Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Parasitol ; 91(1): 61-8, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15856873

RESUMO

The infective larvae (L3i) of the nematode parasite of swine, Oesophagostomum dentatum, are passively ingested by their hosts. The L3i exhibit certain behaviors that are probably selected to increase the likelihood of ingestion, by strategic positioning in the environment. The larvae show positive geotactic behavior and respond to temperature variations in their environment, as shown by their behavior on a thermal gradient. To investigate neuronal control of this behavior, we initiated a study of the structure of the amphidial neurons of this parasite. The same number and types of neuronal dendritic processes are found in the amphids of the O. dentatum L3i as in those of its close relatives Haemonchus contortus and Ancylostoma caninum. Well-developed dendritic processes of wing cells are located in the amphidial sheath cells, these being similar to wing cells AWA in the free-living nematode Caenorhabditis elegans but actually more extensive. Similar to its close relatives just mentioned, and C. elegans as well, O. dentatum L3i has prominent finger cell processes, the finger cell neurons being the thermoreceptors in all 3 of the preceding species. However, unlike the arrangement seen in H. contortus and A. caninum, where the microvilli-like "fingers" of these neurons lie dorsal to the amphidial channel and occupy a very large portion (>50%) of the anterior end of the larva, the dendritic process of the finger cells in O. dentatum extends into unusual linguiform projections that, in turn, extend into the lumen of the mouth tube, a complex structural arrangement that has not been described for any other nematode.


Assuntos
Neurônios/ultraestrutura , Oesophagostomum/ultraestrutura , Animais , Imageamento Tridimensional , Larva/ultraestrutura , Microscopia Eletrônica , Esofagostomíase/parasitologia , Esofagostomíase/veterinária , Suínos , Doenças dos Suínos/parasitologia , Termorreceptores/ultraestrutura
2.
Parasit Vectors ; 7: 518, 2014 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-25406417

RESUMO

BACKGROUND: Plant-derived condensed tannins (CT) show promise as a complementary option to treat gastrointestinal helminth infections, thus reducing reliance on synthetic anthelmintic drugs. Most studies on the anthelmintic effects of CT have been conducted on parasites of ruminant livestock. Oesophagostomum dentatum is an economically important parasite of pigs, as well as serving as a useful laboratory model of helminth parasites due to the ability to culture it in vitro for long periods through several life-cycle stages. Here, we investigated the anthelmintic effects of CT on multiple life cycle stages of O. dentatum. METHODS: Extracts and purified fractions were prepared from five plants containing CT and analysed by HPLC-MS. Anthelmintic activity was assessed at five different stages of the O. dentatum life cycle; the development of eggs to infective third-stage larvae (L3), the parasitic L3 stage, the moult from L3 to fourth-stage larvae (L4), the L4 stage and the adult stage. RESULTS: Free-living larvae of O. dentatum were highly susceptible to all five plant extracts. In contrast, only two of the five extracts had activity against L3, as evidenced by migration inhibition assays, whilst three of the five extracts inhibited the moulting of L3 to L4. All five extracts reduced the motility of L4, and the motility of adult worms exposed to a CT-rich extract derived from hazelnut skins was strongly inhibited, with electron microscopy demonstrating direct damage to the worm cuticle and hypodermis. Purified CT fractions retained anthelmintic activity, and depletion of CT from extracts by pre-incubation in polyvinylpolypyrrolidone removed anthelmintic effects, strongly suggesting CT as the active molecules. CONCLUSIONS: These results suggest that CT may have promise as an alternative parasite control option for O. dentatum in pigs, particularly against adult stages. Moreover, our results demonstrate a varied susceptibility of different life-cycle stages of the same parasite to CT, which may offer an insight into the anthelmintic mechanisms of these commonly found plant compounds.


Assuntos
Anti-Helmínticos/farmacologia , Oesophagostomum/efeitos dos fármacos , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Proantocianidinas/farmacologia , Animais , Anti-Helmínticos/química , Relação Dose-Resposta a Droga , Ivermectina/farmacologia , Oesophagostomum/ultraestrutura , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Povidona , Proantocianidinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA