Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 39(14): 6100-13, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21450810

RESUMO

RNA polymerase III recognizes and pauses at its terminator, an oligo(dT) tract in non-template DNA, terminates 3' oligo(rU) synthesis within this sequence, and releases the RNA. The pol III subunit Rpc11p (C11) mediates RNA 3'-5' cleavage in the catalytic center of pol III during pausing. The amino and carboxyl regions of C11 are homologous to domains of the pol II subunit Rpb9p, and the pol II elongation and RNA cleavage factor, TFIIS, respectively. We isolated C11 mutants from Schizosaccharomyces pombe that cause pol III to readthrough terminators in vivo. Mutant RNA confirmed the presence of terminator readthrough transcripts. A predominant mutation site, F32, resides in the C11 Rpb9-like domain. Another mutagenic approach confirmed the F32 mutation and also isolated I34 and Y30 mutants. Modeling Y30, F32 and I34 of C11 in available cryoEM pol III structures predicts a hydrophobic patch that may interface with C53/37. Another termination mutant, Rpc2-T455I, appears to reside internally, near the RNA-DNA hybrid. We show that the Rpb9 and TFIIS homologous mutants of C11 reflect distinct activities, that differentially affect terminator recognition and RNA 3' cleavage. We propose that these C11 domains integrate action at the upper jaw and center of pol III during termination.


Assuntos
RNA Polimerase III/química , RNA Polimerase III/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Regiões Terminadoras Genéticas , Transcrição Gênica , Sequência de Aminoácidos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Dados de Sequência Molecular , Fenótipo , Mutação Puntual , Poli T/química , Poli T/metabolismo , Estrutura Terciária de Proteína , RNA Polimerase II/química , RNA Polimerase III/genética , RNA de Transferência/genética , Proteínas de Saccharomyces cerevisiae/química , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Alinhamento de Sequência
2.
FEBS Lett ; 373(3): 255-8, 1995 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-7589477

RESUMO

HIV-1 RT is able to catalyze DNA synthesis starting from mononucleotides used both as minimal primers and as nucleotide substrates (de novo synthesis) in the presence of a complementary template. The rate of this process is rather slow when compared to the polymerization primed by an oligonucleotide. The addition of tRNA(Lys,3) to this system increased the de novo synthesis rate by 2-fold. Addition of low concentrations of agents able to modify protein conformation, such as urea, dimethylsulfoxide and Triton X-100, can activate the de novo synthesis by a factor 2 to 5. A dramatic synergy is observed in the presence of the three compounds since the stimulating effect of tRNA increases 10-15 times. These results suggest that compounds activating RT are able to induce a conformational change of the enzyme which results in a higher specific activity. Primer tRNA seems to play an important role in HIV-1 RT modification(s) leading to a polymerase having a higher affinity for the primer or the dTTP, but not for the template. The specificity of RT for the template is not influenced by changes in the kinetics or in the thermodynamic parameters of the polymerization reaction.


Assuntos
DNA/biossíntese , Desoxirribonucleotídeos/metabolismo , HIV-1/enzimologia , Aminoacil-RNA de Transferência/metabolismo , DNA Polimerase Dirigida por RNA/metabolismo , Dimetil Sulfóxido/farmacologia , Ativação Enzimática , Transcriptase Reversa do HIV , Octoxinol/farmacologia , Poli A/metabolismo , Poli T/metabolismo , Poli U/metabolismo , Conformação Proteica , DNA Polimerase Dirigida por RNA/química , Moldes Genéticos , Ureia/farmacologia
3.
Am J Vet Res ; 38(11): 1739-44, 1977 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-73357

RESUMO

An RNA-dependent DNA polymerase or reverse transcriptase has been demonstrated in highly purified bovine leukemia virus (BLV) particles. The viral enzyme responded very effectively to the exogenous template primer polyneucleotide (poly) (rA)-oligonucleotide (oligo) (dT). Unlike the reverse transcriptases of most mammalian C type RNA viruses, and of the ubliquitous foamy-like bovine syncytial virus, the BLV enzyme prefers magnesium rather than manganese for optimal activity. The identification of several other conditions required for optimal activity of the viral reverse transcriptase led to the development of a rapid, sensitive, semiquantitative assay, which is comparable in sensitivity to the syncytia-infectivity assay for the detection of BLV in supernatant fluids of monolayer cell cultures. However, the reverse transcriptase assay is not sufficiently reproducible for obtaining routine detection of BLV in short-term cultures of bovine peripheral blood lymphocytes. Therefore, this assay does not seem to provide an accurate method for the diagnosis of BL virus infection in cattle.


Assuntos
Vírus da Leucemia Bovina/enzimologia , DNA Polimerase Dirigida por RNA/análise , Retroviridae/enzimologia , Células Cultivadas , Vírus da Leucemia Bovina/crescimento & desenvolvimento , Linfócitos/microbiologia , Magnésio/metabolismo , Métodos , Poli A/metabolismo , Poli T/metabolismo , Polietilenoglicóis/farmacologia , DNA Polimerase Dirigida por RNA/isolamento & purificação , Proteínas Virais/biossíntese
4.
Eur J Biochem ; 165(3): 473-81, 1987 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-3297690

RESUMO

Eucaryotic primase, an enzyme that initiates de novo DNA replication, is tightly associated with polymerase alpha or yeast DNA polymerase I. It is probably a heterodimer of 5.6 +/- 0.1 S. The enzyme synthesizes oligoribonucleotides of about eight residues which are always initiated with a purine. In vitro the polymerase-primase complex initiates synthesis and pauses at preferred sites on natural single-stranded templates. The relative concentrations of ATP and GTP present in the reaction medium modulate the frequency of site recognition. Primase is strongly ATP-dependent in the presence of single-stranded DNA and of poly(dT). It also synthesizes oligo(rG) in the presence of poly(dC) very efficiently.


Assuntos
Células/enzimologia , Replicação do DNA , Células Eucarióticas/enzimologia , Flavonoides , RNA Nucleotidiltransferases/metabolismo , Animais , Núcleo Celular/enzimologia , DNA Primase , Humanos , Fenóis/metabolismo , Poli T/metabolismo , Polímeros/metabolismo , Polifenóis , RNA Nucleotidiltransferases/antagonistas & inibidores , Moldes Genéticos
5.
Biotechnol Bioeng ; 72(3): 261-8, 2001 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-11135195

RESUMO

In this study we develop a sequence-specific precipitation separation system of oligonucleotide (ODN) using a conjugate between poly(N-isopropylacrylamide) (PNIPAM) and ODN. PNIPAM is known as a thermoresponsive polymer and dehydrates to precipitate above its phase transition temperature in an aqueous milieu. The principal advantage of this separation system using the conjugate is that the hybridization reaction between the conjugate and oligonucleotide is conducted in homogeneous solution. The conjugate was prepared by copolymerization between N-isopropylacrylamide and a vinyl-derivatized (dT)(8). The obtained conjugate efficiently precipitated (dA)(8) from solution when the solution contained more than 1.5 M NaCl. The conjugate containing 3 nmol of (dT)(8) residue was able to precipitate 1.4 nmol of (dA)(8), suggesting that the (dT)(8) residue of the conjugate formed a triple helix with (dA)(8). From an equimolar mixture of (dA)(8) and its one point mutant, the conjugate selectively precipitated (dA)(8): the highest selectivity was obtained for the isolation of (dA)(8) from the mixture consisting of (dA)(4)dT(dA)(3) and (dA)(8). When the conjugate was applied for the precipitation of five oligo(dA)s having different chain lengths, the longer oligo(dA)s tended to be precipitated by the conjugate more efficiently than the shorter ones. The conjugate could be used repeatedly for precipitation of (dA)(8) without showing any loss in precipitation efficiency.


Assuntos
Resinas Acrílicas/metabolismo , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Resinas Acrílicas/síntese química , Resinas Acrílicas/química , Pareamento Incorreto de Bases/genética , Sequência de Bases , Estrutura Molecular , Peso Molecular , Desnaturação de Ácido Nucleico , Hibridização de Ácido Nucleico , Oligonucleotídeos/química , Oligonucleotídeos/isolamento & purificação , Poli A/química , Poli A/metabolismo , Poli T/química , Poli T/metabolismo , Cloreto de Sódio/farmacologia , Solubilidade , Temperatura
6.
Biochemistry ; 32(12): 3027-37, 1993 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-7681326

RESUMO

The mechanism by which calf thymus DNA primase synthesizes RNA primers was examined. Primase first binds a single-stranded DNA template (KD << 100 nM) and can then slide along the DNA in order to find a start for initiating primer synthesis. NTP binding appears ordered, such that the NTP which eventually becomes the second nucleotide of the primer binds the E.DNA complex first. The NTP that becomes the second nucleotide of the primer thereby influences where primase initiates. Primer synthesis is remarkably slow (0.0027 s-1 at 20 microM NTP). The rate-limiting step is after formation of the E.DNA.NTP.NTP complex and before or during dinucleotide synthesis. After synthesis of the dinucleotide, additional NTPs are rapidly polymerized. Primase products are 2-10 nucleotides long. If the enzyme fails to synthesize a primer at least 7 nucleotides long, it reinitiates rather than dissociating from the template. Once a primer at least 7 nucleotides long has been generated, however, subsequent primase activity is inhibited. This inhibition is due to the generation of a stable primer-template complex, which likely remains associated with pol alpha.primase. The role of primase is to synthesize primers that pol alpha can elongate. The ability of primase to distinguish between primers at least 7 nucleotides long and shorter products therefore likely reflects the fact that pol alpha only utilizes primers at least 7 nucleotides long.


Assuntos
RNA Nucleotidiltransferases/metabolismo , Timo/enzimologia , Trifosfato de Adenosina/metabolismo , Animais , Composição de Bases , Sequência de Bases , Bovinos , DNA/metabolismo , DNA Primase , DNA de Cadeia Simples/metabolismo , Guanosina Trifosfato/metabolismo , Cinética , Dados de Sequência Molecular , Nucleotídeos/metabolismo , Poli T/metabolismo , Polímeros/metabolismo , RNA/biossíntese , Moldes Genéticos
7.
Biochemistry ; 33(20): 6167-76, 1994 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-8193130

RESUMO

We have examined the ability of the Escherichia coli single-stranded DNA binding protein (SSB) tetramer to form its different binding modes on poly(dC), poly(U), and poly(A) over a range of NaCl and NaF concentrations for comparison with previous studies with poly(dT). In reverse titrations with poly(U) and poly(A) at 25 degrees C, pH 8.1, SSB forms all four binding modes previously observed with poly(dT), namely, (SSB)35, (SSB)40, (SSB)56, and (SSB)65, where the subscript denotes the site size (i.e., the average number of nucleotides occluded per SSB tetramer). As with poly(dT), the low site size modes are favored at low monovalent salt concentration (< 10 mM), whereas increasing salt concentration facilitates the transitions to the higher site size modes. Surprisingly, SSB does not form a stable (SSB)35 complex on poly(dC), even at 1 mM NaCl; rather, the (SSB)56 mode is formed under these conditions. Upon raising the [NaCl], the (SSB)56 complex undergoes a transition to the (SSB)65 complex (transition midpoint, 40 mM NaCl). On the basis of studies with dC(pC)34, dT(pT)34, and dA(pA)34, the inability of the SSB tetramer to form the (SSB)35 complex with poly(dC) is due mainly to a much lower degree of negative cooperativity for binding oligodeoxycytidylates to the SSB tetramer. At low salt concentration, the negative cooperativity parameter, sigma 35, is lowest for dA(pA)34, intermediate for dT(pT)34, and highest for dC(pC)34, indicating that it is most difficult to saturate the SSB tetramer with two molecules of dA(pA)34. We have also measured the equilibrium constants for binding the oligodeoxynucleotides dC(pC)34, dC(pC)69, dA(pA)34, and dA(pA)69 as a function of [NaCl] and [NaBr] and find that the salt dependencies of these oligonucleotides are dependent upon base composition. These studies also indicate that ion binding accompanies formation of these SSB-ss-DNA complexes, although there is a net release of ions upon formation of the complex. This influence of both salt concentration and base composition indicates that both electrostatic and nonelectrostatic factors contribute to the negative cooperativity associated with ss-DNA binding to the SSB tetramer.


Assuntos
DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/química , Composição de Bases , Sítios de Ligação , Brometos/farmacologia , Proteínas de Ligação a DNA/química , Substâncias Macromoleculares , Poli A/metabolismo , Poli C/metabolismo , Poli T/metabolismo , Poli U/metabolismo , Cloreto de Sódio/farmacologia , Compostos de Sódio/farmacologia , Fluoreto de Sódio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA