Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.387
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(16): e2318783121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38588412

RESUMO

Communication between insects and plants relies on the exchange of bioactive molecules that traverse the species interface. Although proteinic effectors have been extensively studied, our knowledge of other molecules involved in this process remains limited. In this study, we investigate the role of salivary microRNAs (miRNAs) from the rice planthopper Nilaparvata lugens in suppressing plant immunity. A total of three miRNAs were confirmed to be secreted into host plants during insect feeding. Notably, the sequence-conserved miR-7-5P is specifically expressed in the salivary glands of N. lugens and is secreted into saliva, distinguishing it significantly from homologues found in other insects. Silencing miR-7-5P negatively affects N. lugens feeding on rice plants, but not on artificial diets. The impaired feeding performance of miR-7-5P-silenced insects can be rescued by transgenic plants overexpressing miR-7-5P. Through target prediction and experimental testing, we demonstrate that miR-7-5P targets multiple plant genes, including the immune-associated bZIP transcription factor 43 (OsbZIP43). Infestation of rice plants by miR-7-5P-silenced insects leads to the increased expression of OsbZIP43, while the presence of miR-7-5P counteracts this upregulation effect. Furthermore, overexpressing OsbZIP43 confers plant resistance against insects which can be subverted by miR-7-5P. Our findings suggest a mechanism by which herbivorous insects have evolved salivary miRNAs to suppress plant immunity, expanding our understanding of cross-kingdom RNA interference between interacting organisms.


Assuntos
Hemípteros , MicroRNAs , Oryza , Animais , Interferência de RNA , MicroRNAs/genética , MicroRNAs/metabolismo , Saliva , Hemípteros/fisiologia , Imunidade Vegetal/genética , Oryza/genética
2.
Plant Cell ; 35(12): 4383-4404, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37738159

RESUMO

The elimination of seed shattering was a key step in rice (Oryza sativa) domestication. In this paper, we show that increasing the gibberellic acid (GA) content or response in the abscission region enhanced seed shattering in rice. We demonstrate that SLENDER RICE1 (SLR1), the key repressor of GA signaling, could physically interact with the rice seed shattering-related transcription factors quantitative trait locus of seed shattering on chromosome 1 (qSH1), O. sativa HOMEOBOX 15 (OSH15), and SUPERNUMERARY BRACT (SNB). Importantly, these physical interactions interfered with the direct binding of these three regulators to the lignin biosynthesis gene 4-COUMARATE: COENZYME A LIGASE 3 (4CL3), thereby derepressing its expression. Derepression of 4CL3 led to increased lignin deposition in the abscission region, causing reduced rice seed shattering. Importantly, we also show that modulating GA content could alter the degree of seed shattering to increase harvest efficiency. Our results reveal that the "Green Revolution" phytohormone GA is important for regulating rice seed shattering, and we provide an applicable breeding strategy for high-efficiency rice harvesting.


Assuntos
Oryza , Oryza/genética , Oryza/metabolismo , Lignina/metabolismo , Giberelinas/metabolismo , Sementes/genética , Sementes/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(8): e2215426120, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36791100

RESUMO

Blast disease in cereal plants is caused by the fungus Magnaporthe oryzae and accounts for a significant loss in food crops. At the outset of infection, expression of a putative polysaccharide monooxygenase (MoPMO9A) is increased. MoPMO9A contains a catalytic domain predicted to act on cellulose and a carbohydrate-binding domain that binds chitin. A sequence similarity network of the MoPMO9A family AA9 showed that 220 of the 223 sequences in the MoPMO9A-containing cluster of sequences have a conserved unannotated region with no assigned function. Expression and purification of the full length and two MoPMO9A truncations, one containing the catalytic domain and the domain of unknown function (DUF) and one with only the catalytic domain, were carried out. In contrast to other AA9 polysaccharide monooxygenases (PMOs), MoPMO9A is not active on cellulose but showed activity on cereal-derived mixed (1→3, 1→4)-ß-D-glucans (MBG). Moreover, the DUF is required for activity. MoPMO9A exhibits activity consistent with C4 oxidation of the polysaccharide and can utilize either oxygen or hydrogen peroxide as a cosubstrate. It contains a predicted 3-dimensional fold characteristic of other PMOs. The DUF is predicted to form a coiled-coil with six absolutely conserved cysteines acting as a zipper between the two α-helices. MoPMO9A substrate specificity and domain architecture are different from previously characterized AA9 PMOs. The results, including a gene ontology analysis, support a role for MoPMO9A in MBG degradation during plant infection. Consistent with this analysis, deletion of MoPMO9A results in reduced pathogenicity.


Assuntos
Ascomicetos , Magnaporthe , Oryza , Oxigenases de Função Mista/metabolismo , Polissacarídeos/metabolismo , Celulose/metabolismo , Ascomicetos/metabolismo , Magnaporthe/genética , Doenças das Plantas/microbiologia , Proteínas Fúngicas/metabolismo , Oryza/metabolismo
4.
Plant Physiol ; 194(2): 832-848, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-37831082

RESUMO

Grasses are abundant feedstocks that can supply lignocellulosic biomass for production of cell-wall-derived chemicals. In grass cell walls, lignin is acylated with p-coumarate. These p-coumarate decorations arise from the incorporation of monolignol p-coumarate conjugates during lignification. A previous biochemical study identified a rice (Oryza sativa) BAHD acyltransferase (AT) with p-coumaroyl-CoA:monolignol transferase (PMT) activity in vitro. In this study, we determined that that enzyme, which we name OsPMT1 (also known as OsAT4), and the closely related OsPMT2 (OsAT3) harbor similar catalytic activity toward monolignols. We generated rice mutants deficient in either or both OsPMT1 and OsPMT2 by CRISPR/Cas9-mediated mutagenesis and subjected the mutants' cell walls to analysis using chemical and nuclear magnetic resonance methods. Our results demonstrated that OsPMT1 and OsPMT2 both function in lignin p-coumaroylation in the major vegetative tissues of rice. Notably, lignin-bound p-coumarate units were undetectable in the ospmt1 ospmt2-2 double-knockout mutant. Further, in-depth structural analysis of purified lignins from the ospmt1 ospmt2-2 mutant compared with control lignins from wild-type rice revealed stark changes in polymer structures, including alterations in syringyl/guaiacyl aromatic unit ratios and inter-monomeric linkage patterns, and increased molecular weights. Our results provide insights into lignin polymerization in grasses that will be useful for the optimization of bioengineering approaches for the effective use of biomass in biorefineries.


Assuntos
Oryza , Transferases , Transferases/análise , Transferases/metabolismo , Oryza/metabolismo , Lignina/metabolismo , Proteínas de Plantas/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Parede Celular/metabolismo
5.
Planta ; 259(5): 110, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565704

RESUMO

MAIN CONCLUSION: Understanding surface defenses, a relatively unexplored area in rice can provide valuable insight into constitutive and induced defenses against herbivores. Plants have evolved a multi-layered defense system against the wide range of pests that constantly attack them. Physical defenses comprised of trichomes, wax, silica, callose, and lignin, and are considered as the first line of defense against herbivory that can directly affect herbivores by restricting or deterring them. Most studies on physical defenses against insect herbivores have been focused on dicots compared to monocots, although monocots include one of the most important crops, rice, which half of the global population is dependent on as their staple food. In rice, Silica is an important element stimulating plant growth, although Silica has also been found to impart resistance against herbivores. However, other physical defenses in rice including wax, trichomes, callose, and lignin are less explored. A detailed exploration of the morphological structures and functional consequences of physical defense structures in rice can assist in incorporating these resistance traits in plant breeding and genetic improvement programs, and thereby potentially reduce the use of chemicals in the field. This mini review addresses these points with a closer look at current literature and prospects on rice physical defenses.


Assuntos
Herbivoria , Oryza , Animais , Lignina , Melhoramento Vegetal , Insetos , Produtos Agrícolas , Dióxido de Silício
6.
Plant Biotechnol J ; 22(2): 330-346, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37795899

RESUMO

Grass lignocelluloses feature complex compositions and structures. In addition to the presence of conventional lignin units from monolignols, acylated monolignols and flavonoid tricin also incorporate into lignin polymer; moreover, hydroxycinnamates, particularly ferulate, cross-link arabinoxylan chains with each other and/or with lignin polymers. These structural complexities make grass lignocellulosics difficult to optimize for effective agro-industrial applications. In the present study, we assess the applications of two engineered monolignol 4-O-methyltransferases (MOMTs) in modifying rice lignocellulosic properties. Two MOMTs confer regiospecific para-methylation of monolignols but with different catalytic preferences. The expression of MOMTs in rice resulted in differential but drastic suppression of lignin deposition, showing more than 50% decrease in guaiacyl lignin and up to an 90% reduction in syringyl lignin in transgenic lines. Moreover, the levels of arabinoxylan-bound ferulate were reduced by up to 50%, and the levels of tricin in lignin fraction were also substantially reduced. Concomitantly, up to 11 µmol/g of the methanol-extractable 4-O-methylated ferulic acid and 5-7 µmol/g 4-O-methylated sinapic acid were accumulated in MOMT transgenic lines. Both MOMTs in vitro displayed discernible substrate promiscuity towards a range of phenolics in addition to the dominant substrate monolignols, which partially explains their broad effects on grass phenolic biosynthesis. The cell wall structural and compositional changes resulted in up to 30% increase in saccharification yield of the de-starched rice straw biomass after diluted acid-pretreatment. These results demonstrate an effective strategy to tailor complex grass cell walls to generate improved cellulosic feedstocks for the fermentable sugar-based production of biofuel and bio-chemicals.


Assuntos
Metiltransferases , Oryza , Metiltransferases/genética , Metiltransferases/metabolismo , Oryza/genética , Oryza/metabolismo , Lignina/metabolismo , Flavonoides/metabolismo , Parede Celular/metabolismo
7.
PLoS Pathog ; 18(9): e1010792, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36173975

RESUMO

When infecting plants, fungal pathogens secrete cell wall-degrading enzymes (CWDEs) that break down cellulose and hemicellulose, the primary components of plant cell walls. Some fungal CWDEs contain a unique domain, named the carbohydrate binding module (CBM), that facilitates their access to polysaccharides. However, little is known about how plants counteract pathogen degradation of their cell walls. Here, we show that the rice cysteine-rich repeat secretion protein OsRMC binds to and inhibits xylanase MoCel10A of the blast fungus pathogen Magnaporthe oryzae, interfering with its access to the rice cell wall and degradation of rice xylan. We found binding of OsRMC to various CBM1-containing enzymes, suggesting that it has a general role in inhibiting the action of CBM1. OsRMC is localized to the apoplast, and its expression is strongly induced in leaves infected with M. oryzae. Remarkably, knockdown and overexpression of OsRMC reduced and enhanced rice defense against M. oryzae, respectively, demonstrating that inhibition of CBM1-containing fungal enzymes by OsRMC is crucial for rice defense. We also identified additional CBM-interacting proteins (CBMIPs) from Arabidopsis thaliana and Setaria italica, indicating that a wide range of plants counteract pathogens through this mechanism.


Assuntos
Arabidopsis , Oryza , Celulose , Cisteína , Proteínas Fúngicas/genética , Oryza/genética , Xilanos
8.
New Phytol ; 243(6): 2368-2384, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39075808

RESUMO

Catalase (CAT) is the main reactive oxygen species (ROS)-scavenging enzyme in plants and insects. However, it remains elusive whether and how insect saliva CAT suppresses ROS-mediated plant defense, thereby promoting initial virus transmission by insect vectors. Here, we investigated how leafhopper Recilia dorsalis catalase (RdCAT) was secreted from insect salivary glands into rice phloem, and how it was perceived by rice chaperone NO CATALASE ACTIVITY1 (OsNCA1) to scavenge excessive H2O2 during insect-to-plant virus transmission. We found that the interaction of OsNCA1 with RdCAT activated its enzymatic activity to decompose H2O2 in rice plants during leafhopper feeding. However, initial insect feeding did not significantly change rice CATs transcripts. Knockout of OsNCA1 in transgenic lines decreased leafhopper feeding-activated CAT activity and caused higher H2O2 accumulation. A devastating rice reovirus activated RdCAT expression and promoted the cosecretion of virions and RdCAT into leafhopper salivary cavities and ultimately into the phloem. Virus-mediated increase of RdCAT secretion suppressed excessive H2O2, thereby promoting host attractiveness to insect vectors and initial virus transmission. Our findings provide insights into how insect saliva CAT is secreted and perceived by plant chaperones to suppress the early H2O2 burst during insect feeding, thereby facilitating viral transmission.


Assuntos
Catalase , Hemípteros , Peróxido de Hidrogênio , Insetos Vetores , Oryza , Saliva , Animais , Peróxido de Hidrogênio/metabolismo , Hemípteros/virologia , Hemípteros/fisiologia , Saliva/virologia , Saliva/enzimologia , Catalase/metabolismo , Catalase/genética , Insetos Vetores/virologia , Oryza/virologia , Oryza/genética , Oryza/enzimologia , Reoviridae/fisiologia , Doenças das Plantas/virologia , Floema/virologia
9.
Plant Physiol ; 191(1): 70-86, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36124989

RESUMO

Bioengineering approaches to modify lignin content and structure in plant cell walls have shown promise for facilitating biochemical conversions of lignocellulosic biomass into valuable chemicals. Despite numerous research efforts, however, the effect of altered lignin chemistry on the supramolecular assembly of lignocellulose and consequently its deconstruction in lignin-modified transgenic and mutant plants is not fully understood. In this study, we aimed to close this gap by analyzing lignin-modified rice (Oryza sativa L.) mutants deficient in 5-HYDROXYCONIFERALDEHYDE O-METHYLTRANSFERASE (CAldOMT) and CINNAMYL ALCOHOL DEHYDROGENASE (CAD). A set of rice mutants harboring knockout mutations in either or both OsCAldOMT1 and OsCAD2 was generated in part by genome editing and subjected to comparative cell wall chemical and supramolecular structure analyses. In line with the proposed functions of CAldOMT and CAD in grass lignin biosynthesis, OsCAldOMT1-deficient mutant lines produced altered lignins depleted of syringyl and tricin units and incorporating noncanonical 5-hydroxyguaiacyl units, whereas OsCAD2-deficient mutant lines produced lignins incorporating noncanonical hydroxycinnamaldehyde-derived units. All tested OsCAldOMT1- and OsCAD2-deficient mutants, especially OsCAldOMT1-deficient lines, displayed enhanced cell wall saccharification efficiency. Solid-state nuclear magnetic resonance (NMR) and X-ray diffraction analyses of rice cell walls revealed that both OsCAldOMT1- and OsCAD2 deficiencies contributed to the disruptions of the cellulose crystalline network. Further, OsCAldOMT1 deficiency contributed to the increase of the cellulose molecular mobility more prominently than OsCAD2 deficiency, resulting in apparently more loosened lignocellulose molecular assembly. Such alterations in cell wall chemical and supramolecular structures may in part account for the variations of saccharification performance of the OsCAldOMT1- and OsCAD2-deficient rice mutants.


Assuntos
Lignina , Oryza , Lignina/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Mutação/genética , Parede Celular/metabolismo
10.
Plant Cell Environ ; 47(7): 2640-2659, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38558078

RESUMO

Cell wall is involved in plant growth and plays pivotal roles in plant adaptation to environmental stresses. Cell wall remodelling may be crucial to salt adaptation in the euhalophyte Salicornia europaea. However, the mechanism underlying this process is still unclear. Here, full-length transcriptome indicated cell wall-related genes were comprehensively regulated under salinity. The morphology and cell wall components in S. europaea shoot were largely modified under salinity. Through the weighted gene co-expression network analysis, SeXTH2 encoding xyloglucan endotransglucosylase/hydrolases, and two SeLACs encoding laccases were focused. Meanwhile, SeEXPB was focused according to expansin activity and the expression profiling. Function analysis in Arabidopsis validated the functions of these genes in enhancing salt tolerance. SeXTH2 and SeEXPB overexpression led to larger cells and leaves with hemicellulose and pectin content alteration. SeLAC1 and SeLAC2 overexpression led to more xylem vessels, increased secondary cell wall thickness and lignin content. Notably, SeXTH2 transgenic rice exhibited enhanced salt tolerance and higher grain yield. Altogether, these genes may function in the succulence and lignification process in S. europaea. This work throws light on the regulatory mechanism of cell wall remodelling in S. europaea under salinity and provides potential strategies for improving crop salt tolerance and yields.


Assuntos
Parede Celular , Chenopodiaceae , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Plantas Geneticamente Modificadas , Tolerância ao Sal , Xilema , Tolerância ao Sal/genética , Xilema/fisiologia , Xilema/genética , Xilema/metabolismo , Chenopodiaceae/genética , Chenopodiaceae/fisiologia , Parede Celular/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tamanho Celular , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Oryza/genética , Oryza/fisiologia , Oryza/crescimento & desenvolvimento , Genes de Plantas , Diferenciação Celular/genética , Lignina/metabolismo
11.
J Exp Bot ; 75(1): 123-136, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37724960

RESUMO

Lignin and cellulose are two essential elements of plant secondary cell walls that shape the mechanical characteristics of the culm to prevent lodging. However, how the regulation of the lignin and cellulose composition is combined to achieve optimal mechanical characteristics is unclear. Here, we show that increasing OsTCP19 expression in rice coordinately repressed lignin biosynthesis and promoted cellulose biosynthesis, resulting in enhanced lodging resistance. In contrast, repression of OsTCP19 coordinately promoted lignin biosynthesis and inhibited cellulose biosynthesis, leading to greater susceptibility to lodging. We found that OsTCP19 binds to the promoters of both MYB108 and MYB103L to increase their expression, with the former being responsible for repressing lignin biosynthesis and the latter for promoting cellulose biosynthesis. Moreover, up-regulation of OsTCP19 in fibers improved grain yield and lodging resistance. Thus, our results identify the OsTCP19-OsMYB108/OsMYB103L module as a key regulator of lignin and cellulose production in rice, and open up the possibility for precisely manipulating lignin-cellulose composition to improve culm mechanical properties for lodging resistance.


Assuntos
Lignina , Oryza , Lignina/metabolismo , Oryza/metabolismo , Celulose/metabolismo , Metabolismo dos Carboidratos , Parede Celular/metabolismo
12.
Microb Cell Fact ; 23(1): 232, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39169403

RESUMO

Straw pollution and the increasing scarcity of phosphorus resources in many regions of China have had severe impacts on the growing conditions for crop plants. Using microbial methods to enhance straw decomposition rate and phosphorus utilization offers effective solutions to address these problems. In this study, a microbial consortium 6 + 1 (consisting of a straw-degrading bacterium and a phosphate-solubilizing bacterium) was formulated based on their performance in straw degradation and phosphorus solubilization. The degradation rate of straw by 6 + 1 microbial consortium reached 48.3% within 7 days (The degradation ability was 7% higher than that of single bacteria), and the phosphorus dissolution rate of insoluble phosphorus reached 117.54 mg·L- 1 (The phosphorus solubilization ability was 29.81% higher than that of single bacteria). In addition, the activity of lignocellulosic degrading enzyme system was significantly increased, the activities of endoglucanase, ß-glucosidase and xylanase in the microbial consortium were significantly higher than those in the single strain (23.16%, 28.02% and 28.86%, respectively). Then the microbial consortium was processed into microbial agents and tested in rice pots. The results showed that the microbial agent significantly increased the content of organic matter, available phosphorus and available nitrogen in the soil. Ongoing research focuses on the determination of the effects and mechanisms of a functional hybrid system of straw degradation and phosphorus removal. The characteristics of the two strains are as follows: Straw-degrading bacteria can efficiently degrade straw to produce glucose-based carbon sources when only straw is used as a carbon source. Phosphate-solubilizing bacteria can efficiently use glucose as a carbon source, produce organic acids to dissolve insoluble phosphorus and consume glucose at an extremely fast rate. The analysis suggests that the microbial consortium 6 + 1 outperformed individual strains in terms of both performance and application effects. The two strains within the microbial consortium promote each other during their growth processes, resulting in a significantly higher rate of carbon source consumption compared to the individual strains in isolation. This increased demand for carbon sources within the growth system facilitates the degradation of straw by the strains. At the same time, the substantial carbon consumption during the metabolic process generated a large number of organic acids, leading to the solubilization of insoluble phosphorus. It also provides a basis for the construction of this type of microbial consortium.


Assuntos
Consórcios Microbianos , Oryza , Fósforo , Solo , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/microbiologia , Fósforo/metabolismo , Solo/química , Bactérias/metabolismo , Bactérias/crescimento & desenvolvimento , Microbiologia do Solo , Lignina/metabolismo , Solubilidade , Nitrogênio/metabolismo
13.
Environ Res ; 252(Pt 3): 118974, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38649016

RESUMO

A large amount of agricultural waste causes global environmental pollution. Biogas production by microbial pretreatment is an important way to utilize agricultural waste resources. In this study, Sporocytophaga CG-1 (A, cellulolytic strain) was co-cultured with Bacillus clausii HP-1 (B, non-cellulolytic strain) to analyze the effect of pretreatment of rice straw on methanogenic capacity of anaerobic digestion (AD). The results showed that weight loss rate of filter paper of co-culture combination is 53.38%, which is 29.37% higher than that of A. The synergistic effect of B on A can promote its degradation of cellulose. The cumulative methane production rate of the co-culture combination was the highest (93.04 mL/g VS substrate), which was significantly higher than that of A, B and the control group (82.38, 67.28 and 67.70 mL/g VS substrate). Auxiliary bacteria can improve cellulose degradation rate by promoting secondary product metabolism. These results provide data support for the application of co-culture strategies in the field of anaerobic digestion practices.


Assuntos
Metano , Oryza , Metano/metabolismo , Metano/biossíntese , Oryza/microbiologia , Oryza/metabolismo , Anaerobiose , Técnicas de Cocultura , Bacillus/metabolismo , Celulose/metabolismo , Biocombustíveis
14.
Biotechnol Lett ; 46(4): 559-569, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38748066

RESUMO

The effective recovery of the immobilized enzymes using magnetic carriers has led to growing interest in this technology. The objective of this research was to evaluate the efficiency of immobilized laccase on magnetized multiwall carbon nanotubes (m-MWCNTs) in terms of stability and reusability. Laccases were efficiently adsorbed onto magnetized multiwall carbon nanotubes (m-MWCNTs) synthesized using water. The concentration of 7 mg laccase/mL was found to be ideal for immobilization. The optimal activity of both free and immobilized laccases was observed at pH 5, while for the latter, the optimal temperature was shifted from 40 to 50 °C. Compared to the free laccase, the immobilized laccase exhibited a greater range of stability at more extreme temperatures. At the fourth cycle of reactions, the immobilized laccase exhibited more than 60% relative activity in terms of reusability. Based on the fourier-transform infrared spectroscopy (FTIR) peak at 2921 cm-1, saccharification of paddy straw using immobilized laccase verified lignin degradation. The easy recovery of the immobilized laccase on m-MWCNTs lends credence to its potential use in biomass hydrolysis.


Assuntos
Enzimas Imobilizadas , Lacase , Nanotubos de Carbono , Lacase/química , Lacase/metabolismo , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Nanotubos de Carbono/química , Concentração de Íons de Hidrogênio , Estabilidade Enzimática , Temperatura , Lignina/química , Lignina/metabolismo , Oryza/química
15.
Mikrochim Acta ; 191(7): 397, 2024 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877314

RESUMO

A fluorescence biosensor for determination of aflatoxin B1 (AFB1) based on polydiacetylene (PDA) liposomes and exonuclease III (EXO III)-assisted recycling amplification was developed. The AFB1 aptamer partially hybridizes with complementary DNA (cDNA), which is released upon recognition of AFB1 by the aptamer. Subsequently, the cDNA hybridizes with hairpin H to form double-stranded DNA that undergoes digestion by EXO III, resulting in the cyclic release of cDNA and generation of capture DNA for further reaction. The capture DNA then hybridizes with probe modified on PDA liposomes, leading to aggregation of liposomes and subsequent fluorescence production. This strategy exhibited a limit of detection of 0.18 ng/mL within the linear range 1-100 ng/mL with a determination coefficient > 0.99. The recovery ranged from 92.81 to 106.45%, with relative standard deviations (RSD) between 1.73 and 4.26%, for corn, brown rice, peanut butter, and wheat samples. The stability, accuracy, and specificity of the method demonstrated the applicability for real sample analysis.


Assuntos
Aflatoxina B1 , Técnicas Biossensoriais , Exodesoxirribonucleases , Limite de Detecção , Lipossomos , Polímero Poliacetilênico , Polímero Poliacetilênico/química , Lipossomos/química , Exodesoxirribonucleases/química , Exodesoxirribonucleases/metabolismo , Técnicas Biossensoriais/métodos , Aflatoxina B1/análise , Aptâmeros de Nucleotídeos/química , Técnicas de Amplificação de Ácido Nucleico/métodos , Poli-Inos/química , Espectrometria de Fluorescência/métodos , Zea mays/química , Triticum/química , Oryza/química , Polímeros/química , Contaminação de Alimentos/análise
16.
Int J Mol Sci ; 25(14)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39063077

RESUMO

Rice straw is an agricultural waste, the disposal of which through open burning is an emerging challenge for ecology. Green manufacturing using straw returning provides a more avant-garde technique that is not only an effective management measure to improve soil fertility in agricultural ecosystems but also nurtures environmental stewardship by reducing waste and the carbon footprint. However, fresh straw that is returned to the field cannot be quickly decomposed, and screening microorganisms with the capacity to degrade straw and understanding their mechanism of action is an efficient approach to solve such problems. This study aimed to reveal the potential mechanism of influence exerted by exogenous degradative bacteria (ZJW-6) on the degradation of straw, growth of plants, and soil bacterial community during the process of returning rice straw to the soil. The inoculation with ZJW-6 enhanced the driving force of cellulose degradation. The acceleration of the rate of decomposition of straw releases nutrients that are easily absorbed by rice (Oryza sativa L.), providing favorable conditions for its growth and promoting its growth and development; prolongs the photosynthetic functioning period of leaves; and lays the material foundation for high yields of rice. ZJW-6 not only directly participates in cellulose degradation as degrading bacteria but also induces positive interactions between bacteria and fungi and enriches the microbial taxa that were related to straw degradation, enhancing the rate of rice straw degradation. Taken together, ZJW-6 has important biological potential and should be further studied, which will provide new insights and strategies for the appropriate treatment of rice straw. In the future, this degrading bacteria may provide a better opportunity to manage straw in an ecofriendly manner.


Assuntos
Bactérias , Oryza , Microbiologia do Solo , Oryza/microbiologia , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Bactérias/metabolismo , Bactérias/crescimento & desenvolvimento , Caules de Planta/microbiologia , Caules de Planta/metabolismo , Celulose/metabolismo , Biodegradação Ambiental , Agricultura/métodos , Solo/química
17.
Prep Biochem Biotechnol ; 54(7): 967-973, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38327105

RESUMO

Trichoderma reesei RUT-C30 was cultivated on differentially pretreated rice straw and pure cellulose as a carbon source/inducer for cellulase production, and the enzymes were evaluated for hydrolysis of sequential acid and alkali pretreated rice straw. Growth on pretreated rice straw enhanced protein secretion and cellulase activities compared to pure cellulose as a carbon source. The yield of cellulolytic enzymes was higher for alkali pretreated rice straw (ALP-RS), while H2O2-treated (HP-RS) could not induce cellulases to a larger level compared to pure cellulose. Protein concentration was 3.5-fold higher on ALP-RS as compared to pure cellulose, with a maximum filter-paper cellulase (FPase) activity of 1.76 IU/ml and carboxy-methyl cellulase (CMCase) activity of 40.16 IU/ml (2.18 fold higher). Beta-glucosidase (BGL) activity was more or less the same with the different substrates and supplementation of heterologous BGL could result in a quantum jump in hydrolytic efficiencies, which in the case of ALP-RS induced enzymes was 34% (increased from 69.26% to 92.51%). The use of lignocellulosic biomass (LCB) itself as a substrate for the production of cellulase is advantageous not only in terms of raw material costs but also for obtaining a more suitable enzyme profile for biomass hydrolysis.


Assuntos
Celulase , Hypocreales , Oryza , Oryza/química , Hidrólise , Celulase/metabolismo , Celulase/química , Hypocreales/enzimologia , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Celulose/metabolismo , Celulose/química , Lignina/metabolismo , Lignina/química , Biomassa , beta-Glucosidase/metabolismo , beta-Glucosidase/química
18.
J Sci Food Agric ; 104(9): 5305-5314, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38380983

RESUMO

BACKGROUND: An attempt has been made to explore the nutritional profile of pink oyster mushrooms that have been grown in various agricultural residues, including sugarcane bagasse, rice straw, coconut coir and sawdust, along with other nutrient supplements such as defatted mustard and chickpea powder, for appropriate growth and fruiting body formation in a short span of time. The spawn production was experimented with five different grain varieties. The study became interesting when the observations differed slightly from the traditional practices, with the addition of defatted mustard supplements resulting in a positive correlation with respect to reducing the fruiting time, as well as improving yield and the nutritional profile of Pleurotus djamor. RESULTS: An elevated yield of 651.93 g kg-1 was recorded in the medium where the RS and DM were used in the ratio of 1:0.01 (rice straw +1% w/w defatted mustard) bag, whereas, in terms of protein content, a maximum yield of 32.57 ± 0.79 mg g-1 was observed when SB:DM was in the same ratio (sugarcane bagasse +1% w/w defatted mustard) bag. CONCLUSION: To confer the best outcomes from the screened substrates, a series of experiments were performed by varying the concentration of RS and SB, with 1% w/w DM. It is worth noting that the highest protein content of 32.76 ± 0.38 mg g-1 was obtained along with the total yield of 702.56 ± 2.9 g kg-1 of mushroom when the ratio of RS:SB was 0.7:0.3. © 2024 Society of Chemical Industry.


Assuntos
Valor Nutritivo , Pleurotus , Pleurotus/metabolismo , Pleurotus/química , Pleurotus/crescimento & desenvolvimento , Oryza/química , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Saccharum/química , Saccharum/metabolismo , Saccharum/crescimento & desenvolvimento , Mostardeira/química , Mostardeira/crescimento & desenvolvimento , Mostardeira/metabolismo , Cicer/química , Cicer/crescimento & desenvolvimento , Cicer/metabolismo , Celulose
19.
World J Microbiol Biotechnol ; 40(4): 109, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411737

RESUMO

Biomass from agriculture, forestry, and urban wastes is a potential renewable organic resource for energy generation. Many investigations have demonstrated that anaerobic fungi and methanogens could be co-cultured to degrade lignocellulose for methane generation. Thus, this study aimed to evaluate the effect of natural anaerobic fungi-methanogens co-culture on the methane production and lignocellulosic degradation of wastes from rice, corn and sugarcane. Hu sheep rumen digesta was used to develop a natural anaerobic fungi-methanogen co-culture. The substrates were rice straw (RS), rich husk (RH), corn stover (CS), corn cobs (CC), and sugarcane baggage (SB). Production of total gas and methane, metabolization rate of reducing sugar, glucose, and xylose, digestibility of hemicellulose and cellulose, activity of carboxymethylcellulase and xylanase, and concentrations of total acid and acetate were highest (P < 0.05) in CC, moderate (P < 0.05) in RS and CS, and lowest (P < 0.05) in SB and RH. The pH, lactate and ethanol were lowest (P < 0.05) in CC, moderate (P < 0.05) in RS and CS, and lowest (P < 0.05) SB and RH. Formate was lowest (P < 0.05) in CC, RS and CS, moderate (P < 0.05) in SB, and lowest (P < 0.05) in RH. Therefore, this study indicated that the potential of methane production and lignocellulosic degradation by natural anaerobic fungi-methanogens co-culture were highest in CC, moderate in RS and CS, and lowest in SB and RH.


Assuntos
Euryarchaeota , Lignina , Oryza , Saccharum , Animais , Ovinos , Zea mays , Anaerobiose , Técnicas de Cocultura , Fungos
20.
Plant J ; 109(5): 1152-1167, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34862679

RESUMO

The intricate architecture of cell walls and the complex cross-linking of their components hinders some industrial and agricultural applications of plant biomass. Xylan is a key structural element of grass cell walls, closely interacting with other cell wall components such as cellulose and lignin. The main branching points of grass xylan, 3-linked l-arabinosyl substitutions, can be modified by ferulic acid (a hydroxycinnamic acid), which cross-links xylan to other xylan chains and lignin. XAX1 (Xylosyl arabinosyl substitution of xylan 1), a rice (Oryza sativa) member of the glycosyltransferase family GT61, has been described to add xylosyl residues to arabinosyl substitutions modified by ferulic acid. In this study, we characterize hydroxycinnamic acid-decorated arabinosyl substitutions present on rice xylan and their cross-linking, in order to decipher the role of XAX1 in xylan synthesis. Our results show a general reduction of hydroxycinnamic acid-modified 3-linked arabinosyl substitutions in xax1 mutant rice regardless of their modification with a xylosyl residue. Moreover, structures resembling the direct cross-link between xylan and lignin (ferulated arabinosyl substitutions bound to lignin monomers and dimers), together with diferulates known to cross-link xylan, are strongly reduced in xax1. Interestingly, apart from feruloyl and p-coumaroyl modifications on arabinose, putative caffeoyl and oxalyl modifications were characterized, which were also reduced in xax1. Our results suggest an alternative function of XAX1 in the transfer of hydroxycinnamic acid-modified arabinosyl substitutions to xylan, rather than xylosyl transfer to arabinosyl substitutions. Ultimately, XAX1 plays a fundamental role in cross-linking, providing a potential target for the improvement of use of grass biomass.


Assuntos
Oryza , Xilanos , Parede Celular/metabolismo , Ácidos Cumáricos/metabolismo , Lignina/metabolismo , Oryza/genética , Oryza/metabolismo , Poaceae/metabolismo , Xilanos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA