concentration (10-100 mg/L), contact time (10-300 min) and temperature (25-50 °C) were studied. Batch adsorption features were evaluated using Langmuir and Freundlich isotherms. The adsorption process followed the Langmuir isotherm model with a maximum adsorption capacity of 35.7 mg/g and an equilibration time within 240 min. The adsorption kinetics of acetamiprid was fitted to the pseudo-second-order kinetics model. From the thermodynamics perspective, the adsorption was found to be exothermic and spontaneous in nature. TPAC was successfully regenerated and reused for three consecutive cycles. The results of the presented study show that TPAC may be used as an effective eco-friendly, low cost and highly efficient adsorbent for the removal of acetamiprid pesticides from aqueous solutions.


Assuntos
Carvão Vegetal/química , Inseticidas/isolamento & purificação , Lignina/química , Neonicotinoides/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Adsorção , Agricultura , Química Verde , Humanos , Concentração de Íons de Hidrogênio , Cinética , Lignina/isolamento & purificação , Porosidade , Temperatura , Termodinâmica , Resíduos
15.
J Sep Sci ; 42(14): 2455-2465, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31070852

RESUMO

This work demonstrates the synthesis and characterization of core-shell magnetic molecularly imprinted polymers based on surface imprinting using methacryloyl chloride as a functional monomer for the selective extraction of imidacloprid (template) from apple fruit. The characterization analysis results ensured the successful synthesis of the magnetic molecularly imprinted polymers owing to their heterogeneous structure and good magnetic properties. An isothermal binding test was assessed with a pseudo-second-order kinetic model, and the kinetic results fit well to the Freundlich isothermal model. The polymers exhibited an adsorption capacity of 5.75 mg/g for the target analyte with a good selective extraction ability. In addition, the polymers can be reused several times without significant performance loss. The molecularly imprinted polymers showed good performance in the analysis of spiked apple sample with a linear range of 0.05-1.0 mg/L, a limit of detection of 0.048 mg/L and a limit of quantification of 0.146 mg/L (S/N = 3/10). The recoveries of the samples were 77.66-96.57% and their respective relative standard deviations were 3.36-0.45%. All the results indicated that the proposed method provided good selective extraction, as qualifying the analytical standards.


Assuntos
Nanopartículas de Magnetita/química , Malus/química , Impressão Molecular , Neonicotinoides/análise , Nitrocompostos/análise , Polímeros/síntese química , Adsorção , Estrutura Molecular , Tamanho da Partícula , Polímeros/química , Propriedades de Superfície
16.
Ecotoxicol Environ Saf ; 175: 155-163, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-30897414

RESUMO

A well-known strategy for managing pest resistance is application of mixture of pesticides. Conventionally formulated pesticides have several environmental incompatibilities. The use of biocompatible and biodegradable nanocarriers in formulating pesticides could improve environmental protection. In this study, a mixture of imidacloprid and lambda-cyhalothrin was co-encapsulated for the first time using liposomes as nanocarrier to simultaneously deliver these insecticides. Ethanol injection was used to produce self-assembled liposomes. The formed nanoliposomes were coated with different concentrations of chitosan. Nanoparticles were characterized by dynamic light scattering (DLS), scanning electron microscope (SEM) and FT-IR spectroscopy. The encapsulation efficiencies of lambda-cyhalothrin and imidacloprid were about 93% and 51%, respectively. The insecticide carrying liposomes had a size and surface charge of 57 nm and +0.6 mV, respectively. The size and surface charge of the particles produced were increased to 69 nm and +31 mV after being coated with chitosan (0.1%, W/V). In this study, residual activity of technical grade imidacloprid, lambda-cyhalothrin and their mixture and the effect of adjuvants used in commercial and nano formulations of these insecticides on Myzus persicae Sulzer was investigated. The insecticidal effects and duration of residual activity of nano-formulations was correlated with concentration of chitosan in final formulation. In accordance with the life cycle of M. persicae, using the mixture of imidacloprid and lambda-cyhalothrin improves the residual effect over their use alone. The use of lipid nanocarriers makes the improvement even further and can be a better alternative to conventional combination of these insecticides due to their more environmental friendliness.


Assuntos
Afídeos/efeitos dos fármacos , Nanopartículas , Neonicotinoides/administração & dosagem , Nitrilas/administração & dosagem , Nitrocompostos/administração & dosagem , Piretrinas/administração & dosagem , Animais , Cápsulas , Imidazóis/administração & dosagem , Inseticidas/administração & dosagem , Lipossomos , Neonicotinoides/farmacologia , Nitrilas/farmacologia , Nitrocompostos/farmacologia , Praguicidas , Piretrinas/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier
17.
J Sci Food Agric ; 96(13): 4351-7, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26804312

RESUMO

BACKGROUND: Nano-size and wide-range solubility of amphiphilic polymers (having both hydrophilic and hydrophobic blocks) can improve uniformity in seed coatings. An investigation was carried out to assess the positive effect of amphiphilic polymers over hydrophilic or hydrophobic polymers as seed coating agents and pesticide carriers. RESULTS: Amphiphilic polymers with 127.5-354 nm micelle size were synthesized in the laboratory using polyethylene glycols and aliphatic di-acids. After 6 months of storage, germination of uncoated soybean seeds decreased drastically from 97.80 to 81.55%, while polymer-coated seeds showed 89.44-95.92% germination. Similarly, vigour index-1 was reduced from 3841.10 to 2813.06 for control seeds but ranged from 3375.59 to 3844.60 for polymer-coated seeds after 6 months. The developed imidacloprid formulations retained more pesticide on soybean seed coatings than did a commercial formulation (Gaucho(®) 600 FS). The time taken for 50% release of imidacloprid from seed coatings in water was 7.12-9.11 h for the developed formulations and 0.41 h for the commercial formulation. CONCLUSION: Nano-range amphiphilic polymers can be used to protect soybean seeds from ageing. Formulations as seed treatments may produce improved and sustained efficacy with minimum environmental contamination. © 2016 Society of Chemical Industry.


Assuntos
Agroquímicos/química , Glycine max/química , Imidazóis/química , Inseticidas/química , Nanoestruturas/química , Nitrocompostos/química , Sementes/química , Tensoativos/química , Agroquímicos/efeitos adversos , Algoritmos , Produtos Agrícolas/química , Produtos Agrícolas/crescimento & desenvolvimento , Ácidos Dicarboxílicos/efeitos adversos , Ácidos Dicarboxílicos/química , Poluição Ambiental/prevenção & controle , Germinação , Interações Hidrofóbicas e Hidrofílicas , Índia , Micelas , Peso Molecular , Nanoestruturas/efeitos adversos , Neonicotinoides , Permeabilidade , Polietilenoglicóis/química , Sementes/crescimento & desenvolvimento , Solubilidade , Glycine max/crescimento & desenvolvimento , Propriedades de Superfície , Tensoativos/efeitos adversos , Fatores de Tempo , Água/análise
18.
Parasitol Res ; 114(7): 2649-57, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25869961

RESUMO

This study was designed to compare the efficacy of two ectoparasiticides against adult fleas on dogs: a topical (DPP, dinotefuran-permethrin-pyriproxyfen) and a systemic (S, spinosad). Dogs (n = 48; 10.21-22.86 kg BW) were allocated to six groups of eight dogs each (C1, C4, DPP1, DPP4, S1, S4). Dogs in the treated groups were administered a topical (3.6 mL of DPP) or a tablet (665 or 1040 mg of S) on day 0. Infestations with 100 unfed fleas (Ctenocephalides felis) occurred on days -6, -1, 2, 7, 14, 21 and 28. An additional untreated group (QC, n = 6) was involved to evaluate the flea-anti-feeding efficacy. These dogs were infested once with 150 fleas prior to combing of at least 50 live fleas from each dog 5 or 10 min after infestation. In the treated group, dislodged dead and moribund fleas were collected from dogs 5, 10, 15 and 60 min (DPP1, S1) or 5, 10, 30 and 240 min (DPP4, S4) post-treatment and subsequent flea infestations on pans placed underneath the cages. Fleas were counted and removed from dogs by combing 1 (C1, DPP1, S1) or 4 h (C4, DPP4, S4) post-treatment and subsequent infestations. Quantitative PCR analysis of the canine cytochrome b gene was conducted on dislodged fleas collected from treated and control (QC) dogs 5 and 10 min after post-treatment infestations. The number of gene copies was used as a marker of blood volume ingested by fleas. Dislodgeability and insecticidal efficacy were calculated using arithmetic means. A rapid onset of killing was observed for DPP with 12.7 % of dead and moribund fleas being dislodged in average from dogs as soon as 5 min after infestation. DPP exhibited a significantly higher and sustained speed of kill than S. The average insecticidal efficacy was 86 ± 8.8 and 95.3 ± 2.1 % with DPP, whereas it was only 33.7 ± 19.9 and 57.6 ± 18.6 % with S at respectively 1 and 4 h after weekly reinfestations. The DPP combination significantly inhibited the feeding of fleas (89 % reduction) up to onset of flea mortality for 1-month post-treatment.


Assuntos
Ctenocephalides/efeitos dos fármacos , Doenças do Cão/tratamento farmacológico , Infestações por Pulgas/veterinária , Inseticidas/farmacologia , Permetrina/farmacologia , Animais , Ctenocephalides/fisiologia , Cães , Combinação de Medicamentos , Feminino , Infestações por Pulgas/tratamento farmacológico , Infestações por Pulgas/prevenção & controle , Guanidinas/farmacologia , Macrolídeos/farmacologia , Masculino , Neonicotinoides , Nitrocompostos/farmacologia , Polímeros , Piridinas/farmacologia , Comprimidos
19.
J Econ Entomol ; 108(3): 1228-36, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26470250

RESUMO

The development of effective baits to control the Argentine ant, Linepithema humile (Mayr), has been problematic because foragers prefer sweet liquids, while many toxicants are insoluble in water and liquid baits are generally difficult to deliver. The incorporation of thiamethoxam and sucrose solutions into a water-absorbing polyacrylamide hydrogel provides a unique and novel carrier and method of application for liquid baits. Formulations of thiamethoxam affected the size of the hydrogels, and sucrose solutions containing 0.0003% technical thiamethoxam provided hydrogels as large as those made with 25% sucrose solution or deionized water. Concentrations of thiamethoxam as low as 0.000075% in the hydrogels provided 50% kill of workers within 3 d in a laboratory setting. In small colony studies, baiting with 0.00015 and 0.000075% thiamethoxam hydrogels provided 100% mortality of workers and queens within 8 d. An enzyme-linked immunosorbent assay indicated that thiamethoxam was absorbed into the interior of the polyacrylamide matrix. The water loss rates of the hydrogels were dependent upon the relative humidity. Polyacrylamide hydrogels with >50% water loss were less attractive to ants. Field studies in highly infested areas indicated that concentrations of 0.0006 or 0.0018% thiamethoxam were more effective than 0.00015%. Hydrogels may provide a cost-effective alternative to providing aqueous baits to control Argentine ants.


Assuntos
Resinas Acrílicas , Formigas , Controle de Insetos , Nitrocompostos , Oxazinas , Sacarose , Tiazóis , Animais , Formigas/crescimento & desenvolvimento , Dessecação , Larva/crescimento & desenvolvimento , Neonicotinoides , Tiametoxam
20.
Ecotoxicol Environ Saf ; 107: 77-83, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24907455

RESUMO

In this work, nano-imidacloprid was prepared by direct encapsulation with ABA triblock linear dendritic copolymers composed of poly(citric acid) (PCA) as A block and poly(ethylene glycol) (PEG) as B block. Nanocapsules of imidacloprid were characterized using spectroscopy, microscopy and thermal analysis. The encapsulation process was performed by self-assembly of PCA-PEG-PCA in the presence of imidacloprid in different solvents. Comparison of the TEM images of nano-imidacloprid prepared in ethanol and water showed that, during the first day, self-assemblies appeared as small particles with an average size of 10-20nm. Depending upon the type of solvent, the time and concentration, morphology and size of the nano-imidacloprid varied from fiber-like to globular to tubular from 10nm to several mm in size. Higher loading capacity and slower release rate of imidacloprid from nano-imidacloprid at optimum pH of Glyphodes pyloalis׳s gut (pH=10) compared to neutral pH confirmed the selective and controllable action of nano-imidacloprid. Results of bioassays on the model insect showed that by using the nanoform of imidacloprid, essential dosage of pesticide and environmental risk decreased significantly and indicated good performance for this formulation.


Assuntos
Imidazóis/administração & dosagem , Mariposas , Nitrocompostos/administração & dosagem , Animais , Química Farmacêutica , Concentração de Íons de Hidrogênio , Imidazóis/química , Nanocápsulas , Neonicotinoides , Nitrocompostos/química , Poliésteres/química , Polietilenoglicóis/química , Solventes , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA