Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 251
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 628(8006): 110-116, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570715

RESUMO

The emergence of biopolymer building blocks is a crucial step during the origins of life1-6. However, all known formation pathways rely on rare pure feedstocks and demand successive purification and mixing steps to suppress unwanted side reactions and enable high product yields. Here we show that heat flows through thin, crack-like geo-compartments could have provided a widely available yet selective mechanism that separates more than 50 prebiotically relevant building blocks from complex mixtures of amino acids, nucleobases, nucleotides, polyphosphates and 2-aminoazoles. Using measured thermophoretic properties7,8, we numerically model and experimentally prove the advantageous effect of geological networks of interconnected cracks9,10 that purify the previously mixed compounds, boosting their concentration ratios by up to three orders of magnitude. The importance for prebiotic chemistry is shown by the dimerization of glycine11,12, in which the selective purification of trimetaphosphate (TMP)13,14 increased reaction yields by five orders of magnitude. The observed effect is robust under various crack sizes, pH values, solvents and temperatures. Our results demonstrate how geologically driven non-equilibria could have explored highly parallelized reaction conditions to foster prebiotic chemistry.


Assuntos
Biopolímeros , Evolução Química , Temperatura Alta , Origem da Vida , Biopolímeros/química , Dimerização , Glicina/química , Concentração de Íons de Hidrogênio , Nucleotídeos/química , Polifosfatos/química , Solventes/química
2.
Nature ; 626(8001): 1019-1024, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38418914

RESUMO

The single chirality of biological molecules is a signature of life. Yet, rationalizing how single chirality emerged remains a challenging goal1. Research has commonly focused on initial symmetry breaking and subsequent enantioenrichment of monomer building blocks-sugars and amino acids-that compose the genetic polymers RNA and DNA as well as peptides. If these building blocks are only partially enantioenriched, however, stalling of chain growth may occur, whimsically termed in the case of nucleic acids as "the problem of original syn"2. Here, in studying a new prebiotically plausible route to proteinogenic peptides3-5, we discovered that the reaction favours heterochiral ligation (that is, the ligation of L monomers with D monomers). Although this finding seems problematic for the prebiotic emergence of homochiral L-peptides, we demonstrate, paradoxically, that this heterochiral preference provides a mechanism for enantioenrichment in homochiral chains. Symmetry breaking, chiral amplification and chirality transfer processes occur for all reactants and products in multicomponent competitive reactions even when only one of the molecules in the complex mixture exhibits an imbalance in enantiomer concentrations (non-racemic). Solubility considerations rationalize further chemical purification and enhanced chiral amplification. Experimental data and kinetic modelling support this prebiotically plausible mechanism for the emergence of homochiral biological polymers.


Assuntos
Biopolímeros , Evolução Química , Peptídeos , Proteínas , Estereoisomerismo , Biopolímeros/química , Ácidos Nucleicos/síntese química , Ácidos Nucleicos/química , Origem da Vida , Peptídeos/química , Proteínas/síntese química , Proteínas/química , Solubilidade
3.
Acc Chem Res ; 57(15): 2048-2057, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39013010

RESUMO

ConspectusAll life on Earth is composed of cells, which are built from and run by biological reactions and structures. These reactions and structures are generally the result of action by cellular biomolecules, which are indispensable for the function and survival of all living organisms. Specifically, biological catalysis, namely by protein enzymes, but also by other biomolecules including nucleic acids, is an essential component of life. How the biomolecules themselves that perform biological catalysis came to exist in the first place is a major unanswered question that plagues researchers to this day, which is generally the focus of the origins of life (OoL) research field. Based on current knowledge, it is generally postulated that early Earth was full of a myriad of different chemicals, and that these chemicals reacted in specific ways that led to the emergence of biochemistry, cells, and later, life. In particular, a significant part of OoL research focuses on the synthesis, evolution, and function of biomolecules potentially present under early Earth conditions, as a way to understand their eventual transition into modern life. However, this narrative overlooks possibilities that other molecules contributed to the OoL, as while biomolecules that led to life were certainly present on early Earth, at the same time, other molecules that may not have strict, direct biological lineage were also widely and abundantly present. For example, hydroxy acids, although playing a role in metabolism or as parts of certain biological structures, are not generally considered to be as essential to modern biology as amino acids (a chemically similar monomer), and thus research in the OoL field tends to perhaps focus more on amino acids than hydroxy acids. However, their likely abundance on early Earth coupled with their ability to spontaneously condense into polymers (i.e., polyesters) make hydroxy acids, and their subsequent products, functions, and reactions, a reasonable target of investigation for prebiotic chemists. Whether "non-biological" hydroxy acids or polyesters can contribute to the emergence of life on early Earth is an inquiry that deserves attention within the OoL community, as this knowledge can also contribute to our understanding of the plausibility of extraterrestrial life that does not exactly use the biochemical set found in terrestrial organisms. While some demonstrations have been made with respect to compartment assembly, compartmentalization, and growth of primitive polyester-based systems, whether these "non-biological" polymers can contribute any catalytic function and/or drive primitive reactions is still an important step toward the development of early life. Here, we review research both from the OoL field as well as from industry and applied sciences regarding potential catalysis or reaction driven by "non-biological" polyesters in various forms: as linear polymers, as hyperbranched polyesters, and as membraneless microdroplets.


Assuntos
Origem da Vida , Poliésteres , Poliésteres/química , Poliésteres/metabolismo
4.
Acc Chem Res ; 57(14): 1885-1895, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38968602

RESUMO

ConspectusCoacervates are droplets formed by liquid-liquid phase separation (LLPS) and are often used as model protocells-primitive cell-like compartments that could have aided the emergence of life. Their continued presence as membraneless organelles in modern cells gives further credit to their relevance. The local physicochemical environment inside coacervates is distinctly different from the surrounding dilute solution and offers an interesting microenvironment for prebiotic reactions. Coacervates can selectively take up reactants and enhance their effective concentration, stabilize products, destabilize reactants and lower transition states, and can therefore play a similar role as micellar catalysts in providing rate enhancement and selectivity in reaction outcome. Rate enhancement and selectivity must have been essential for the origins of life by enabling chemical reactions to occur at appreciable rates and overcoming competition from hydrolysis.In this Accounts, we dissect the mechanisms by which coacervate protocells can accelerate reactions and provide selectivity. These mechanisms can similarly be exploited by membraneless organelles to control cellular processes. First, coacervates can affect the local concentration of reactants and accelerate reactions by copartitioning of reactants or exclusion of a product or inhibitor. Second, the local environment inside the coacervate can change the energy landscape for reactions taking place inside the droplets. The coacervate is more apolar than the surrounding solution and often rich in charged moieties, which can affect the stability of reactants, transition states and products. The crowded nature of the droplets can favor complexation of large molecules such as ribozymes. Their locally different proton and water activity can facilitate reactions involving a (de)protonation step, condensation reactions and reactions that are sensitive to hydrolysis. Not only the coacervate core, but also the surface can accelerate reactions and provides an interesting site for chemical reactions with gradients in pH, water activity and charge. The coacervate is often rich in catalytic amino acids and can localize catalysts like divalent metal ions, leading to further rate enhancement inside the droplets. Lastly, these coacervate properties can favor certain reaction pathways, and thereby give selectivity over the reaction outcome.These mechanisms are further illustrated with a case study on ribozyme reactions inside coacervates, for which there is a fine balance between concentration and reactivity that can be tuned by the coacervate composition. Furthermore, coacervates can both catalyze ribozyme reactions and provide product selectivity, demonstrating that coacervates could have functioned as enzyme-like catalytic microcompartments at the origins of life.


Assuntos
Células Artificiais , Catálise , Células Artificiais/química , Células Artificiais/metabolismo , Origem da Vida
5.
J Mol Evol ; 92(5): 530-538, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39230713

RESUMO

The path to minimal life involves a series of stages that can be understood in terms of incremental, stepwise additions of complexity ranging from simple solutions of organic compounds to systems of encapsulated polymers capable of capturing nutrients and energy to grow and reproduce. This brief review will describe the initial stages that lead to populations of protocells capable of undergoing selection and evolution. The stages incorporate knowledge of chemical and physical properties of organic compounds, self-assembly of membranous compartments, non-enzymatic polymerization of amino acids and nucleotides followed by encapsulation of polymers to produce protocell populations. The results are based on laboratory simulations related to cyclic hydrothermal conditions on the prebiotic Earth. The final portion of the review looks ahead to what remains to be discovered about this process in order to understand the evolutionary path to minimal life.


Assuntos
Células Artificiais , Origem da Vida , Evolução Biológica , Polímeros/química , Aminoácidos/química
6.
Langmuir ; 40(17): 8971-8980, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38629792

RESUMO

Cells require oligonucleotides and polypeptides with specific, homochiral sequences to perform essential functions, but it is unclear how such oligomers were selected from random sequences at the origin of life. Cells were probably preceded by simple compartments such as fatty acid vesicles, and oligomers that increased the stability, growth, or division of vesicles could have thereby increased in frequency. We therefore tested whether prebiotic peptides alter the stability or growth of vesicles composed of a prebiotic fatty acid. We find that three of 15 dipeptides tested reduce salt-induced flocculation of vesicles. All three contain leucine, and increasing their length increases the efficacy. Also, leucine-leucine but not alanine-alanine increases the size of vesicles grown by multiple additions of micelles. In a molecular simulation, leucine-leucine docks to the membrane, with the side chains inserted into the hydrophobic core of the bilayer, while alanine-alanine fails to dock. Finally, the heterochiral forms of leucine-leucine, at a high concentration, rapidly shrink the vesicles and make them leakier and less stable to high pH than the homochiral forms do. Thus, prebiotic peptide-membrane interactions influence the flocculation, growth, size, leakiness, and pH stability of prebiotic vesicles, with differential effects due to sequence, length, and chirality. These differences could lead to a population of vesicles enriched for peptides with beneficial sequence and chirality, beginning selection for the functional oligomers that underpin life.


Assuntos
Peptídeos , Peptídeos/química , Alanina/química , Estereoisomerismo , Células Artificiais/química , Leucina/química , Origem da Vida , Dipeptídeos/química
7.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34001592

RESUMO

Functional biomolecules, such as RNA, encapsulated inside a protocellular membrane are believed to have comprised a very early, critical stage in the evolution of life, since membrane vesicles allow selective permeability and create a unit of selection enabling cooperative phenotypes. The biophysical environment inside a protocell would differ fundamentally from bulk solution due to the microscopic confinement. However, the effect of the encapsulated environment on ribozyme evolution has not been previously studied experimentally. Here, we examine the effect of encapsulation inside model protocells on the self-aminoacylation activity of tens of thousands of RNA sequences using a high-throughput sequencing assay. We find that encapsulation of these ribozymes generally increases their activity, giving encapsulated sequences an advantage over nonencapsulated sequences in an amphiphile-rich environment. In addition, highly active ribozymes benefit disproportionately more from encapsulation. The asymmetry in fitness gain broadens the distribution of fitness in the system. Consistent with Fisher's fundamental theorem of natural selection, encapsulation therefore leads to faster adaptation when the RNAs are encapsulated inside a protocell during in vitro selection. Thus, protocells would not only provide a compartmentalization function but also promote activity and evolutionary adaptation during the origin of life.


Assuntos
Células Artificiais/enzimologia , Compartimento Celular , Modelos Biológicos , Origem da Vida , RNA Catalítico/metabolismo , Sequência de Bases , Evolução Molecular , Ensaios de Triagem em Larga Escala , Cinética , Seleção Genética , Termodinâmica
8.
Trends Biochem Sci ; 44(4): 331-341, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30583961

RESUMO

Protocells, the first life-like entities, likely contained three molecular components: a membrane, an information-carrying molecule, and catalytic molecules. Minerals have a wide range of properties that might have contributed to the synthesis and self-assembly of these molecular components. Minerals could have mediated the formation and concentration of prebiotic organic monomers, catalyzed their polymerization into biomolecules, and catalyzed protometabolic pathways, leading to protocell self-assembly. This review considers the following major aspects of protocell membrane-mineral interactions: (i) the effect of dissolved cations on the stability of mixed fatty acid and phospholipid vesicles; (ii) the rate of lipid self-assembly to vesicles; and (iii) the role of photocatalytic minerals in harvesting light energy to drive electron transfer reactions across membranes in the development of protometabolism.


Assuntos
Células Artificiais/química , Minerais/química , Origem da Vida , Fosfolipídeos/química , Células Artificiais/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Minerais/metabolismo , Fosfolipídeos/metabolismo
9.
RNA ; 27(1): 1-11, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33028653

RESUMO

We propose a model for the replication of primordial protocell genomes that builds upon recent advances in the nonenzymatic copying of RNA. We suggest that the original genomes consisted of collections of oligonucleotides beginning and ending at all possible positions on both strands of one or more virtual circular sequences. Replication is driven by feeding with activated monomers and by the activation of monomers and oligonucleotides in situ. A fraction of the annealed configurations of the protocellular oligonucleotides would allow for template-directed oligonucleotide growth by primer extension or ligation. Rearrangements of these annealed configurations, driven either by environmental fluctuations or occurring spontaneously, would allow for continued oligonucleotide elongation. Assuming that shorter oligonucleotides were more abundant than longer ones, replication of the entire genome could occur by the growth of all oligonucleotides by as little as one nucleotide on average. We consider possible scenarios that could have given rise to such protocell genomes, as well as potential routes to the emergence of catalytically active ribozymes and thus the more complex cells of the RNA World.


Assuntos
Genoma , Modelos Genéticos , Origem da Vida , RNA Catalítico/genética , RNA/genética , Células Artificiais , DNA Circular/genética , DNA Circular/metabolismo , Evolução Molecular , Conformação de Ácido Nucleico , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , RNA/metabolismo , RNA Catalítico/metabolismo , Interface Usuário-Computador
10.
Proc Natl Acad Sci U S A ; 116(32): 15830-15835, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31332006

RESUMO

Compartmentalization was likely essential for primitive chemical systems during the emergence of life, both for preventing leakage of important components, i.e., genetic materials, and for enhancing chemical reactions. Although life as we know it uses lipid bilayer-based compartments, the diversity of prebiotic chemistry may have enabled primitive living systems to start from other types of boundary systems. Here, we demonstrate membraneless compartmentalization based on prebiotically available organic compounds, α-hydroxy acids (αHAs), which are generally coproduced along with α-amino acids in prebiotic settings. Facile polymerization of αHAs provides a model pathway for the assembly of combinatorially diverse primitive compartments on early Earth. We characterized membraneless microdroplets generated from homo- and heteropolyesters synthesized from drying solutions of αHAs endowed with various side chains. These compartments can preferentially and differentially segregate and compartmentalize fluorescent dyes and fluorescently tagged RNA, providing readily available compartments that could have facilitated chemical evolution by protecting, exchanging, and encapsulating primitive components. Protein function within and RNA function in the presence of certain droplets is also preserved, suggesting the potential relevance of such droplets to various origins of life models. As a lipid amphiphile can also assemble around certain droplets, this further shows the droplets' potential compatibility with and scaffolding ability for nascent biomolecular systems that could have coexisted in complex chemical systems. These model compartments could have been more accessible in a "messy" prebiotic environment, enabling the localization of a variety of protometabolic and replication processes that could be subjected to further chemical evolution before the advent of the Last Universal Common Ancestor.


Assuntos
Membranas Artificiais , Origem da Vida , Poliésteres/química , Ácidos Carboxílicos/química , Recuperação de Fluorescência Após Fotodegradação , Corantes Fluorescentes/química , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Poliésteres/síntese química , RNA/química
11.
PLoS Comput Biol ; 16(1): e1007592, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914131

RESUMO

How homochirality concerning biopolymers (DNA/RNA/proteins) could have originally occurred (i.e., arisen from a non-life chemical world, which tended to be chirality-symmetric) is a long-standing scientific puzzle. For many years, people have focused on exploring plausible physic-chemical mechanisms that may have led to prebiotic environments biased to one chiral type of monomers (e.g., D-nucleotides against L-nucleotides; L-amino-acids against D-amino-acids)-which should have then assembled into corresponding polymers with homochirality, but as yet have achieved no convincing advance. Here we show, by computer simulation-with a model based on the RNA world scenario, that the biased-chirality may have been established at polymer level instead, just deriving from a racemic mixture of monomers (i.e., equally with the two chiral types). In other words, the results suggest that the homochirality may have originated along with the advent of biopolymers during the origin of life, rather than somehow at the level of monomers before the origin of life.


Assuntos
Biopolímeros/química , Evolução Química , Isomerismo , Modelos Biológicos , Aminoácidos/química , Nucleotídeos/química , Origem da Vida
13.
Orig Life Evol Biosph ; 51(1): 1-60, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33721178

RESUMO

How life began still eludes science life, the initial progenote in the context presented herein, being a chemical aggregate of primordial inorganic and organic molecules capable of self-replication and evolution into ever increasingly complex forms and functions.Presented is a hypothesis that a mineral scaffold generated by geological processes and containing polymerized phosphate units was present in primordial seas that provided the initiating factor responsible for the sequestration and organization of primordial life's constituents. Unlike previous hypotheses proposing phosphates as the essential initiating factor, the key phosphate described here is not a polynucleotide or just any condensed phosphate but a large (in the range of at least 1 kilo-phosphate subunits), water soluble, cyclic metaphosphate, which is a closed loop chain of polymerized inorganic phosphate residues containing only phosphate middle groups. The chain forms an intrinsic 4-phosphate helix analogous to its structure in Na Kurrol's salt, and as with DNA, very large metaphosphates may fold into hairpin structures. Using a Holliday-junction-like scrambling mechanism, also analogous to DNA, rings may be manipulated (increased, decreased, exchanged) easily with little to no need for additional energy, the reaction being essentially an isomerization.A literature review is presented describing findings that support the above hypothesis. Reviewed is condensed phosphate inorganic chemistry including its geological origins, biological occurrence, enzymes and their genetics through eukaryotes, polyphosphate functions, circular polynucleotides and the role of the Holliday junction, previous biogenesis hypotheses, and an Eoarchean Era timeline.


Assuntos
Minerais/química , Origem da Vida , Fosfatos/química , Polímeros/química , Oceanos e Mares
14.
Proc Natl Acad Sci U S A ; 115(5): 885-890, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29339510

RESUMO

Protocell models are used to investigate how cells might have first assembled on Earth. Some, like oil-in-water droplets, can be seemingly simple models, while able to exhibit complex and unpredictable behaviors. How such simple oil-in-water systems can come together to yield complex and life-like behaviors remains a key question. Herein, we illustrate how the combination of automated experimentation and image processing, physicochemical analysis, and machine learning allows significant advances to be made in understanding the driving forces behind oil-in-water droplet behaviors. Utilizing >7,000 experiments collected using an autonomous robotic platform, we illustrate how smart automation cannot only help with exploration, optimization, and discovery of new behaviors, but can also be core to developing fundamental understanding of such systems. Using this process, we were able to relate droplet formulation to behavior via predicted physical properties, and to identify and predict more occurrences of a rare collective droplet behavior, droplet swarming. Proton NMR spectroscopic and qualitative pH methods enabled us to better understand oil dissolution, chemical change, phase transitions, and droplet and aqueous phase flows, illustrating the utility of the combination of smart-automation and traditional analytical chemistry techniques. We further extended our study for the simultaneous exploration of both the oil and aqueous phases using a robotic platform. Overall, this work shows that the combination of chemistry, robotics, and artificial intelligence enables discovery, prediction, and mechanistic understanding in ways that no one approach could achieve alone.


Assuntos
Células Artificiais , Inteligência Artificial , Origem da Vida , Algoritmos , Automação , Aprendizado de Máquina , Modelos Biológicos , Modelos Químicos , Óleos , Transição de Fase , Robótica , Água
15.
Angew Chem Int Ed Engl ; 60(10): 5561-5568, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33325627

RESUMO

Cellular life requires a high degree of molecular complexity and self-organization, some of which must have originated in a prebiotic context. Here, we demonstrate how both of these features can emerge in a plausibly prebiotic system. We found that chemical gradients in simple mixtures of activated amino acids and fatty acids can lead to the formation of amyloid-like peptide fibrils that are localized inside of a proto-cellular compartment. In this process, the fatty acid or lipid vesicles act both as a filter, allowing the selective passage of activated amino acids, and as a barrier, blocking the diffusion of the amyloidogenic peptides that form spontaneously inside the vesicles. This synergy between two distinct building blocks of life induces a significant increase in molecular complexity and spatial order thereby providing a route for the early molecular evolution that could give rise to a living cell.


Assuntos
Aminoácidos/química , Proteínas Amiloidogênicas/química , Lipossomos/química , Origem da Vida , Peptídeos/química , Aminoácidos/metabolismo , Proteínas Amiloidogênicas/metabolismo , Ácidos Decanoicos/química , Ácidos Decanoicos/metabolismo , Lipossomos/metabolismo , Ácido Oleico/química , Ácido Oleico/metabolismo , Peptídeos/metabolismo , Permeabilidade , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Multimerização Proteica
16.
Nature ; 515(7527): 440-2, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25363769

RESUMO

Thirty years ago it was shown that the non-enzymatic, template-directed polymerization of activated mononucleotides proceeds readily in a homochiral system, but is severely inhibited by the presence of the opposing enantiomer. This finding poses a severe challenge for the spontaneous emergence of RNA-based life, and has led to the suggestion that either RNA was preceded by some other genetic polymer that is not subject to chiral inhibition or chiral symmetry was broken through chemical processes before the origin of RNA-based life. Once an RNA enzyme arose that could catalyse the polymerization of RNA, it would have been possible to distinguish among the two enantiomers, enabling RNA replication and RNA-based evolution to occur. It is commonly thought that the earliest RNA polymerase and its substrates would have been of the same handedness, but this is not necessarily the case. Replicating D- and L-RNA molecules may have emerged together, based on the ability of structured RNAs of one handedness to catalyse the templated polymerization of activated mononucleotides of the opposite handedness. Here we develop such a cross-chiral RNA polymerase, using in vitro evolution starting from a population of random-sequence RNAs. The D-RNA enzyme, consisting of 83 nucleotides, catalyses the joining of L-mono- or oligonucleotide substrates on a complementary L-RNA template, and similar behaviour occurs for the L-enzyme with D-substrates and a D-template. Chiral inhibition is avoided because the 10(6)-fold rate acceleration of the enzyme only pertains to cross-chiral substrates. The enzyme's activity is sufficient to generate full-length copies of its enantiomer through the templated joining of 11 component oligonucleotides.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , RNA Catalítico/química , RNA Catalítico/metabolismo , RNA/biossíntese , RNA/química , Pareamento de Bases , Sequência de Bases , Biocatálise , Biopolímeros/biossíntese , Biopolímeros/química , Biopolímeros/metabolismo , RNA Polimerases Dirigidas por DNA/química , Evolução Molecular Direcionada , Evolução Química , Cinética , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Oligonucleotídeos/química , Oligonucleotídeos/metabolismo , Origem da Vida , Polimerização , RNA/metabolismo , Estereoisomerismo , Moldes Genéticos
17.
Proc Natl Acad Sci U S A ; 114(36): E7460-E7468, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28831002

RESUMO

It is not known how life originated. It is thought that prebiotic processes were able to synthesize short random polymers. However, then, how do short-chain molecules spontaneously grow longer? Also, how would random chains grow more informational and become autocatalytic (i.e., increasing their own concentrations)? We study the folding and binding of random sequences of hydrophobic ([Formula: see text]) and polar ([Formula: see text]) monomers in a computational model. We find that even short hydrophobic polar (HP) chains can collapse into relatively compact structures, exposing hydrophobic surfaces. In this way, they act as primitive versions of today's protein catalysts, elongating other such HP polymers as ribosomes would now do. Such foldamer catalysts are shown to form an autocatalytic set, through which short chains grow into longer chains that have particular sequences. An attractive feature of this model is that it does not overconverge to a single solution; it gives ensembles that could further evolve under selection. This mechanism describes how specific sequences and conformations could contribute to the chemistry-to-biology (CTB) transition.


Assuntos
Polímeros/química , Proteínas/química , Catálise , Interações Hidrofóbicas e Hidrofílicas , Origem da Vida , Polimerização , Prebióticos , Dobramento de Proteína
18.
BMC Evol Biol ; 19(1): 84, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30943915

RESUMO

BACKGROUND: It has long been suggested that Darwinian evolution may have started at the molecular level and subsequently proceeded to a level with membrane boundary, i.e., of protocells. The transformation has been referred to as "the first major transition leading to life". However, so far, we actually have little knowledge about the relevant evolutionary mechanisms - and even about the plausibility - of such a transition. Here, based upon the scenario of the RNA world, we performed a computer simulation study to address this issue. RESULTS: First, it was shown that at the molecular level, after the spread of one ribozyme (RNA replicase), another ribozyme (nucleotide synthetase) may emerge naturally in the system, and the two ribozymes would cooperate to spread in the naked scene. Then, when empty vesicles absorb the two ribozymes via "cytophagy", the resulting protocells may spread in the system and substitute the naked ribozymes. As for the driven power of such a transition, it was demonstrated that the membrane boundary's roles to ensure the cooperation between the two ribozymes and to prevent invasion of parasites are important. Beyond that, remarkably, it was found that another two factors may also have been significant: a possibly higher mobility of the raw materials in the environment (free water) and the protocells' potential capability to move around actively. Finally, the permeability of the membrane to raw materials was shown to be a major problem regarding the disadvantage for the cellular form. CONCLUSIONS: The transition from the molecular level to the cellular level may have occurred naturally in early history of evolution. The evolutionary mechanisms for this process were complex. Besides the membrane boundary's roles to guarantee the molecular cooperation and to resist parasites, the greater chance for the protocells to access raw materials - either due to the diffusion of raw materials outside or the protocells' active movement, should also be highlighted, which may have at least to an extent compensated the disadvantage regarding the membrane's blocking effect against raw materials. The present study represents an effort of systematical exploration on this significant transition during the arising of life.


Assuntos
Evolução Molecular , Origem da Vida , Animais , Células Artificiais/metabolismo , Permeabilidade da Membrana Celular , Simulação por Computador , Modelos Biológicos , Nucleotídeos/genética , Parasitos/fisiologia , RNA/genética , RNA Catalítico/genética , RNA Catalítico/metabolismo , RNA Polimerase Dependente de RNA/genética
19.
J Theor Biol ; 437: 222-224, 2018 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-29080779

RESUMO

A variety of evolutionary processes in biology can be viewed as settings where organisms 'catalyse' the formation of new types of organisms. One example, relevant to the origin of life, is where transient biological colonies (e.g. prokaryotes or protocells) give rise to new colonies via lateral gene transfer. In this short note, we describe and analyse a simple random process which models such settings. By applying theory from general birth-death processes, we describe how the survival of a population under catalytic diversification depends on interplay of the catalysis rate and the initial population size. We also note how such process can also be viewed within the framework of 'self-sustaining autocatalytic networks'.


Assuntos
Algoritmos , Células Artificiais/metabolismo , Transferência Genética Horizontal , Modelos Genéticos , Células Procarióticas/metabolismo , Simulação por Computador , Evolução Molecular , Genoma Bacteriano/genética , Cadeias de Markov , Origem da Vida
20.
Org Biomol Chem ; 16(17): 3068-3086, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29630080

RESUMO

Nucleic acids, phospholipids and other organic phosphates play central roles in biological pathways. n-Alkyl phosphates and their derivatives have been recognized as amphiphilic molecules for nearly two centuries. In the last 50 years, n-alkyl phosphate derivatives such as di-alkyl phosphates, mono-alkyl phosphatidyl ethanol amines and mono-alkyl phosphocholines have become predominant compounds with applications in different areas, from food chemistry to life science. The aim of this review is to summarize the most relevant progress made in the field of the synthesis of these molecules and to provide a concise perspective on the use of these amphiphiles as possible prebiotic membrane constituents. The first part of the review is dedicated to the analysis of the most relevant syntheses carried out in recent years with respect to those reported from the second half of the nineteenth century. The second part is dedicated to a description of the latest reports on prebiotic synthesis of mono-alkyl phosphates. In this part, the authors did not report the phosphorylation of other relevant biomolecules, such as nucleosides, which have been excellently reviewed elsewere.


Assuntos
Técnicas de Química Sintética/métodos , Membranas Artificiais , Fosfatos/química , Fosfolipídeos/química , Alcanos/síntese química , Alcanos/química , Alquilação , Origem da Vida , Fosfatos/síntese química , Ácidos Fosfatídicos/síntese química , Ácidos Fosfatídicos/química , Fosfolipídeos/síntese química , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA