Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microb Pathog ; 193: 106758, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38906493

RESUMO

The present study explores the bioinspired green synthesis of zinc oxide nanoparticles (ZnONPs) using marine Streptomyces plicatus and its potent antibacterial, antibiofilm activity against dental caries forming Streptococcus mutans MTCC and S. mutans clinical isolate (CI), cytotoxicity against oral KB cancer cells, hemolysis against blood erythrocytes and artemia toxicity. The bioinspired ZnONPs showed a distinctive absorption peak at 375 nm in UV-Vis spectra, the FT-IR spectra divulged the active functional groups, and XRD confirmed the crystalline nature of the nanoparticles with an average grain size of 41.76 nm. SEM analysis evidenced hexagonal morphology, and EDX spectra affirmed the presence of zinc. The ZnONPs exerted higher antagonistic activity against S. mutans MTCC (Inhibitory zone: 19 mm; MIC: 75 µg/ml) than S. mutans CI (Inhibitory zone: 17 mm; MIC: 100 µg/ml). Results of biofilm inhibitory activity showed a concentration-dependent reduction with S. mutans MTCC (15 %-95 %) more sensitive than S. mutans CI (13 %-89 %). The 50 % biofilm inhibitory concentration (BIC50) of ZnONPs against S. mutans MTCC was considerably lower (71.76 µg/ml) than S. mutans CI (78.13 µg/ml). Confocal Laser Scanning Microscopic visuals clearly implied that ZnONPs effectively distorted the biofilm architecture of both S. mutans MTCC and S. mutans CI. This was further bolstered by a remarkable rise in protein leakage (19 %-85 %; 15 %-77 %) and a fall in exopolysaccharide production (34 mg-7 mg; 49 mg-12 mg). MTT cytotoxicity of ZnONPs recorded an IC50 value of 22.06 µg/ml against KB cells. Acridine orange/ethidium bromide staining showed an increasing incidence of apoptosis in KB cells. Brine shrimp cytotoxicity using Artemia salina larvae recorded an LC50 value of 78.41 µg/ml. Hemolysis assay substantiated the biocompatibility of the ZnONPs. This study underscores the multifaceted application of bioinspired ZnONPs in dentistry.


Assuntos
Antibacterianos , Artemia , Biofilmes , Hemólise , Testes de Sensibilidade Microbiana , Streptococcus mutans , Streptomyces , Óxido de Zinco , Streptomyces/química , Streptomyces/metabolismo , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Biofilmes/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Antibacterianos/química , Artemia/efeitos dos fármacos , Streptococcus mutans/efeitos dos fármacos , Humanos , Hemólise/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Nanopartículas/química , Química Verde , Espectroscopia de Infravermelho com Transformada de Fourier , Linhagem Celular Tumoral , Organismos Aquáticos/química , Difração de Raios X
3.
Mar Drugs ; 20(6)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35736175

RESUMO

Oceans have vast potential to develop high-value bioactive substances and biomaterials. In the past decades, many biomaterials have come from marine organisms, but due to the wide variety of organisms living in the oceans, the great diversity of marine-derived materials remains explored. The marine biomaterials that have been found and studied have excellent biological activity, unique chemical structure, good biocompatibility, low toxicity, and suitable degradation, and can be used as attractive tissue material engineering and regenerative medicine applications. In this review, we give an overview of the extraction and processing methods and chemical and biological characteristics of common marine polysaccharides and proteins. This review also briefly explains their important applications in anticancer, antiviral, drug delivery, tissue engineering, and other fields.


Assuntos
Materiais Biocompatíveis , Engenharia Tecidual , Organismos Aquáticos/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Polissacarídeos/química , Polissacarídeos/farmacologia , Medicina Regenerativa/métodos , Engenharia Tecidual/métodos
4.
Mar Drugs ; 20(11)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36355012

RESUMO

Despite its low prevalence, pancreatic cancer (PC) is one of the deadliest, typically characterised as silent in early stages and with a dramatically poor prognosis when in its advanced stages, commonly associated with a high degree of metastasis. Many efforts have been made in pursuing innovative therapeutical approaches, from the search for new cytotoxic drugs and other bioactive compounds, to the development of more targeted approaches, including improved drug delivery devices. Marine biotechnology has been contributing to this quest by providing new chemical leads and materials originating from different organisms. In this review, marine biodiscovery for PC is addressed, particularly regarding marine invertebrates (namely sponges, molluscs, and bryozoans), seaweeds, fungi, and bacteria. In addition, the development of biomaterials based on marine-originating compounds, particularly chitosan, fucoidan, and alginate, for the production of advanced cancer therapies, is also discussed. The key role that drug delivery can play in new cancer treatments is highlighted, as therapeutical outcomes need to be improved to give further hope to patients.


Assuntos
Produtos Biológicos , Neoplasias Pancreáticas , Humanos , Materiais Biocompatíveis/uso terapêutico , Fungos/química , Organismos Aquáticos/química , Bactérias/química , Neoplasias Pancreáticas/tratamento farmacológico , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Produtos Biológicos/química
5.
Mar Drugs ; 19(8)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34436244

RESUMO

Osteoarthritis (OA) is a multifactorial disease leading to degeneration of articular cartilage, causing morbidity in approximately 8.5 million of the UK population. As the dense extracellular matrix of articular cartilage is primarily composed of collagen, cartilage repair strategies have exploited the biocompatibility and mechanical strength of bovine and porcine collagen to produce robust scaffolds for procedures such as matrix-induced chondrocyte implantation (MACI). However, mammalian sourced collagens pose safety risks such as bovine spongiform encephalopathy, transmissible spongiform encephalopathy and possible transmission of viral vectors. This study characterised a non-mammalian jellyfish (Rhizostoma pulmo) collagen as an alternative, safer source in scaffold production for clinical use. Jellyfish collagen demonstrated comparable scaffold structural properties and stability when compared to mammalian collagen. Jellyfish collagen also displayed comparable immunogenic responses (platelet and leukocyte activation/cell death) and cytokine release profile in comparison to mammalian collagen in vitro. Further histological analysis of jellyfish collagen revealed bovine chondroprogenitor cell invasion and proliferation in the scaffold structures, where the scaffold supported enhanced chondrogenesis in the presence of TGFß1. This study highlights the potential of jellyfish collagen as a safe and biocompatible biomaterial for both OA repair and further regenerative medicine applications.


Assuntos
Organismos Aquáticos/química , Materiais Biocompatíveis/química , Condrogênese/efeitos dos fármacos , Colágeno/química , Osteoartrite/terapia , Cifozoários , Alicerces Teciduais/química , Animais , Colágeno/farmacologia , Humanos , Engenharia Tecidual
6.
Int J Mol Sci ; 22(6)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802984

RESUMO

Hybrid composites of synthetic and natural polymers represent materials of choice for bone tissue engineering. Ulvan, a biologically active marine sulfated polysaccharide, is attracting great interest in the development of novel biomedical scaffolds due to recent reports on its osteoinductive properties. Herein, a series of hybrid polycaprolactone scaffolds containing ulvan either alone or in blends with κ-carrageenan and chondroitin sulfate was prepared and characterized. The impact of the preparation methodology and the polysaccharide composition on their morphology, as well as on their mechanical, thermal, water uptake and porosity properties was determined, while their osteoinductive potential was investigated through the evaluation of cell adhesion, viability, and osteogenic differentiation of seeded human adipose-derived mesenchymal stem cells. The results verified the osteoinductive ability of ulvan, showing that its incorporation into the polycaprolactone matrix efficiently promoted cell attachment and viability, thus confirming its potential in the development of biomedical scaffolds for bone tissue regeneration applications.


Assuntos
Organismos Aquáticos/química , Osso e Ossos/fisiologia , Osteogênese/efeitos dos fármacos , Poliésteres/química , Polissacarídeos/farmacologia , Engenharia Tecidual , Alicerces Teciduais/química , Osso e Ossos/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Elasticidade , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Polissacarídeos/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Água/química
7.
Molecules ; 26(21)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34770753

RESUMO

Marine-derived biowaste increment is enormous, yet could be converted into valuable biomaterial, e.g., hydroxyapatite-based bioceramic. Bioceramic material possesses superiority in terms of thermal, chemical, and mechanical properties. Bioceramic material also has a high level of biocompatibility when projected into biological tissues. Tuning the porosity of bioceramic material could also provide benefits for bioseparation application, i.e., ultrafiltration ceramic membrane filtration for food and dairy separation processes. This work presents the investigation of hydroxyapatite conversion from crab-shells marine-based biowaste, by comparing three different methods, i.e., microwave, coprecipitation, and sol-gel. The dried crab-shells were milled and calcinated as calcium precursor, then synthesized into hydroxyapatite with the addition of phosphates precursors via microwave, coprecipitation, or sol-gel. The compound and elemental analysis, degree of crystallinity, and particle shape were compared. The chemical compounds and elements from three different methods were similar, yet the degree of crystallinity was different. Higher Ca/P ratio offer benefit in producing a bioceramic ultrafiltration membrane, due to low sintering temperature. The hydroxyapatite from coprecipitation and sol-gel methods showed a significant degree of crystallinity compared with that of the microwave route. However, due to the presence of Fe and Sr impurities, the secondary phase of Ca9FeH(PO4)7 was found in the sol-gel method. The secondary phase compound has high absorbance capacity, an advantage for bioceramic ultrafiltration membranes. Furthermore, the sol-gel method could produce a snake-like shape, compared to the oval shape of the coprecipitation route, another benefit to fabricate porous bioceramic for a membrane filter.


Assuntos
Organismos Aquáticos/química , Materiais Biocompatíveis/química , Cerâmica/química , Resíduos/análise , Técnicas de Química Sintética , Durapatita/síntese química , Durapatita/química , Teste de Materiais , Micro-Ondas , Porosidade , Análise Espectral
8.
Acc Chem Res ; 52(4): 858-866, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30925038

RESUMO

The vast amount of plastic waste emitted into the environment and the increasing concern of potential harm to wildlife has made microplastic and nanoplastic pollution a growing environmental concern. Plastic pollution has the potential to cause both physical and chemical harm to wildlife directly or via sorption, concentration, and transfer of other environmental contaminants to the wildlife that ingest plastic. Small particles of plastic pollution, termed microplastics (>100 nm and <5 mm) or nanoplastics (<100 nm), can form through fragmentation of larger pieces of plastic. These small particles are especially concerning because of their high specific surface area for sorption of contaminants as well as their potential to translocate in the bodies of organisms. These same small particles are challenging to separate and identify in environmental samples because their size makes handling and observation difficult. As a result, our understanding of the environmental prevalence of nanoplastics and microplastics is limited. Generally, the smaller the size of the plastic particle, the more difficult it is to separate from environmental samples. Currently employed passive density and size separation techniques to isolate plastics from environmental samples are not well suited to separate microplastics and nanoplastics. Passive flotation is hindered by the low buoyancy of small particles as well as the difficulty of handling small particles on the surface of flotation media. Here we suggest exploring alternative techniques borrowed from other fields of research to improve separation of the smallest plastic particles. These techniques include adapting active density separation (centrifugation) from cell biology and taking advantage of surface-interaction-based separations from analytical chemistry. Furthermore, plastic pollution is often challenging to quantify in complex matrices such as biological tissues and wastewater. Biological and wastewater samples are important matrices that represent key points in the fate and sources of plastic pollution, respectively. In both kinds of samples, protocols need to be optimized to increase throughput, reduce contamination potential, and avoid destruction of plastics during sample processing. To this end, we recommend adapting digestion protocols to match the expected composition of the nonplastic material as well as taking measures to reduce and account for contamination. Once separated, plastics in an environmental sample should ideally be characterized both visually and chemically. With existing techniques, microplastics and nanoplastics are difficult to characterize or even detect. Their low mass and small size provide limited signal for visual, vibrational spectroscopic, and mass spectrometric analyses. Each of these techniques involves trade-offs in throughput, spatial resolution, and sensitivity. To accurately identify and completely quantify microplastics and nanoplastics in environmental samples, multiple analytical techniques applied in tandem are likely to be required.


Assuntos
Nanoestruturas/química , Plásticos/análise , Organismos Aquáticos/química , Organismos Aquáticos/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Campos Magnéticos , Espectrometria de Massas , Microplásticos/análise , Microplásticos/isolamento & purificação , Microplásticos/metabolismo , Tamanho da Partícula , Plásticos/isolamento & purificação , Plásticos/metabolismo , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/isolamento & purificação , Poluentes Químicos da Água/metabolismo
9.
Mar Drugs ; 18(7)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32629815

RESUMO

Marine resources have considerable potential to develop high-value materials for applications in different fields, namely pharmaceutical, environmental, and biomedical. Despite that, the lack of solubility of marine-derived polymers in water and common organic solvents could restrict their applications. In the last years, ionic liquids (ILs) have emerged as platforms able to overcome those drawbacks, opening many routes to enlarge the use of marine-derived polymers as biomaterials, among other applications. From this perspective, ILs can be used as an efficient extraction media for polysaccharides from marine microalgae and wastes (e.g., crab shells, squid, and skeletons) or as solvents to process them in different shapes, such as films, hydrogels, nano/microparticles, and scaffolds. The resulting architectures can be applied in wound repair, bone regeneration, or gene and drug delivery systems. This review is focused on the recent research on the applications of ILs as processing platforms of biomaterials derived from marine polymers.


Assuntos
Organismos Aquáticos/química , Materiais Biocompatíveis , Líquidos Iônicos , Polímeros , Polissacarídeos
10.
Mar Drugs ; 18(4)2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326635

RESUMO

Due to its unique properties, collagen is used in the growing fields of pharmaceutical and biomedical devices, as well as in the fields of nutraceuticals, cosmeceuticals, food and beverages. Collagen also represents a valid resource for bioplastics and biomaterials, to be used in the emerging health sectors. Recently, marine organisms have been considered as promising sources of collagen, because they do not harbor transmissible disease. In particular, fish biomass as well as by-catch organisms, such as undersized fish, jellyfish, sharks, starfish, and sponges, possess a very high collagen content. The use of discarded and underused biomass could contribute to the development of a sustainable process for collagen extraction, with a significantly reduced environmental impact. This addresses the European zero-waste strategy, which supports all three generally accepted goals of sustainability: sustainable economic well-being, environmental protection, and social well-being. A zero-waste strategy would use far fewer new raw materials and send no waste materials to landfills. In this review, we present an overview of the studies carried out on collagen obtained from by-catch organisms and fish wastes. Additionally, we discuss novel technologies based on thermoplastic processes that could be applied, likewise, as marine collagen treatment.


Assuntos
Organismos Aquáticos/química , Colágeno/isolamento & purificação , Animais , Materiais Biocompatíveis , Peixes , Biologia Marinha , Gerenciamento de Resíduos/métodos
11.
J Basic Microbiol ; 60(4): 351-361, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31960981

RESUMO

For the first time, native proteorhodopsins of the marine dinoflagellate Oxyrrhis marina were isolated. Total cell membrane fractions were minced in a bead beater and solubilized with the detergent Triton X-100. Subsequent sucrose density gradient centrifugation resulted in three or four red-colored bands. Nonsolubilized, but still red colored, membranes sedimented at the bottom. For each of these bands, absorbance maxima were registered at approximately 514-516 nm with shoulders toward shorter wavelengths (470-490 nm). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the uppermost band represented free retinal chromophore, as it contained no protein. The other bands were almost pure proteorhodopsin fractions as the banding patterns showed one major protein of 25 kDa. Tryptic, in-gel digestion of the 25 kDa proteins and of faint protein bands above and below 25 kDa was followed by mass spectrometry, confirming these protein bands to consist, nearly exclusively, proteorhodopsins. Only single peptides of few other proteins were detected. In total, at least seven predicted proteorhodopsin protein sequences were experimentally verified.


Assuntos
Organismos Aquáticos/química , Membrana Celular/química , Fracionamento Químico/métodos , Dinoflagellida/química , Rodopsinas Microbianas/isolamento & purificação , Eletroforese em Gel de Poliacrilamida , Espectrometria de Massas , Octoxinol , Filogenia
12.
Bull Environ Contam Toxicol ; 104(4): 423-431, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32080748

RESUMO

Microplastic (MP) contamination in marine organisms is a growing field of research internationally. However not much is known about MP presence in invertebrates in southern Africa. The aim of this study was to determine whether MPs occurs in mussels prevalent in Cape Town, South Africa. Mussels (Mytilus galloprovincialis, Choromytilus meridionalis and Aulacomya ater) were sampled at 27 sites in October 2018 and MPs were recorded in 98% of mussels analysed. Most MPs were filaments, dark in colour and the size ranged between 50 and 1000 µm. There were no significant differences in MPs between the mussel species, with an average of 2.33 (standard error ± 0.2) MP particles/g and 4.27 (standard error ± 0.5) particles/individual being recorded for all sites combined. This is the first record of MPs in mussels in the region and provides a baseline for further investigations and monitoring of MPs.


Assuntos
Organismos Aquáticos/química , Monitoramento Biológico/métodos , Microplásticos/análise , Mytilus/química , Poluentes Químicos da Água/análise , Animais , Alimentos Marinhos/análise , África do Sul
13.
Mar Drugs ; 17(8)2019 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-31405173

RESUMO

This review focuses on the expanding role of marine collagen (MC)-based scaffolds for biomedical applications. A scaffold-a three-dimensional (3D) structure fabricated from biomaterials-is a key supporting element for cell attachment, growth, and maintenance in 3D cell culture and tissue engineering. The mechanical and biological properties of the scaffolds influence cell morphology, behavior, and function. MC, collagen derived from marine organisms, offers advantages over mammalian collagen due to its biocompatibility, biodegradability, easy extractability, water solubility, safety, low immunogenicity, and low production costs. In recent years, the use of MC as an increasingly valuable scaffold biomaterial has drawn considerable attention from biomedical researchers. The characteristics, isolation, physical, and biochemical properties of MC are discussed as an understanding of MC in optimizing the subsequent modification and the chemistries behind important tissue engineering applications. The latest technologies behind scaffold processing are assessed and the biomedical applications of MC and MC-based scaffolds, including tissue engineering and regeneration, wound dressing, drug delivery, and therapeutic approach for diseases, especially those associated with metabolic disturbances such as obesity and diabetes, are discussed. Despite all the challenges, MC holds great promise as a biomaterial for developing medical products and therapeutics.


Assuntos
Organismos Aquáticos/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Colágeno/farmacologia , Colágeno/uso terapêutico , Animais , Humanos , Engenharia Tecidual/métodos , Alicerces Teciduais
14.
Mar Drugs ; 17(8)2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31443166

RESUMO

Bioceramic scaffolds are crucial in tissue engineering for bone regeneration. They usually provide hierarchical porosity, bioactivity, and mechanical support supplying osteoconductive properties and allowing for 3D cell culture. In the case of age-related diseases such as osteoarthritis and osteoporosis, or other bone alterations as alveolar bone resorption or spinal fractures, functional tissue recovery usually requires the use of grafts. These bone grafts or bone void fillers are usually based on porous calcium phosphate grains which, once disposed into the bone defect, act as scaffolds by incorporating, to their own porosity, the intergranular one. Despite their routine use in traumatology and dental applications, specific graft requirements such as osteoinductivity or balanced dissolution rate are still not completely fulfilled. Marine origin bioceramics research opens the possibility to find new sources of bone grafts given the wide diversity of marine materials still largely unexplored. The interest in this field has also been urged by the limitations of synthetic or mammalian-derived grafts already in use and broadly investigated. The present review covers the current stage of major marine origin bioceramic grafts for bone tissue regeneration and their promising properties. Both products already available on the market and those in preclinical phases are included. To understand their clear contribution to the field, the main clinical requirements and the current available biological-derived ceramic grafts with their advantages and limitations have been collected.


Assuntos
Organismos Aquáticos/química , Transplante Ósseo/métodos , Cerâmica/uso terapêutico , Aloenxertos/classificação , Animais , Materiais Biocompatíveis , Regeneração Óssea , Osso e Ossos , Xenoenxertos/classificação , Humanos
15.
Mar Drugs ; 17(10)2019 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-31569366

RESUMO

Three-dimensional (3D) bioprinting has become a flexible tool in regenerative medicine with potential for various applications. Further development of the new 3D bioprinting field lies in suitable bioink materials with satisfied printability, mechanical integrity, and biocompatibility. Natural polymers from marine resources have been attracting increasing attention in recent years, as they are biologically active and abundant when comparing to polymers from other resources. This review focuses on research and applications of marine biomaterials for 3D bioprinting. Special attention is paid to the mechanisms, material requirements, and applications of commonly used 3D bioprinting technologies based on marine-derived resources. Commonly used marine materials for 3D bioprinting including alginate, carrageenan, chitosan, hyaluronic acid, collagen, and gelatin are also discussed, especially in regards to their advantages and applications.


Assuntos
Organismos Aquáticos/química , Materiais Biocompatíveis/química , Biopolímeros/química , Bioimpressão , Impressão Tridimensional , Gelatina/química , Humanos , Polissacarídeos/química , Medicina Regenerativa/métodos , Engenharia Tecidual/métodos , Alicerces Teciduais/química
16.
Mar Drugs ; 17(12)2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31766498

RESUMO

The use of marine-origin polysaccharides has increased in recent research because they are abundant, cheap, biocompatible, and biodegradable. These features motivate their application in nanotechnology as drug delivery systems; in tissue engineering, cancer therapy, or wound dressing; in biosensors; and even water treatment. Given the physicochemical and bioactive properties of fucoidan and chitosan, a wide range of nanostructures has been developed with these polysaccharides per se and in combination. This review provides an outline of these marine polysaccharides, including their sources, chemical structure, biological properties, and nanomedicine applications; their combination as nanoparticles with descriptions of the most commonly used production methods; and their physicochemical and biological properties applied to the design of nanoparticles to deliver several classes of compounds. A final section gives a brief overview of some biomedical applications of fucoidan and chitosan for tissue engineering and wound healing.


Assuntos
Organismos Aquáticos/química , Quitosana/química , Sistemas de Liberação de Medicamentos , Polissacarídeos/química , Antibacterianos/administração & dosagem , Antibacterianos/química , Materiais Biocompatíveis/química , Composição de Medicamentos/métodos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Nanomedicina/métodos , Nanopartículas/química , Polifenóis/administração & dosagem , Polifenóis/química , Engenharia Tecidual/métodos
17.
Mar Drugs ; 17(3)2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30897777

RESUMO

Chronic respiratory diseases, including chronic obstructive pulmonary disease (COPD), cystic fibrosis, and asthma, are some of the leading causes of illness and fatalities worldwide. The search for novel treatments led to the exploration of marine natural products as drug candidates to combat the debilitating effects of mucus accumulation and chronic inflammation. Previous research showed that an alga-derived compound, brevenal, could attenuate the effects of inflammatory agents, but the mechanisms by which it exerted its effects remained unclear. We investigated the effects of brevenal on lipopolysaccharide (LPS) induced cytokine/chemokine production from murine macrophages and human lung epithelial cells. It was found that brevenal reduces proinflammatory mediator secretion while preserving anti-inflammatory secretion from these cells. Furthermore, we found that brevenal does not alter cell surface Toll-like receptor 4 (TLR4) expression, thereby maintaining the cells' ability to respond to bacterial infection. However, brevenal does alter macrophage activation states, as demonstrated by reduced expression of both M1 and M2 phenotype markers, indicating this putative anti-inflammatory drug shifts innate immune cells to a less active state. Such a mechanism of action would be ideal for reducing inflammation in the lung, especially with patients suffering from chronic respiratory diseases, where inflammation can be lethal.


Assuntos
Anti-Inflamatórios/farmacologia , Organismos Aquáticos/química , Dinoflagellida/química , Éteres/farmacologia , Fatores Imunológicos/farmacologia , Polímeros/farmacologia , Animais , Anti-Inflamatórios/uso terapêutico , Linhagem Celular Tumoral , Doença Crônica/terapia , Avaliação Pré-Clínica de Medicamentos , Células Epiteliais/efeitos dos fármacos , Éteres/uso terapêutico , Humanos , Fatores Imunológicos/uso terapêutico , Pulmão/citologia , Macrófagos/efeitos dos fármacos , Camundongos , Polímeros/uso terapêutico , Mucosa Respiratória/citologia , Doenças Respiratórias/tratamento farmacológico , Doenças Respiratórias/imunologia
18.
Ecotoxicol Environ Saf ; 178: 86-93, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30999184

RESUMO

Trophic transfer of cyclic methyl siloxanes (CMS) in aquatic ecosystems is an important criterion for assessing its environmental risks. This study researched the trophic transfer of four CMS (octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), dodecamethylcyclohexasiloxane (D6), and tetradecamethylcycloheptasiloxane (D7)) in marine food web from zooplankton up to seabirds in the Chinese Bohai Sea. In the zooplankton-invertebrate-fish-seabird based food web, the significant trophic magnifications were found for D4 to D6 (D4: R2 = 0.040, p < 0.05, D5: R2 = 0.26, p < 0.0001, D6: R2 = 0.071, p < 0.001), and the significant trophic dilution was found for D7 (R2 = 0.026 and p < 0.05). The trophic magnification factors (TMF) for D4 to D7 were 1.7 (95% confidence interval: 1.1-2.6), 3.5 (2.5-5.0), 1.8 (1.3-2.6), and 0.63 (95% CI: 0.40-0.99) respectively. In the zooplankton-invertebrate-fish based food web, both significant trophic magnification for D5 (R2 = 0.16, p < 0.0001, TMF = 3.0) and significant trophic dilution for D7 (R2 = 0.073, p < 0.01, TMF = 0.4) were found, but for D4 and D6, the trophic magnifications were not significant (D4: R2 = 0.010, p = 0.23, D6: R2 = 0.010, p = 0.23). The trophic transfer of the legacy contaminant BDE-47 and BDE-99 were also conducted as the benchmark chemicals and significant positive correlation was found. As far as we know, this is the first research on the trophic transfer of CMS in the zooplankton-invertebrate-fish-bird food chain which provided new insight of these compounds in the area.


Assuntos
Organismos Aquáticos/química , Monitoramento Ambiental/métodos , Siloxanas/análise , Poluentes Químicos da Água/análise , Animais , Organismos Aquáticos/metabolismo , Aves/metabolismo , China , Peixes/metabolismo , Cadeia Alimentar , Invertebrados/metabolismo , Oceanos e Mares , Zooplâncton/química
19.
Int J Mol Sci ; 20(20)2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31618840

RESUMO

Marine sponges remain representative of a unique source of renewable biological materials. The demosponges of the family Ianthellidae possess chitin-based skeletons with high biomimetic potential. These three-dimensional (3D) constructs can potentially be used in tissue engineering and regenerative medicine. In this study, we focus our attention, for the first time, on the marine sponge Ianthella labyrinthus Bergquist & Kelly-Borges, 1995 (Demospongiae: Verongida: Ianthellidae) as a novel potential source of naturally prestructured bandage-like 3D scaffolds which can be isolated simultaneously with biologically active bromotyrosines. Specifically, translucent and elastic flat chitinous scaffolds have been obtained after bromotyrosine extraction and chemical treatments of the sponge skeleton with alternate alkaline and acidic solutions. For the first time, cardiomyocytes differentiated from human induced pluripotent stem cells (iPSC-CMs) have been used to test the suitability of I. labyrinthus chitinous skeleton as ready-to-use scaffold for their cell culture. Results reveal a comparable attachment and growth on isolated chitin-skeleton, compared to scaffolds coated with extracellular matrix mimetic Geltrex®. Thus, the natural, unmodified I. labyrinthus cleaned sponge skeleton can be used to culture iPSC-CMs and 3D tissue engineering. In addition, I. labyrinthus chitin-based scaffolds demonstrate strong and efficient capability to absorb blood deep into the microtubes due to their excellent capillary effect. These findings are suggestive of the future development of new sponge chitin-based absorbable hemostats as alternatives to already well recognized cellulose-based fabrics.


Assuntos
Organismos Aquáticos/química , Materiais Biocompatíveis/química , Produtos Biológicos/química , Poríferos/química , Animais , Curativos Biológicos , Quitina/química , Humanos , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais/química
20.
Mar Drugs ; 16(2)2018 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-29461501

RESUMO

Sponges (Porifera) are recognized as aquatic multicellular organisms which developed an effective biochemical pathway over millions of years of evolution to produce both biologically active secondary metabolites and biopolymer-based skeletal structures. Among marine demosponges, only representatives of the Verongiida order are known to synthetize biologically active substances as well as skeletons made of structural polysaccharide chitin. The unique three-dimensional (3D) architecture of such chitinous skeletons opens the widow for their recent applications as adsorbents, as well as scaffolds for tissue engineering and biomimetics. This study has the ambitious goal of monitoring other orders beyond Verongiida demosponges and finding alternative sources of naturally prestructured chitinous scaffolds; especially in those demosponge species which can be cultivated at large scales using marine farming conditions. Special attention has been paid to the demosponge Mycale euplectellioides(Heteroscleromorpha: Poecilosclerida: Mycalidae) collected in the Red Sea. For the first time, we present here a detailed study of the isolation of chitin from the skeleton of this sponge, as well as its identification using diverse bioanalytical tools. Calcofluor white staining, Fourier-transform Infrared Spcetcroscopy (FTIR), electrospray ionization mass spectrometry (ESI-MS), scanning electron microscopy (SEM), and fluorescence microscopy, as well as a chitinase digestion assay were applied in order to confirm with strong evidence the finding of a-chitin in the skeleton of M. euplectellioides. We suggest that the discovery of chitin within representatives of the Mycale genus is a promising step in their evaluation of these globally distributed sponges as new renewable sources for both biologically active metabolites and chitin, which are of prospective use for pharmacology and biomaterials oriented biomedicine, respectively.


Assuntos
Organismos Aquáticos/metabolismo , Quitina/química , Quitina/metabolismo , Poríferos/química , Poríferos/metabolismo , Animais , Organismos Aquáticos/química , Materiais Biocompatíveis/química , Biomimética/métodos , Quitinases/metabolismo , Microscopia Eletrônica de Varredura/métodos , Esqueleto/química , Esqueleto/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise Espectral Raman/métodos , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA